E · Cartice Semiconductor Corporation - LFSCM3GA115EP1-6FF1152C Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	28750
Number of Logic Elements/Cells	115000
Total RAM Bits	7987200
Number of I/O	660
Number of Gates	-
Voltage - Supply	0.95V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1152-BBGA, FCBGA
Supplier Device Package	1152-FCBGA (35x35)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfscm3ga115ep1-6ff1152c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

DLLs and dynamic glitch free clock MUXs which are required in today's high end system designs. High-speed, high-bandwidth I/O make this family ideal for high-throughput systems.

The ispLEVER[®] design tool from Lattice allows large complex designs to be efficiently implemented using the LatticeSC family of FPGA devices. Synthesis library support for LatticeSC is available for popular logic synthesis tools. The ispLEVER tool uses the synthesis tool output along with the constraints from its floor planning tools to place and route the design in the LatticeSC device. The ispLEVER tool extracts the timing from the routing and backannotates it into the design for timing verification.

Lattice provides many pre-designed IP (Intellectual Property) ispLeverCORE[™] modules for the LatticeSC family. By using these IPs as standardized blocks, designers are free to concentrate on the unique aspects of their design, increasing their productivity.

Innovative high-performance FPGA architecture, high-speed SERDES with PCS support, sysMEM embedded memory and high performance I/O are combined in the LatticeSC to provide excellent performance for today's leading edge systems designs. Table 1-3 details the performance of several common functions implemented within the LatticeSC.

Table1-3. Speed Performance for Typical Functions¹

Functions	Performance (MHz) ²
32-bit Address Decoder	539
64-bit Address Decoder	517
32:1 Multiplexer	779
64-bit Adder (ripple)	353
32x8 Distributed Single Port (SP) RAM	768
64-bit Counter (up or down counter, non-loadable)	369
True Dual-Port 1024x18 bits	372
FIFO Port A: x36 bits, B: x9 bits	375

1. For additional information, see Typical Building BLock Function Performance table in this data sheet.

2. Advance information (-7 speed grade).

Output Register Block

The output register block provides the ability to register signals from the core of the device before they are passed to the PURESPEED I/O buffers. The block contains a register for SDR operation and a group of registers for DDR and shift register operation. The output signal (DO) can be derived directly from one of the inputs (bypass mode), the SDR register or the DDR/shift register block. Figure 2-22 shows the diagram of the Output Register Block.

Output SDR Register/Latch Block

The SDR register operates on the positive edge of the high-speed clock. It has clock enable that is driven by the clock enable output signal generated by the control MUX. In addition it has a variety of programmable options for set/reset including, set or reset, asynchronous or synchronous Local Set Reset LSR (LSR has precedence over CE) and Global Set Reset GSR enable or disable. The register LSR input is driven from LSRO, which is generated from the PIO control MUX. The GSR inputs is driven from the GSR output of the PIO control MUX, which allows the global set-reset to be disabled on a PIO basis.

Output DDR/Shift Block

The DDR/Shift block contains registers and associated logic that support DDR and shift register functions using the high-speed clock and the associated transfer from the low-speed clock domain. It functions as a gearbox allowing low-speed parallel data from the FPGA fabric be output as a higher speed serial stream. Each PIO supports DDR and x2 shift functions. If desired PIOs A and B or C and D can be combined to form x4 shift functions. Figure 2-22 shows a simplified block diagram of the shift register block.

PURESPEED I/O Buffer Banks

LatticeSC devices have seven PURESPEED I/O buffer banks; each is capable of supporting multiple I/O standards. Each PURESPEED I/O bank has its own I/O supply voltage (V_{CCIO}), and two voltage references V_{REF1} and V_{REF2} resources allowing each bank to be completely independent from each other. Figure 2-26 shows the seven banks and their associated supplies. Table 2-7 lists the maximum number of I/Os per bank for the whole LatticeSC family.

In the LatticeSC devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS, PCI33 and PCIX33) are powered using V_{CCIO} . In addition to the bank V_{CCIO} supplies, the LatticeSC devices have a V_{CC} core logic power supply, and a V_{CCAUX} supply that power all differential and referenced buffers. VCCAUX also powers a predriver of single-ended output buffers to enhance buffer performance.

Each bank can support up to two separate VREF voltages, VREF1 and VREF2 that set the threshold for the referenced input buffers. In the LatticeSC devices any I/O pin in a bank can be configured to be a dedicated reference voltage supply pin. Each I/O is individually configurable based on the bank's supply and reference voltages.

Differential drivers have user selectable internal or external bias. External bias is brought in by the VREF1 pin in the bank. External bias for differential buffers is needed for applications that requires tighter than standard output common mode range.

Since a bank can have only one external bias circuit for differential drivers, LVDS and RSDS differential outputs can be mixed in a bank.

If a differential driver is configured in a bank, one pin in that bank becomes a DIFFR pin. This DIFFR pin must be connected to ground via an external 1K +/-1% ohm resistor. Note that differential drivers are not supported in banks 1, 4 and 5.

In addition, there are dedicated Terminating Supply (V_{TT}) pins to be used as terminating voltage for one of the two ways to perform parallel terminations. These V_{TT} pins are available in banks 2-7, these pins are not available in some packages. When VTT termination is not required, or used to provide the common mode termination voltage (VCMT), these pins can be left unconnected on the device. If the internal or external VCMT function for differential input termination is used, the VTT pins should be unconnected and allowed to float.

There are further restrictions on the use of V_{TT} pins, for additional details refer to technical information at the end of this data sheet.

Single Ended Inputs: The SC devices support a number of different termination schemes for single ended inputs:

- Parallel to V_{CCIO} or GND
- Parallel to V_{CCIO}/2
- Parallel to V_{TT}

Figure 2-28 shows the single ended input schemes that are supported. The nominal values of the termination resistors are shown in Table 2-9.

Figure 2-28. Input Termination Schemes

Termination Type	Discrete Off-Chip Solution	Lattice On-Chip Solution		
Parallel termination to to V _{CCIO} , or parallel to GND receiving end	VCCIO or GND Zo OFF-chip ON-chip	VCCIO or GND Zo OFF-chip ON-chip		
Parallel termination to V _{CCIO} /2 receiving end	VCCIO2 Zo OFF-chip ON-chip	Zo VCCIO ZZo Zo GND OFF-chip ON-chip		
Parallel termination to V_{TT} at receiving end	VTT Zo OFF-chip ON-chip	VTT Zo OFF-chip ON-chip		

In many situations designers can chose whether to use Thevenin or parallel to V_{TT} termination. The Thevenin approach has the benefit of not requiring a termination voltage to be applied to the device. The parallel to V_{TT} approach consumes less power.

VTT Termination Resources

Each I/O bank, except bank 1, has a number of V_{TT} pins that must be connected if V_{TT} is used. Note V_{TT} pins can sink or source current and the power supply they are connected to must be able to handle the relatively high currents associated with the termination circuits. Note: V_{TT} is not available in all package styles.

On-chip parallel termination to V_{TT} is supported at the receiving end only. On-chip parallel output termination to V_{TT} is not supported.

The V_{TT} internal bus is also connected to the internal V_{CMT} node. Thus in one bank designers can implement either V_{TT} termination or V_{CMT} termination for differential inputs.

DDRII/RLDRAMII Termination Support

The DDR II memory and RLDRAMII (in Bidirection Data mode) standards require that the on-chip termination to V_{TT} be turned on when a pin is an input and off when the pin is an output. The LatticeSC devices contain the required circuitry to support this behavior. For additional detail refer to technical information at the end of the data sheet.

Differential Input Termination

The LatticeSC device allows two types of differential termination. The first is a single resistor across the differential inputs. The second is a center-tapped system where each input is terminated to the on-chip termination bus V_{CMT} . The V_{CMT} bus is DC-coupled through an internal capacitor to ground.

Figure 2-29 shows the differential termination schemes and Table 2-9 shows the nominal values of the termination resistors.

Figure 2-29	. Differential	Termination	Scheme
-------------	----------------	-------------	--------

Termination Type	Discrete Off-Chip Solution	Lattice On-Chip Solution	
Differential termination	Zo Zo OFF-chip ON-chip	Zo Zo OFF-chip ON-chip	
Differential and common mode termination	Zo GND Zo Zo OFF-chip ON-chip	Zo VCMT Zo OFF-chip ON-chip	

Calibration

There are two calibration sources that are associated with the termination scheme used in the LatticeSC devices:

- DIFFR This pin occurs in each bank that supports differential drivers and must be connected through a 1K+/-1% resistor to ground if differential outputs are used. Note that differential drivers are not supported in banks 1, 4 and 5.
- XRES There is one of these pins per device. It is used for several functions including calibrating on-chip termination. This pin should always be connected through a 1K+/-1% resistor to ground.

The LatticeSC devices support two modes of calibration:

- Continuous In this mode the SC devices continually calibrate the termination resistances. Calibration happens several times a second. Using this mode ensures that termination resistances remain calibrated as the silicon junction temperature changes.
- User Request In this mode the calibration circuit operates continuously. However, the termination resistor values are only updated on the assertion of the calibration_update signal available to the core logic.

For more information on calibration, refer to the details of additional technical documentation at the end of this data sheet.

Hot Socketing

The LatticeSC devices have been carefully designed to ensure predictable behavior during power-up and powerdown. To ensure proper power sequencing, care must be taken during power-up and power-down as described below. During power-up and power-down sequences, the I/Os remain in tristate until the power supply voltage is high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled to within specified limits, this allows for easy integration with the rest of the system. These capabilities make the LatticeSC ideal for many multiple power supply and hot-swap applications. The maximum current during hot socketing is 4mA. See Hot Socketing Specifications in Chapter 3 of this data sheet.

Power-Up Requirements

To prevent high power supply and input pin currents, each VCC, VCC12, VCCAUX, VCCIO and VCCJ power supplies must have a monotonic ramp up time of 75 ms or less to reach its minimum operating voltage. Apart from VCC and VCC12, which have an additional requirement, and VCCIO and VCCAUX, which also have an additional requirement, the VCC, VCC12, VCCAUX, VCCIO and VCCJ power supplies can ramp up in any order, with no restriction on the time between them. However, the ramp time for each must be 75 ms or less. Configuration of the device will not proceed until the last power supply has reached its minimum operating voltage.

Additional Requirement for VCC and VCC12:

VCC12 must always be higher than VCC. This condition must be maintained at ALL times, including during powerup and power-down. Note that for 1.2V only operation, it is advisable to source both of these supplies from the same power supply.

Additional Requirement for VCCIO and VCCAUX:

If any VCCIOs are 1.2/1.5/1.8V, then VCCAUX MUST be applied before them. If any VCCIO is 1.2/1.5/1.8V and is powered up before VCCAUX, then when VCCAUX is powered up, it may drag VCCIO up with it as it crosses through the VCCIO value. (Note: If the VCCIO supply is capable of sinking current, as well as the more usual sourcing capability, this behavior is eliminated. However, the amount of current that the supply needs to sink is unknown and is likely to be in the hundreds of milliamps range).

Power-Down Requirements

To prevent high power supply and input pin currents, power must be removed monotonically from either VCC or VCCAUX (and must reach the power-down trip point of 0.5V for VCC, 0.95V for VCCAUX) before power is removed monotonically from VCC12, any of the VCCIOs, or VCCJ. Note that VCC12 can be removed at the same time as VCC, but it cannot be removed earlier. In many applications, VCC and VCC12 will be sourced from the same power supply and so will be removed together. For systems where disturbance of the user pins is a don't care condition, the power supplies can be removed in any order as long as they power down monotonically within 200ms of each other.

Additionally, if any banks have VCCIO=3.3V nominal (potentially banks 1, 4, 5) then VCCIO for those banks must not be lower than VCCAUX during power-down. The normal variation in ramp-up times of power supplies and voltage regulators is not a concern here.

Note: The SERDES power supplies are NOT included in these requirements and have no specific sequencing requirements. However, when using the SERDES with VDDIB or VDDOB that is greater than 1.2V (1.5V nominal for example), the SERDES should not be left in a steady state condition with the 1.5V power applied and the 1.2V power not applied. Both the 1.2V and 1.5V power should be applied to the SERDES at nominally the same time. The normal variation in the ramp-up times of power supplies and voltage regulators is not a concern here.

SERDES Power Supply Sequencing Requirements

When using the SERDES with 1.5V VDDIB or VDDOB supplies, the SERDES should not be left in a steady state condition with the 1.5V power applied and the 1.2V power not applied. Both the 1.2V and the 1.5V power should be applied to the SERDES at nominally the same time. The normal variation in ramp-up times of power supples and voltage regulators is not a concern.

Additional Requirement for SERDES Power Supply

All VCC12 pins need to be connected on all devices independent of functionality used on the device. This analog supply is used by both the RX and TX portions of the SERDES and is used to control the core SERDES logic regardless of the SERDES being used in the design. VDDIB and VDDOB are used as supplies for the terminations on the CML input and output buffers. If a particular channel is not used, these can be UNCONNECTED (floating).

Figure 2-31. LatticeSC System Bus Interfaces

Several interfaces exist between the System Bus and other FPGA elements. The MPI interface acts as a bridge between the external microprocessor bus and System Bus. The MPI may work in an independent clock domain from the System Bus if the System Bus clock is not sourced from the external microprocessor clock. Pipelined operation allows high-speed memory interface to the EBR and peripheral access without the requirement for additional cycles on the bus. Burst transfers allow optimal use of the memory interface by giving advance information of the nature of the transfers.

Details for the majority of the peripherals can be found in the associated technical documentation, see details at the end of this data sheet. Additional details of the MPI are provided below.

Microprocessor Interface (MPI)

The LatticeSC family devices have a dedicated synchronous MPI function block. The MPI is programmable to operate with PowerPC/PowerQUICC MPC860/MPC8260 series microprocessors. The MPI implements an 8-, 16-, or 32-bit interface with 1-bit, 2-bit, or 4-bit parity to the host processor (PowerPC) that can be used for configuration and read-back of the FPGA as well as for user-defined data processing and general monitoring of FPGA functions.

The control portion of the MPI is available following power-up of the FPGA if the mode pins specify MPI mode, even if the FPGA is not yet configured. The width of the data port is selectable among 8-, 16-, or 32-bit and the parity bus can be 1-, 2-, or 4-bit. In configuration mode the data and parity bus width are related to the state of the M[0:3] mode pins. For post-configuration use, the MPI must be included in the configuration bit stream by using an MPI library element in your design from the ispLEVER primitive library, or by setting the bit of the MPI configuration control register prior to the start of configuration. The user can also enable and disable the parity bus through the configuration bit stream. These pads can be used as general I/O when they are not needed for MPI use.

The MPI block also provides the capability to interface directly to the FPGA fabric with a databus after configuration. The bus protocol is still handled by the MPI block but the direct FPGA access allows high-speed block data transfers such as DMA transactions. Figure 2-32 shows one of the ways a PowerPC is connected to MPI.

Typical Building Block Function Performance

Over Recommended Commercial Operating Conditions at VCC = 1.2V +/- 5%

Pin to Pin Performance (LVCMOS25 12 mA Drive)

-7*	Units			
6.65	ns			
5.58	ns			
Embedded Memory Functions (Single Port RAM)				
1.66	ns			
8.54	ns			
1.32	ns			
6.83	ns			
	-7* 6.65 5.58 1.66 8.54 1.32 6.83			

*Typical performance per function

Register-to-Register Performance

Function	-7*	Units
Basic Functions		
32-Bit Decoder	539	MHz
64-Bit Decoder	517	MHz
16:1 MUX	1003	MHz
32:1 MUX	798	MHz
16-Bit Adder	672	MHz
64-Bit Adder	353	MHz
16-Bit Counter	719	MHz
64-Bit Counter	369	MHz
32x8 SP RAM (PFU, Output Registered)	768	MHz
128x8 SP RAM (PFU, Output Registered)	545	MHz
Embedded Memory Functions		
Single Port RAM (512x36 Bits)	372	MHz
True Dual Port RAM 1024x18 Bits (No EBR Out Reg)	326	MHz
True dual port RAM 1024x18 Bits (EBR Reg)	372	MHz
FIFO port (A: x36 bits, B: x9 Bits, No EBR Out Reg)	353	MHz
FIFO port (A: x36 bits, B: x9 Bits, EBR Reg)	375	MHz
True DP RAM Width Cascading (1024x72)	372	MHz
DSP Functions		
9x9 1-stage Multiplier	209	MHz
18x18 1-Stage Multiplier	155	MHz
9x9 3-Stage Pipelined Multiplier	373	MHz
18x18 4-Stage Pipelined Multiplier	314	MHz
9x9 Constant Multiplier	372	MHz

*Typical performance per function

Input Delay Block/AIL Timing

Parameter	Description	Min.	Тур.	Max.	Units
t _{FDEL}	Fine delay time	35	45	80	ps
t _{CDEL}	Coarse delay time	1120	1440	2560	ps
jt _{AIL}	AIL jitter tolerance	1- ((N ¹ * t _{FDEL}) / (Clock Period))			UI

1. N = number of fine delays used in a particular AIL setting

GSR Timing

			-	7	-	6	-	5	
Parameter	Description	VCC	Min.	Max.	Min.	Max.	Min.	Max.	Units
towns oor www	Maximum operating frequency for	1.14V		438	—	417	_	398	MHz
'SYNC_GSR_MAX	synchronous GSR	0.95V		378	—	355	—	337	MHz
t _{ASYNC_GSR_MPW}	Minimum pulse width of asynchronous input		_	_	_	_	3.3	_	ns

Note: Synchronous GSR goes out of reset in two cycles from the clock edge where the setup time of the FF was met.

Internal System Bus Timing

			-7		-6		-5	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{HCLK}	Maximum operating frequency for internal system bus HCLK.	_	200	_	200	_	200	MHz

Note: There is no minimum frequency. If HCLK is sourced from the embedded oscillator, the minimum frequency limitation of the oscillator/ divider is about 0.3 MHz. Refer to the osciallator data for missing configuration modes.

LFSC/M15 Logic Signal Connections: 256 fpBGA^{1,2} (Cont.)

	LFSC/M15					
Ball Number	Ball Function	VCCIO Bank	Dual Function			
N12	PB39C	4				
T15	PB40A	4	PCLKT4_3			
R16	PB40B	4	PCLKC4_3			
L12	PB43A	4				
M12	PB43B	4				
P16	PB44A	4				
N16	PB44B	4				
R14	PB47C	4	VREF1_4			
P15	PB48A	4	LRC_DLLT_IN_C/LRC_DLLT_FB_D			
M13	PB48B	4	LRC_DLLC_IN_C/LRC_DLLC_FB_D			
N13	PB49A	4	LRC_PLLT_IN_A/LRC_PLLT_FB_B			
P14	PB49B	4	LRC_PLLC_IN_A/LRC_PLLC_FB_B			
M16	PR45B	3	LRC_DLLC_IN_F/LRC_DLLC_FB_E			
L16	PR45A	3	LRC_DLLT_IN_F/LRC_DLLT_FB_E			
M14	PR43B	3				
M15	PR43A	3				
K16	PR41D	3	VREF2_3			
J16	PR37B	3				
H16	PR37A	3				
L13	PR35D	3	DIFFR_3			
L14	PR35B	3				
L15	PR35A	3				
K12	PR31C	3	VREF1_3			
J13	PR28D	3	PCLKC3_2			
K13	PR28C	3	PCLKT3_2			
H15	PR28B	3				
F16	PR28A	3				
J11	PR26D	3	PCLKC3_1			
J12	PR26C	3	PCLKT3_1			
J15	PR26B	3	PCLKC3_0			
J14	PR26A	3	PCLKT3_0			
E16	PR24D	2	PCLKC2_2			
D16	PR24C	2	PCLKT2_2			
H11	PR24B	2	PCLKC2_0			
H12	PR24A	2	PCLKT2_0			
H13	PR23B	2	PCLKC2_1			
H14	PR23A	2	PCLKT2_1			
G12	PR22D	2	DIFFR_2			
G13	PR22C	2	VREF1_2			
F8	PR22B	2				
F9	PR22A	2				
G16	PR18D	2	VREF2_2			
F15	PR17B	2	URC_DLLC_IN_C/URC_DLLC_FB_D			

	LFSC/M25			LFSC/M40		SC/M40
Ball Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function
AH11	PB47C	4	PCLKT4_6	PB54C	4	PCLKT4_6
AH10	PB47D	4	PCLKC4_6	PB54D	4	PCLKC4_6
AK12	PB49A	4	PCLKT4_0	PB55A	4	PCLKT4_0
AJ12	PB49B	4	PCLKC4_0	PB55B	4	PCLKC4_0
AF14	PB49C	4	VREF2_4	PB55C	4	VREF2_4
AE14	PB49D	4		PB55D	4	
AL11	PB51A	4	PCLKT4 5	PB57A	4	PCLKT4 5
AL10	PB51B	4	PCLKC4_5	PB57B	4	PCLKC4_5
AH9	PB51C	4		PB57C	4	
AH8	PB51D	4		PB57D	4	
AK11	PB52A	4	PCLKT4 3	PB58A	4	PCLKT4 3
AJ11	PB52B	4	PCLKC4 3	PB58B	4	PCLKC4 3
AH7	PB52C	4	PCLKT4 4	PB58C	4	PCLKT4 4
AH6	PB52D	4	PCLKC4 4	PB58D	4	PCLKC4_4
AK8	PB53A	4		PB67A	4	
A.18	PB53B	4		PB67B	4	
ΔE11	PB53C	4		PB67C	4	
AD12	PB554	4		PB69A	4	
AE12	PB55B	4		PB60B	4	
	PREA	4		PB70A	4	
AM5	PREER	4		PB70R	4	
	PB56C	4		PB70D	4	
AUIZ	PB30C	4		PB70C	4	
ALO	PB57A	4		PB/3A	4	
AL5	PB37B	4		PB/3B	4	
AG7	PB59A	4		PB74A	4	
AG8	PB09B	4		PB/4B	4	
АКБ	PB60A	4		PB75A	4	
AJ6	PB60B	4		PB75B	4	
AF10	PB60C	4		PB/5C	4	
AE11	PB60D	4		PB75D	4	
AM4	PB61A	4		PB//A	4	
AM3	PB61B	4		PB77B	4	
AH5	PB63A	4		PB78A	4	
AH4	PB63B	4		PB78B	4	
AK5	PB64A	4		PB79A	4	
AJ5	PB64B	4		PB79B	4	
AF8	PB64C	4		PB79C	4	
AF7	PB64D	4		PB79D	4	
AL4	PB65A	4		PB81A	4	
AL3	PB65B	4		PB81B	4	
AG5	PB65C	4		PB81C	4	
AF6	PB65D	4		PB81D	4	
AK3	PB67A	4		PB82A	4	
AJ3	PB67B	4		PB82B	4	
AE10	PB67C	4	VREF1_4	PB82C	4	VREF1_4
AD10	PB67D	4		PB82D	4	
AL2	PB68A	4	LRC_DLLT_IN_C/LRC_DLLT_FB_D	PB83A	4	LRC_DLLT_IN_C/LRC_DLLT_FB_D
AK2	PB68B	4	LRC_DLLC_IN_C/LRC_DLLC_FB_D	PB83B	4	LRC_DLLC_IN_C/LRC_DLLC_FB_D
AE9	PB68C	4		PB83C	4	
AE8	PB68D	4		PB83D	4	
	•				•	

		LF	SC/M25	LFSC/M40		
Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function
AJ1	PB69A	4	LRC_PLLT_IN_A/LRC_PLLT_FB_B	PB85A	4	LRC_PLLT_IN_A/LRC_PLLT_FB_B
AK1	PB69B	4	LRC_PLLC_IN_A/LRC_PLLC_FB_B	PB85B	4	LRC_PLLC_IN_A/LRC_PLLC_FB_B
AJ2	PB69C	4	LRC_DLLT_IN_D/LRC_DLLT_FB_C	PB85C	4	LRC_DLLT_IN_D/LRC_DLLT_FB_C
AH3	PB69D	4	LRC_DLLC_IN_D/LRC_DLLC_FB_C	PB85D	4	LRC_DLLC_IN_D/LRC_DLLC_FB_C
AH1	PROBE_VCC	-		PROBE_VCC	-	
AH2	PROBE_GND	-		PROBE_GND	-	
AD9	PR57D	3	LRC_PLLC_IN_B/LRC_PLLC_FB_A	PR71D	3	LRC_PLLC_IN_B/LRC_PLLC_FB_A
AC10	PR57C	3	LRC_PLLT_IN_B/LRC_PLLT_FB_A	PR71C	3	LRC_PLLT_IN_B/LRC_PLLT_FB_A
AG2	PR57B	3	LRC_DLLC_IN_F/LRC_DLLC_FB_E	PR71B	3	LRC_DLLC_IN_F/LRC_DLLC_FB_E
AG1	PR57A	3	LRC_DLLT_IN_F/LRC_DLLT_FB_E	PR71A	3	LRC_DLLT_IN_F/LRC_DLLT_FB_E
AD8	PR56D	3		PR70D	3	
AC9	PR56C	3		PR70C	3	
AF2	PR56B	3		PR70B	3	
AF1	PR56A	3		PR70A	3	
AE6	PR55D	3	LRC_DLLC_IN_E/LRC_DLLC_FB_F	PR69D	3	LRC_DLLC_IN_E/LRC_DLLC_FB_F
AE7	PR55C	3	LRC_DLLT_IN_E/LRC_DLLT_FB_F	PR69C	3	LRC_DLLT_IN_E/LRC_DLLT_FB_F
AE1	PR55B	3		PR69B	3	
AE2	PR55A	3		PR69A	3	
AB8	PR53D	3		PR67D	3	
AC8	PR53C	3		PR67C	3	
AE4	PR53B	3		PR67B	3	
AE3	PR53A	3		PR67A	3	
AA10	PR52D	3		PR66D	3	
AA9	PR52C	3		PR66C	3	
AD1	PR52B	3		PR66B	3	
AC1	PR52A	3		PR66A	3	
AC7	PR51D	3	VREF2_3	PR65D	3	VREF2_3
AB7	PR51C	3		PR65C	3	
AD5	PR51B	3		PR65B	3	
AC5	PR51A	3		PR65A	3	
AE5	PR49D	3		PR62D	3	
AF5	PR49C	3		PR62C	3	
AD3	PR49B	3		PR62B	3	
AD4	PR49A	3		PR62A	3	
Y10	PR48D	3		PR61D	3	
Y9	PR48C	3		PR61C	3	
AC2	PR48B	3		PR61B	3	
AD2	PR48A	3		PR61A	3	
AC6	PR47D	3		PR60D	3	
AB6	PR47C	3		PR60C	3	
AA1	PR47B	3		PR60B	3	
AB1	PR47A	3		PR60A	3	
AA5	PR44D	3		PR53D	3	
AB5	PR44C	3		PR53C	3	
Y1	PR44B	3		PR53B	3	
W1	PR44A	3		PR53A	3	
W8	PR43D	3		PR52D	3	
Y7	PR43C	3		PR52C	3	
Y5	PR43B	3		PR52B	3	
W5	PR43A	3		PR52A	3	

Dell		LF	SC/M25		LF	LFSC/M40	
Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function	
G6	A_HDINN2_R	-	PCS 3E0 CH 2 IN N	A_HDINN2_R	-	PCS 3E0 CH 2 IN N	
A6	A_HDOUTP2_R	-	PCS 3E0 CH 2 OUT P	A_HDOUTP2_R	-	PCS 3E0 CH 2 OUT P	
D6	A_VDDOB2_R	-		A_VDDOB2_R	-		
B6	A_HDOUTN2_R	-	PCS 3E0 CH 2 OUT N	A_HDOUTN2_R	-	PCS 3E0 CH 2 OUT N	
D7	A_VDDOB3_R	-		A_VDDOB3_R	-		
B7	A_HDOUTN3_R	-	PCS 3E0 CH 3 OUT N	A_HDOUTN3_R	-	PCS 3E0 CH 3 OUT N	
A7	A_HDOUTP3_R	-	PCS 3E0 CH 3 OUT P	A_HDOUTP3_R	-	PCS 3E0 CH 3 OUT P	
G7	A_HDINN3_R	-	PCS 3E0 CH 3 IN N	A_HDINN3_R	-	PCS 3E0 CH 3 IN N	
F7	A_HDINP3_R	-	PCS 3E0 CH 3 IN P	A_HDINP3_R	-	PCS 3E0 CH 3 IN P	
H7	A_VDDIB3_R	-		A_VDDIB3_R	-		
H8	B_VDDIB0_R	-		B_VDDIB0_R	-		
F8	B_HDINP0_R	-	PCS 3E1 CH 0 IN P	B_HDINP0_R	-	PCS 3E1 CH 0 IN P	
G8	B_HDINN0_R	-	PCS 3E1 CH 0 IN N	B_HDINN0_R	-	PCS 3E1 CH 0 IN N	
A8	B_HDOUTP0_R	-	PCS 3E1 CH 0 OUT P	B_HDOUTP0_R	-	PCS 3E1 CH 0 OUT P	
D8	B_VDDOB0_R	-		B_VDDOB0_R	-		
B8	B_HDOUTN0_R	-	PCS 3E1 CH 0 OUT N	B_HDOUTN0_R	-	PCS 3E1 CH 0 OUT N	
D9	B_VDDOB1_R	-		B_VDDOB1_R	-		
B9	B_HDOUTN1_R	-	PCS 3E1 CH 1 OUT N	B_HDOUTN1_R	-	PCS 3E1 CH 1 OUT N	
A9	B_HDOUTP1_R	-	PCS 3E1 CH 1 OUT P	B_HDOUTP1_R	-	PCS 3E1 CH 1 OUT P	
H10	B_HDINN1_R	-	PCS 3E1 CH 1 IN N	B_HDINN1_R	-	PCS 3E1 CH 1 IN N	
G10	B_HDINP1_R	-	PCS 3E1 CH 1 IN P	B_HDINP1_R	-	PCS 3E1 CH 1 IN P	
H9	B_VDDIB1_R	-		B_VDDIB1_R	-		
H11	B_VDDIB2_R	-		B_VDDIB2_R	-		
F11	B_HDINP2_R	-	PCS 3E1 CH 2 IN P	B_HDINP2_R	-	PCS 3E1 CH 2 IN P	
G11	B_HDINN2_R	-	PCS 3E1 CH 2 IN N	B_HDINN2_R	-	PCS 3E1 CH 2 IN N	
A11	B_HDOUTP2_R	-	PCS 3E1 CH 2 OUT P	B_HDOUTP2_R	-	PCS 3E1 CH 2 OUT P	
D11	B_VDDOB2_R	-		B_VDDOB2_R	-		
B11	B_HDOUTN2_R	-	PCS 3E1 CH 2 OUT N	B_HDOUTN2_R	-	PCS 3E1 CH 2 OUT N	
D12	B_VDDOB3_R	-		B_VDDOB3_R	-		
B12	B_HDOUTN3_R	-	PCS 3E1 CH 3 OUT N	B_HDOUTN3_R	-	PCS 3E1 CH 3 OUT N	
A12	B_HDOUTP3_R	-	PCS 3E1 CH 3 OUT P	B_HDOUTP3_R	-	PCS 3E1 CH 3 OUT P	
G12	B_HDINN3_R	-	PCS 3E1 CH 3 IN N	B_HDINN3_R	-	PCS 3E1 CH 3 IN N	
F12	B_HDINP3_R	-	PCS 3E1 CH 3 IN P	B_HDINP3_R	-	PCS 3E1 CH 3 IN P	
H12	B_VDDIB3_R	-		B_VDDIB3_R	-		
B10	VCC12	-		VCC12	-		
D10	B_REFCLKN_R	-		B_REFCLKN_R	-		
C10	B_REFCLKP_R	-		B_REFCLKP_R	-		
J15	PT49D	1	HDC/SI	PT61D	1	HDC/SI	
K15	PT49C	1	LDCN/SCS	PT61C	1	LDCN/SCS	
E13	PT49B	1	D8/MPI_DATA8	PT59B	1	D8/MPI_DATA8	
F13	PT49A	1	CS1/MPI_CS1	PT59A	1	CS1/MPI_CS1	
H13	PT47D	1	D9/MPI_DATA9	PT58D	1	D9/MPI_DATA9	
G13	PT47C	1	D10/MPI_DATA10	PT58C	1	D10/MPI_DATA10	
E14	PT47B	1	CS0N/MPI_CS0N	PT57B	1	CS0N/MPI_CS0N	
F14	PT47A	1	RDN/MPI_STRB_N	PT57A	1	RDN/MPI_STRB_N	
H14	PT46D	1	WRN/MPI_WR_N	PT55D	1	WRN/MPI_WR_N	
G14	PT46C	1	D7/MPI_DATA7	PT55C	1	D7/MPI_DATA7	
D13	PT46B	1	D6/MPI_DATA6	PT55B	1	D6/MPI_DATA6	
D14	PT46A	1	D5/MPI_DATA5	PT55A	1	D5/MPI_DATA5	
E15	PT45D	1	D4/MPI_DATA4	PT54D	1	D4/MPI_DATA4	

		LFS	C/M25		LF	SC/M40
Ball Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function
AA7	VCCIO3	-		VCCIO3	-	
AB9	VCCIO3	-		VCCIO3	-	
AC4	VCCIO3	-		VCCIO3	-	
AD6	VCCIO3	-		VCCIO3	-	
AF3	VCCIO3	-		VCCIO3	-	
Т3	VCCIO3	-		VCCIO3	-	
U4	VCCIO3	-		VCCIO3	-	
V6	VCCIO3	-		VCCIO3	-	
W10	VCCIO3	-		VCCIO3	-	
Y3	VCCIO3	-		VCCIO3	-	
AC11	VCCIO4	-		VCCIO4	-	
AD14	VCCIO4	-		VCCIO4	-	
AF15	VCCIO4	-		VCCIO4	-	
AF9	VCCIO4	-		VCCIO4	-	
AG12	VCCIO4	-		VCCIO4	-	
AJ13	VCCIO4	-		VCCIO4	-	
AJ7	VCCIO4	-		VCCIO4	-	
AK10	VCCIO4	-		VCCIO4	-	
AK16	VCCIO4	-		VCCIO4	-	
AK4	VCCIO4	-		VCCIO4	-	
AC19	VCCIO5	-		VCCIO5	-	
AD22	VCCIO5	-		VCCI05	-	
AF21	VCCIO5	-		VCCI05	-	
AG18	VCCIO5	-		VCCIO5	-	
AG24	VCCIO5	-		VCCIO5	-	
AJ17	VCCIO5	-		VCCI05	-	
AJ23	VCCIO5	-		VCCI05	-	
AJ30	VCCIO5	-		VCCI05	-	
AK20	VCCIO5	-		VCCIO5	-	
AK26	VCCIO5	-		VCCIO5	-	
AA27	VCCIO6	-		VCCIO6	-	
AB23	VCCIO6	-		VCCIO6	-	
AC30	VCCIO6	-		VCCIO6	-	
AD26	VCCIO6	-		VCCIO6	-	
AF29	VCCIO6	-		VCCIO6	-	
T29	VCCIO6	-		VCCIO6	-	
U30	VCCIO6	-		VCCIO6	-	
V26	VCCIO6	-		VCCIO6	-	
W24	VCCIO6	-		VCCIO6	-	
Y29	VCCIO6	-		VCCIO6	-	
G30	VCCIO7	-		VCCI07	-	
J27	VCCIO7	-		VCCI07	-	
K29	VCCI07	-		VCCI07	-	
L24	VCCIO7	- 1		VCCI07	-	
M26	VCCIO7	- 1		VCCI07	-	
N30	VCCIO7	- 1		VCCI07	-	
P23	VCCIO7	- 1		VCCI07	-	
R27	VCCIO7	- 1		VCCI07	-	
AA11	VCCAUX	- 1		VCCAUX	-	
AA12	VCCAUX	- 1		VCCAUX	-	
L					I	l

			LFSC/M40			LFSC/M80
Ball Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function
H21	PT38D	1	D28/PCLKC1_6/MPI_DATA28	PT57D	1	D28/PCLKC1_6/MPI_DATA28
J21	PT38C	1	D29/PCLKT1_6/MPI_DATA29	PT57C	1	D29/PCLKT1_6/MPI_DATA29
A19	PT38B	1	A9/MPI_ADDR23	PT57B	1	A9/MPI_ADDR23
B19	PT38A	1	A10/MPI_ADDR24	PT57A	1	A10/MPI_ADDR24
H22	PT37D	1	D30/PCLKC1_7/MPI_DATA30	PT56D	1	D30/PCLKC1_7/MPI_DATA30
J22	PT37C	1	D31/PCLKT1_7/MPI_DATA31	PT56C	1	D31/PCLKT1_7/MPI_DATA31
F20	PT37B	1	A11/MPI_ADDR25	PT56B	1	A11/MPI_ADDR25
G20	PT37A	1	A12/MPI_ADDR26	PT56A	1	A12/MPI_ADDR26
K21	PT35D	1	D11/MPI_DATA11	PT55D	1	D11/MPI_DATA11
K22	PT35C	1	D12/MPI_DATA12	PT55C	1	D12/MPI_DATA12
A20	PT35B	1	A13/MPI_ADDR27	PT55B	1	A13/MPI_ADDR27
B20	PT35A	1	A14/MPI_ADDR28	PT55A	1	A14/MPI_ADDR28
L21	PT33D	1	A16/MPI_ADDR30	PT53D	1	A16/MPI_ADDR30
L20	PT33C	1	D13/MPI_DATA13	PT53C	1	D13/MPI_DATA13
D20	PT33B	1	A15/MPI_ADDR29	PT53B	1	A15/MPI_ADDR29
E20	PT33A	1	A17/MPI_ADDR31	PT53A	1	A17/MPI_ADDR31
L19	PT30D	1	A19/MPI_TSIZ1	PT52D	1	A19/MPI_TSIZ1
K19	PT30C	1	A20/MPI_BDIP	PT52C	1	A20/MPI_BDIP
D21	PT30B	1	A18/MPI_TSIZ0	PT52B	1	A18/MPI_TSIZ0
E21	PT30A	1	MPI_TEA	PT52A	1	MPI_TEA
M20	PT28D	1	D14/MPI_DATA14	PT51D	1	D14/MPI_DATA14
M19	PT28C	1	DP1/MPI_PAR1	PT51C	1	DP1/MPI_PAR1
F21	PT27B	1	A21/MPI_BURST	PT51B	1	A21/MPI_BURST
G21	PT27A	1	D15/MPI_DATA15	PT51A	1	D15/MPI_DATA15
H24	B_REFCLKP_L	-		B_REFCLKP_L	-	
J24	B_REFCLKN_L	-		B_REFCLKN_L	-	
L22	VCC12	-		VCC12	-	
E26	B_VDDIB3_L	-		B_VDDIB3_L	-	
G22	VCC12	-		VCC12	-	
E22	B_HDINP3_L	-	PCS 361 CH 3 IN P	B_HDINP3_L	-	PCS 361 CH 3 IN P
F22	B_HDINN3_L	-	PCS 361 CH 3 IN N	B_HDINN3_L	-	PCS 361 CH 3 IN N
A21	B_HDOUTP3_L	-	PCS 361 CH 3 OUT P	B_HDOUTP3_L	-	PCS 361 CH 3 OUT P
L24	VCC12	-		VCC12	-	
B21	B_HDOUTN3_L	-	PCS 361 CH 3 OUT N	B_HDOUTN3_L	-	PCS 361 CH 3 OUT N
D22	B_VDDOB3_L	-		B_VDDOB3_L	-	
B22	B_HDOUTN2_L	-	PCS 361 CH 2 OUT N	B_HDOUTN2_L	-	PCS 361 CH 2 OUT N
D23	B_VDDOB2_L	-		B_VDDOB2_L	-	
A22	B_HDOUTP2_L	-	PCS 361 CH 2 OUT P	B_HDOUTP2_L	-	PCS 361 CH 2 OUT P
K24	VCC12	-		VCC12	-	
F23	B_HDINN2_L	-	PCS 361 CH 2 IN N	B_HDINN2_L	-	PCS 361 CH 2 IN N
E23	B_HDINP2_L	-	PCS 361 CH 2 IN P	B_HDINP2_L	-	PCS 361 CH 2 IN P
D26	B_VDDIB2_L	-		B_VDDIB2_L	-	
G23	VCC12	-		VCC12	-	
D27	B_VDDIB1_L	-		B_VDDIB1_L	-	
G24	VCC12	-		VCC12	-	

			LFSC/M40			LFSC/M80
Ball Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function
K20	GND	-		GND	-	
K23	GND	-		GND	-	
K26	GND	-		GND	-	
K28	GND	-		GND	-	
K6	GND	-		GND	-	
K9	GND	-		GND	-	
L12	GND	-		GND	-	
L32	GND	-		GND	-	
L4	GND	-		GND	-	
M10	GND	-		GND	-	
M17	GND	-		GND	-	
M24	GND	-		GND	-	
N29	GND	-		GND	-	
N7	GND	-		GND	-	
P15	GND	-		GND	-	
P20	GND	-		GND	-	
P3	GND	-		GND	-	
P31	GND	-		GND	-	
R10	GND	-		GND	-	
R14	GND	-		GND	-	
R16	GND	-		GND	-	
R19	GND	-		GND	-	
R21	GND	-		GND	-	
R26	GND	-		GND	-	
T15	GND	-		GND	-	
T17	GND	-		GND	-	
T18	GND	-		GND	-	
T20	GND	-		GND	-	
T28	GND	-		GND	-	
Т6	GND	-		GND	-	
U16	GND	-		GND	-	
U19	GND	-		GND	-	
U23	GND	-		GND	-	
U32	GND	-		GND	-	
U4	GND	-		GND	-	
V12	GND	-		GND	-	
V16	GND	-		GND	-	
V19	GND	-		GND	-	
V3	GND	-		GND	-	
V31	GND	-		GND	-	
W15	GND	-		GND	-	
W17	GND	-		GND	-	
W18	GND	-		GND	-	
W20	GND	-		GND	-	
W29	GND	-		GND	-	

			LFSC/M80	LFSC/M115		
Ball Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function
P38	PL26B	7		PL40B	7	
N35	PL26C	7		PL40C	7	
N36	PL26D	7		PL40D	7	
N39	PL29A	7		PL43A	7	
P39	PL29B	7		PL43B	7	
R34	PL29C	7	VREF1_7	PL43C	7	VREF1_7
T34	PL29D	7	DIFFR_7	PL43D	7	DIFFR_7
L41	PL30A	7		PL44A	7	
M41	PL30B	7		PL44B	7	
W29	PL30C	7		PL44C	7	
Y29	PL30D	7		PL44D	7	
L42	PL31A	7		PL45A	7	
M42	PL31B	7		PL45B	7	
U32	PL31C	7		PL45C	7	
V32	PL31D	7		PL45D	7	
R37	PL33A	7		PL47A	7	
T37	PL33B	7		PL47B	7	
M36	PL33C	7		PL47C	7	
M37	PL33D	7		PL47D	7	
P40	PL34A	7		PL48A	7	
N40	PL34B	7		PL48B	7	
R35	PL34C	7		PL48C	7	
T35	PL34D	7		PL48D	7	
N41	PL35A	7		PL49A	7	
P41	PL35B	7		PL49B	7	
V33	PL35C	7		PL49C	7	
U33	PL35D	7		PL49D	7	
R38	PL37A	7		PL51A	7	
138	PL37B	7		PL51B	7	
R36	PL37C	/		PL51C	/	
136	PL37D	/		PL51D	/	
N42	PL38A	/		PL52A	/	
P42	PL38B	/		PL52B	/	
Y31	PL38C	/		PL52C	/	
AA31	PL38D	7		PL52D	7	
037	PL39A	7		PL53A	7	
V37	PL39B	7		PL53B	7	
034	PL39C	7		PL53C	7	
V34	PL39D	7		PL53D	7	
U39 T20		7			7	
139		/		PL00B	/ 7	
V 30		7			7	
VV 30		7			7	
T41	PL42A	/		PL36A	/	
141	PL42B	/		PL56B	1	

			LFSC/M80			LFSC/M115
Ball Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function
AE1	PR74A	3		PR88A	3	
AF12	PR73D	3		PR87D	3	
AE12	PR73C	3		PR87C	3	
AF2	PR73B	3		PR87B	3	
AE2	PR73A	3		PR87A	3	
AF11	PR72D	3		PR86D	3	
AE11	PR72C	3		PR86C	3	
AF5	PR72B	3		PR86B	3	
AE5	PR72A	3		PR86A	3	
AF10	PR69D	3		PR83D	3	
AE10	PR69C	3		PR83C	3	
AD1	PR69B	3		PR83B	3	
AC1	PR69A	3		PR83A	3	
AF9	PR68D	3		PR82D	3	
AE9	PR68C	3		PR82C	3	
AD2	PR68B	3		PR82B	3	
AC2	PR68A	3		PR82A	3	
AF6	PR67D	3		PR81D	3	
AE6	PR67C	3		PR81C	3	
AD3	PR67B	3		PR81B	3	
AC3	PR67A	3		PR81A	3	
AE8	PR65D	3		PR79D	3	
AD8	PR65C	3		PR79C	3	
AD4	PR65B	3		PR79B	3	
AC4	PR65A	3		PR79A	3	
AE7	PR64D	3		PR78D	3	
AD7	PR64C	3		PR78C	3	
AD5	PR64B	3		PR78B	3	
AC5	PR64A	3		PR78A	3	
AD6	PR63D	3		PR77D	3	
AC6	PR63C	3		PR77C	3	
AB1	PR63B	3		PR77B	3	
AA1	PR63A	3		PR77A	3	
AD9	PR61D	3		PR75D	3	
AC9	PR61C	3		PR75C	3	
AB2	PR61B	3		PR75B	3	
AA2	PR61A	3		PR75A	3	
AD14	PR60D	3		PR74D	3	
AC14	PR60C	3		PR74C	3	
AB5	PR60B	3		PR74B	3	
AA5	PR60A	3		PR74A	3	
AD10	PR59D	3		PR73D	3	
AC10	PR59C	3		PR73C	3	
Y1	PR59B	3		PR73B	3	
W1	PR59A	3		PR73A	3	

Industrial, Cont.

Part Number	Grade	Package	Balls	Temp.	LUTs (K)
LFSCM3GA40EP1-6FF1020I1	-6	Organic fcBGA	1020	IND	40.4
LFSCM3GA40EP1-5FF1020I1	-5	Organic fcBGA	1020	IND	40.4
LFSCM3GA40EP1-6FFA1020I	-6	Organic fcBGA Revision 2	1020	IND	40.4
LFSCM3GA40EP1-5FFA1020I	-5	Organic fcBGA Revision 2	1020	IND	40.4
LFSCM3GA40EP1-6FC1152I ²	-6	Ceramic fcBGA	1152	IND	40.4
LFSCM3GA40EP1-5FC1152l ²	-5	Ceramic fcBGA	1152	IND	40.4
LFSCM3GA40EP1-6FF1152I	-6	Organic fcBGA	1152	IND	40.4
LFSCM3GA40EP1-5FF1152I	-5	Organic fcBGA	1152	IND	40.4

1. Converted to organic flip-chip BGA package revision 2 per PCN #02A-10.

2. Converted to organic flip-chip BGA package per PCN #01A-10.

Part Number	Grade	Package	Balls	Temp.	LUTs (K)
LFSC3GA80E-6FC1152I ¹	-6	Ceramic fcBGA	1152	IND	80.1
LFSC3GA80E-5FC1152I ¹	-5	Ceramic fcBGA	1152	IND	80.1
LFSC3GA80E-6FF1152I	-6	Organic fcBGA	1152	IND	80.1
LFSC3GA80E-5FF1152I	-5	Organic fcBGA	1152	IND	80.1
LFSC3GA80E-6FC1704I ¹	-6	Ceramic fcBGA	1704	IND	80.1
LFSC3GA80E-5FC1704I ¹	-5	Ceramic fcBGA	1704	IND	80.1
LFSC3GA80E-6FF1704I	-6	Organic fcBGA	1704	IND	80.1
LFSC3GA80E-5FF1704I	-5	Organic fcBGA	1704	IND	80.1

1. Converted to organic flip-chip BGA package per PCN #01A-10.

Part Number	Grade	Package	Balls	Temp.	LUTs (K)
LFSCM3GA80EP1-6FC1152I ¹	-6	Ceramic fcBGA	1152	IND	80.1
LFSCM3GA80EP1-5FC1152I ¹	-5	Ceramic fcBGA	1152	IND	80.1
LFSCM3GA80EP1-6FF1152I	-6	Organic fcBGA	1152	IND	80.1
LFSCM3GA80EP1-5FF1152I	-5	Organic fcBGA	1152	IND	80.1
LFSCM3GA80EP1-6FC1704I ¹	-6	Ceramic fcBGA	1704	IND	80.1
LFSCM3GA80EP1-5FC1704I ¹	-5	Ceramic fcBGA	1704	IND	80.1
LFSCM3GA80EP1-6FF1704I	-6	Organic fcBGA	1704	IND	80.1
LFSCM3GA80EP1-5FF1704I	-5	Organic fcBGA	1704	IND	80.1

1. Converted to organic flip-chip BGA package per PCN #01A-10.

Lead-Free Packaging

Co	m	m	er	ci	al
		•••	•••	•••	~

Part Number	Grade	Package	Balls	Temp.	LUTs (K)
LFSC3GA15E-7FN256C	-7	Lead-Free fpBGA	256	COM	15.2
LFSC3GA15E-6FN256C	-6	Lead-Free fpBGA	256	COM	15.2
LFSC3GA15E-5FN256C	-5	Lead-Free fpBGA	256	COM	15.2
LFSC3GA15E-7FN900C	-7	Lead-Free fpBGA	900	COM	15.2
LFSC3GA15E-6FN900C	-6	Lead-Free fpBGA	900	COM	15.2
LFSC3GA15E-5FN900C	-5	Lead-Free fpBGA	900	COM	15.2

Part Number	Grade	Package	Balls	Temp.	LUTs (K)
LFSCM3GA15EP1-7FN256C	-7	Lead-Free fpBGA	256	COM	15.2
LFSCM3GA15EP1-6FN256C	-6	Lead-Free fpBGA	256	COM	15.2
LFSCM3GA15EP1-5FN256C	-5	Lead-Free fpBGA	256	COM	15.2
LFSCM3GA15EP1-7FN900C	-7	Lead-Free fpBGA	900	COM	15.2
LFSCM3GA15EP1-6FN900C	-6	Lead-Free fpBGA	900	COM	15.2
LFSCM3GA15EP1-5FN900C	-5	Lead-Free fpBGA	900	COM	15.2

Part Number	Grade	Package	Balls	Temp.	LUTs (K)
LFSC3GA25E-7FN900C	-7	Lead-Free fpBGA	900	COM	25.4
LFSC3GA25E-6FN900C	-6	Lead-Free fpBGA	900	COM	25.4
LFSC3GA25E-5FN900C	-5	Lead-Free fpBGA	900	COM	25.4
LFSC3GA25E-7FFN1020C1	-7	Lead-Free Organic fcBGA	1020	COM	25.4
LFSC3GA25E-6FFN1020C1	-6	Lead-Free Organic fcBGA	1020	COM	25.4
LFSC3GA25E-5FFN1020C1	-5	Lead-Free Organic fcBGA	1020	COM	25.4
LFSC3GA25E-7FFAN1020C	-7	Lead-Free Organic fcBGA Revision 2	1020	COM	25.4
LFSC3GA25E-6FFAN1020C	-6	Lead-Free Organic fcBGA Revision 2	1020	COM	25.4
LFSC3GA25E-5FFAN1020C	-5	Lead-Free Organic fcBGA Revision 2	1020	COM	25.4

1. Converted to organic flip-chip BGA package revision 2 per PCN #02A-10.

Part Number	Grade	Package	Balls	Temp.	LUTs (K)
LFSCM3GA25EP1-7FN900C	-7	Lead-Free fpBGA	900	COM	25.4
LFSCM3GA25EP1-6FN900C	-6	Lead-Free fpBGA	900	COM	25.4
LFSCM3GA25EP1-5FN900C	-5	Lead-Free fpBGA	900	COM	25.4
LFSCM3GA25EP1-7FFN1020C1	-7	Lead-Free Organic fcBGA	1020	COM	25.4
LFSCM3GA25EP1-6FFN1020C1	-6	Lead-Free Organic fcBGA	1020	COM	25.4
LFSCM3GA25EP1-5FFN1020C1	-5	Lead-Free Organic fcBGA	1020	COM	25.4
LFSCM3GA25EP1-7FFAN1020C	-7	Lead-Free Organic fcBGA Revision 2	1020	COM	25.4
LFSCM3GA25EP1-6FFAN1020C	-6	Lead-Free Organic fcBGA Revision 2	1020	COM	25.4
LFSCM3GA25EP1-5FFAN1020C	-5	Lead-Free Organic fcBGA Revision 2	1020	COM	25.4

1. Converted to organic flip-chip BGA package revision 2 per PCN #02A-10.