
E · / Fattice Semiconductor Corporation - <u>LFSCM3GA15EP1-6F256I Datasheet</u>

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	3750
Number of Logic Elements/Cells	15000
Total RAM Bits	1054720
Number of I/O	139
Number of Gates	-
Voltage - Supply	0.95V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 105°C (TJ)
Package / Case	256-BGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfscm3ga15ep1-6f256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2-5. sysMEM Block Configurations

Memory Mode	Configurations
Single Port	16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18 512 x 36
True Dual Port	16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18
Pseudo Dual Port	16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18 512 x 36
FIFO	16,384 x 1 8,192 x 2 4,096 x 4 2,048 x 9 1,024 x 18 512 x 36

Bus Size Matching

All of the multi-port memory modes support different widths on each of the ports. The RAM bits are mapped LSB word 0 to MSB word 0, LSB word 1 to MSB word 1 and so on. Although the word size and number of words for each port varies, this mapping scheme applies to each port.

RAM Initialization and ROM Operation

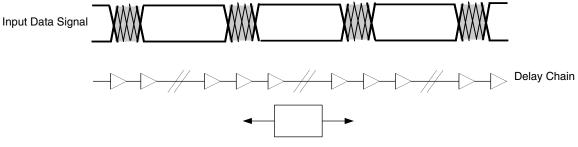
If desired, the contents of the RAM can be pre-loaded during device configuration. By preloading the RAM block during the chip configuration cycle and disabling the write controls, the sysMEM block can also be utilized as a ROM.

Single, Dual and Pseudo-Dual Port Modes

In all the sysMEM RAM modes the input data and address for the ports are registered at the input of the memory array. The output data of the memory is optionally registered at the output. A clock is required even in asynchronous read mode.

The EBR memory supports two forms of write behavior for dual port operation:

- 1. **Normal** data on the output appears only during a read cycle. During a write cycle, the data (at the current address) does not appear on the output.
- 2. Write Through a copy of the input data appears at the output of the same port.


FIFO Configuration

The FIFO has a write port with Data-in, WCE, WE and WCLK signals. There is a separate read port with Data-out, RCE, RE and RCLK signals. The FIFO internally generates Almost Full, Full, Almost Empty, and Empty Flags. The Full and Almost Full flags are registered with WCLK. The Empty and Almost Empty flags are registered with RCLK.

Adaptive Input Logic (AIL) Overview

The Adaptive Input Logic (AIL) provides the ability of the input logic to dynamically find a solution by monitoring multiple samples of the input data. The input data signal from the input buffer is run through a delay chain. Data, transitions, jitter, noise are all contained inside of the delay chain. The AIL will then search the delay chain for a clean sampling point for data. Once found the AIL will monitor and walk with the data dynamically. This novel approach of using a delay chain to create multiple copies of the data provides a lower power solution than oversampling data with a higher speed clock. Figure 2-19 provides a high level view of the AIL methodology.

AIL Acquisition Window

The AIL slides the acquisition window through the delay chain searching for stable data based solely on data transitions. A specific training pattern is not required to perform this bit alignment, simply data transitions. The size of the acquisition window is user-selectable allowing the AIL to operate over the full range of the PURESPEED I/O range. Based on dynamic user control the AIL can either continuously adjust the window location based on data edge detection or it can be locked to a specific delay.

The AIL operates on single data and double data rate interfaces and is available on most FPGA input pins on the LatticeSC device and all buffer types. The AIL block is low power using only 0.003 mW/MHz typical (6 mW @ 2 Gbps) for PRBS 2⁷ data. Multiple AIL inputs can be used to create a bus with a FPGA circuit to realign the bus to a common clock cycle. The FPGA circuit to realign the bus is required and is provided by Lattice as a reference design.

For more information on the LatticeSC AIL please refer to TN1158 <u>LatticeSC PURESPEED I/O Adaptive Input</u> <u>Logic User's Guide</u>.

Input DDR/Shift Block

The DDR/Shift block contains registers and associated logic that support DDR and shift register functions using the high-speed clock and the associated transfer to the low-speed clock domain. It functions as a gearbox allowing high-speed incoming data to be passed into the FPGA fabric. Each PIO supports DDR and x2 shift functions. If desired PIOs A and B or C and D can be combined to form x4 shift functions. The PIOs A and C on the left, right and bottom of the device also contain an optional Adaptive Input Logic (AIL) element. This logic automatically aligns incoming data with the clock allowing for easy design of high-speed interfaces. Figure 2-21 shows a simplified block diagram of the shift register block. The shift block in conjunction with the update and clock divider blocks automatically handles the hand off between the low-speed and high-speed clock domains.

PURESPEED I/O Buffer Banks

LatticeSC devices have seven PURESPEED I/O buffer banks; each is capable of supporting multiple I/O standards. Each PURESPEED I/O bank has its own I/O supply voltage (V_{CCIO}), and two voltage references V_{REF1} and V_{REF2} resources allowing each bank to be completely independent from each other. Figure 2-26 shows the seven banks and their associated supplies. Table 2-7 lists the maximum number of I/Os per bank for the whole LatticeSC family.

In the LatticeSC devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS, PCI33 and PCIX33) are powered using V_{CCIO} . In addition to the bank V_{CCIO} supplies, the LatticeSC devices have a V_{CC} core logic power supply, and a V_{CCAUX} supply that power all differential and referenced buffers. VCCAUX also powers a predriver of single-ended output buffers to enhance buffer performance.

Each bank can support up to two separate VREF voltages, VREF1 and VREF2 that set the threshold for the referenced input buffers. In the LatticeSC devices any I/O pin in a bank can be configured to be a dedicated reference voltage supply pin. Each I/O is individually configurable based on the bank's supply and reference voltages.

Differential drivers have user selectable internal or external bias. External bias is brought in by the VREF1 pin in the bank. External bias for differential buffers is needed for applications that requires tighter than standard output common mode range.

Since a bank can have only one external bias circuit for differential drivers, LVDS and RSDS differential outputs can be mixed in a bank.

If a differential driver is configured in a bank, one pin in that bank becomes a DIFFR pin. This DIFFR pin must be connected to ground via an external 1K +/-1% ohm resistor. Note that differential drivers are not supported in banks 1, 4 and 5.

In addition, there are dedicated Terminating Supply (V_{TT}) pins to be used as terminating voltage for one of the two ways to perform parallel terminations. These V_{TT} pins are available in banks 2-7, these pins are not available in some packages. When VTT termination is not required, or used to provide the common mode termination voltage (VCMT), these pins can be left unconnected on the device. If the internal or external VCMT function for differential input termination is used, the VTT pins should be unconnected and allowed to float.

There are further restrictions on the use of V_{TT} pins, for additional details refer to technical information at the end of this data sheet.

VDDAX25 needs to be connected independent of the use of the SERDES. This supply is used to control the SERDES CML I/O regardless of the SERDES being used in the design.

Supported Source Synchronous Interfaces

The LatticeSC devices contain a variety of hardware, such as delay elements, DDR registers and PLLs, to simplify the implementation of Source Synchronous interfaces. Table 2-11 lists Source Synchronous and DDR/QDR standards supported in the LatticeSC. For additional detail refer to technical information at the end of the data sheet.

Source Synchronous Standard Clocking Speeds (MHz) Data Rate (Mbps) RapidIO DDR 500 1000 SPI4.2 (POS-PHY4)/NPSI DDR 1000 500 DDR 334 667 SFI4/XSBI SDR 667 DDR XGMII 156.25 312 CSIX SDR 250 250 QDRII/QDRII+ memory interface DDR 300 600 DDR memory interface DDR 240 480 DDR 333 667 DDRII memory interface DDR 400 800 **RLDRAM** memory interface

Table 2-11. Source Synchronous Standards Table¹

1. Memory width is dependent on the system design and limited by the number of I/Os in the device.

flexiPCS[™] (Physical Coding Sublayer Block)

flexiPCS Functionality

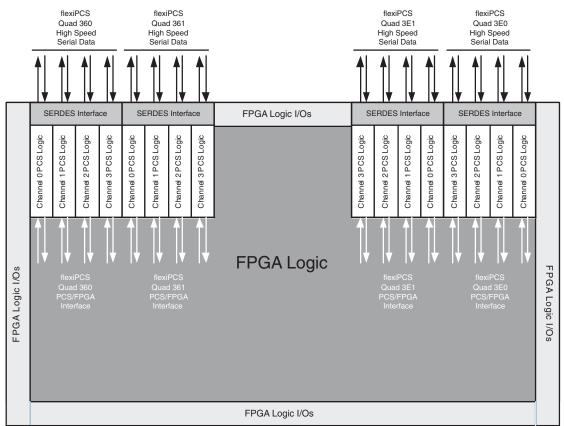
The LatticeSC family combines a high-performance FPGA fabric, high-performance I/Os and large embedded RAM in a single industry leading architecture. LatticeSC devices also feature up to 32 channels of embedded SERDES with associated Physical Coding Sublayer (PCS) logic. The flexiPCS logic can be configured to support numerous industry standard high-speed data transfer protocols.

Each channel of flexiPCS logic contains dedicated transmit and receive SERDES for high-speed, full-duplex serial data transfers at data rates up to 3.8 Gbps. The PCS logic in each channel can be configured to support an array of popular data protocols including SONET (STS-12/STS-12c, STS-48/STS-48c, and TFI-5 support of 10 Gbps or above), Gigabit Ethernet (compliant to the IEEE 1000BASE-X specification), 1.02 or 2.04 Gbps Fibre Channel, PCI-Express, and Serial RapidIO. In addition, the protocol based logic can be fully or partially bypassed in a number of configurations to allow users flexibility in designing their own high-speed data interface.

Protocols requiring data rates above 3.8 Gbps can be accommodated by dedicating either one pair or all four channels in one flexiPCS quad block to one data link. One quad can support full-duplex serial data transfers at data rates up to 15.2 Gbps. A single flexiPCS quad can be configured to support 10Gb Ethernet (with a fully compliant XAUI interface), 10Gb Fibre Channel, and x4 PCI-Express and 4x RapidIO.

The flexiPCS also provides bypass modes that allow a direct 8-bit or 10-bit interface from the SERDES to the FPGA logic which can also be geared to run at 1/2 speed for a 16-bit or 20-bit interface to the FPGA logic. Each SERDES pin can be DC coupled independently and can allow for both high-speed and low-speed operation down to DC rates on the same SERDES pin, as required by some Serial Digital Video applications.

The ispLEVER design tools from Lattice support all modes of the flexiPCS. Most modes are dedicated to applications associated with a specific industry standard data protocol. Other more general purpose modes allow a user to define their own operation. With ispLEVER, the user can define the mode for each quad in a design. Nine modes are currently supported by the ispLEVER design flow:


- 8-bit SERDES Only
- 10-bit SERDES Only
- SONET (STS-12/STS-48)
- Gigabit Ethernet
- Fibre Channel
- XAUI
- Serial RapidIO
- PCI-Express
- Generic 8b10b

flexiPCS Quad

The flexiPCS logic is arranged in quads containing logic for four independent full-duplex data channels. Each device in the LatticeSC family has up to eight quads of flexiPCS logic. The LatticeSC Family Selection Guide table on the first page of this data sheet contains the number of flexiPCS channels present on the chip. Note that in some packages (particularly lower pin count packages), not all channels from all quads on a given device may be bonded to package pins.

Each quad supports up to four channels of full-duplex data and can be programmed into any one of several protocol based modes. Each quad requires its own reference clock which can be sourced externally or from the FPGA logic. The user can utilize between one and four channels in a quad, depending on the application.

Figure 2-30 shows an example of four flexiPCS quads in a LatticeSC device. Quads are labeled according to the address of their software controlled registers.

Figure 2-30. LatticeSC flexiPCS

Since each quad has its own reference clock, different quads can support different standards on the same chip. This feature makes the LatticeSC family of devices ideal for bridging between different standards.

LatticeSC/M Family Data Sheet **DC and Switching Characteristics**

December 2011

Data Sheet DS1004

Absolute Maximum Ratings

Supply Voltage V _{CC,} V _{CC12,} V _{DDIB,} V _{DDOB} 0.5 to 1.6V
Supply Voltage V _{CCAUX} , V _{DDAX25} , V _{TT} 0.5 to 2.75V
Supply Voltage V _{CCJ} 0.5 to 3.6V
Supply Voltage V _{CCIO} (Banks 1, 4, 5)0.5 to 3.6V
Supply Voltage V _{CCIO} (Banks 2, 3, 6, 7)
Input or I/O Tristate Voltage Applied (Banks 1, 4, 5)
Input or I/O Tristate Voltage Applied (Banks 2, 3, 6, 7)
Storage Temperature (Ambient)
Junction Temperature Under Bias (Tj)+125°C

Notes:

1. Stress above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

- 2. Compliance with the Lattice Thermal Management document is required.
- 3. All voltages referenced to GND.

4. Undershoot and overshoot of -2V to (VIHMAX +2) volts is permitted for a duration of <20ns.

Recommended Operating Conditions

Symbol	Parameter	Min.	Max.	Units
V _{CC} ⁵	Core Supply Voltage (Nominal 1.2V Operation)	0.95	1.26	V
V _{CCAUX} ⁶	Programmable I/O Auxiliary Supply Voltage	2.375	2.625	V
V _{CCIO} ^{1, 2, 5, 6}	Programmable I/O Driver Supply Voltage (Banks 1, 4, 5)	1.14	3.45	V
V _{CCIO} ^{1, 2, 5, 6}	Programmable I/O Driver Supply Voltage (Banks 2, 3, 6, 7)	1.14	2.625	V
V _{CC12} ^{4, 5}	Internal 1.2V Power Supply Voltage for Configuration Logic and FPGA PLL, SERDES PLL Power Supply Voltage and SERDES Analog Supply Voltage	1.14	1.26	V
V _{DDIB}	SERDES Input Buffer Supply Voltage		1.575	V
V _{DDOB}	SERDES Output Buffer Supply Voltage		1.575	V
V _{DDAX25}	SERDES Termination Auxiliary Supply Voltage	2.375	2.625	V
V _{CCJ} ^{1, 5}	Supply Voltage for IEEE 1149.1 Test Access Port	1.71	3.45	V
V _{TT} ^{2, 3}	Programmable I/O Termination Power Supply		V _{CCAUX} - 0.5	V
t _{JCOM}	Junction Temperature, Commercial Operation		+85	С
t _{JIND}	Junction Temperature, Industrial Operation	-40	105	С

1. If V_{CCIO} or V_{CCJ} is set to 2.5V, they must be connected to the same power supply as V_{CCAUX} .

2. See recommended voltages by I/O standard in subsequent table.

^{3.} When V_{TT} termination is not required, or used to provide the common mode termination voltage (V_{CMT}), these pins can be left unconnected on the device.

^{4.} V_{CC12} cannot be lower than V_{CC} at any time. For 1.2V operation, it is recommended that the V_{CC} and V_{CC12} supplies be tied together with proper noise decoupling between the digital VCC and analog VCC12 supplies.

^{5.} $V_{CC,} V_{CCIO}$ (all banks), V_{CC12} and V_{CCJ} must reach their minimum values before configuration will proceed. 6. If V_{CCIO} for a bank is nominally 1.2V/1.5V/1.8V, then V_{CCAUX} must always be higher than V_{CCIO} during power up.

^{© 2011} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Power Supply Ramp Rates

Symbol	Parameter	Condition	Min.	Тур.	Max	Units
t	I Power Subdiv ramp rates for all power subdiles	Over process, voltage,	3.45	-		mV/μs
'RAMP		temperature			75	ms

1. See the Power-up and Power-Down requirements section for more details on power sequencing.

2. From 0.5V to minimum operating voltage.

Hot Socketing Specifications¹

Symbol	Parameter	Condition	Min.	Тур.	Max	Units
	Programmable and dedicated Input or I/O leakage current ^{2, 3, 4, 5, 6}	0 <= V _{IN} <= V _{IH} (MAX)	_	_	±1500	μΑ
I _{HDIN}	SERDES average input current when device powered down and inputs driven ⁷			_	4	mA

1. See Hot Socket power up/down information in Chapter 2 of this document.

2. Assumes monotonic rise/fall rates for all power supplies.

3. Sensitive to power supply sequencing as described in hot socketing section.

4. Assumes power supplies are between 0 and maximum recommended operations conditions.

5. IDK is additive to I_{PU} , I_{PD} or I_{BH} .

6. Represents DC conditions. For the first 20ns after hot insertion, current specification is 8 mA.

7. Assumes that the device is powered down with all supplies grounded, both P and N inputs driven by a CML driver with maximum allowed VDDOB of 1.575V, 8b/10b data and internal AC coupling.

DC Electrical Characteristics⁵

Over Recommended Operating Conditions

Symbol	Parameter	Condition	Min. ³	Тур.	Max.	Units
$I_{IL,} I_{IH}^1$	Input or I/O Low leakage	$0 \le V_{IN} \le V_{IH}$ (MAX)	—	_	10	μΑ
I _{PU}	I/O Active Pull-up Current	$0 \le V_{IN} \le 0.7 V_{CCIO}$	-30	_	-210	μΑ
I _{PD}	I/O Active Pull-down Cur- rent	$V_{IL} (MAX) \le V_{IN} \le V_{IH} (MAX)$	30	_	210	μA
I _{BHLS}	Bus Hold Low Sustaining Current	V _{IN} = V _{IL} (MAX)	30	_	_	μA
I _{BHHS}	Bus Hold High Sustaining Current	V _{IN} = 0.7V _{CCIO}	-30	_	_	μA
I _{BHLO}	Bus Hold Low Overdrive Current	$0 \le V_{IN} \le V_{IH}$ (MAX)	—	_	210	μA
I _{BHLH}	Bus Hold High Overdrive Current	$0 \le V_{IN} \le V_{IH}$ (MAX)	—	_	-210	μA
I _{CL}	PCI Low Clamp Current	-3 < V _{IN} ≤ -1	-25 + (V _{IN} + 1)/0.015	_	—	mA
I _{CH}	PCI High Clamp Current	$V_{CC} + 4 > V_{IN} \ge V_{CC} + 1$	25 + (V _{IN} - V _{CC} -1)/ 0.015	_	—	mA
V _{BHT}	Bus Hold trip Points	$0 \le V_{IN} \le V_{IH}$ (MAX)	V _{IL} (MAX)	_	V _{IH} (MIN)	V
C1	I/O Capacitance ²		_	8	_	pf
C3 ²	Dedicated Input Capacitance ²		_	6	_	pf

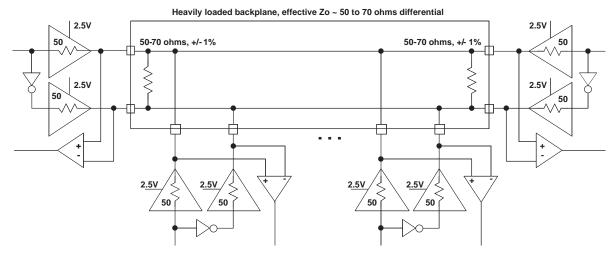
1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

2. T_A 25°C, f = 1.0MHz

3. I_{PU}, I_{PD}, I_{BHLS} and I_{BHHS} have minimum values of 15 or -15µA if V_{CCIO} is set to 1.2V nominal.

4. This table does not apply to SERDES pins.

5. For programmable I/Os.


Differential HSTL and SSTL

Differential HSTL and SSTL outputs are implemented as a pair of complementary single-ended outputs. All allowable single-ended output classes (class I and class II) are supported in this mode.

MLVDS

The LatticeSC devices support the MLVDS standard. This industry standard is emulated using controlled impedance complementary LVCMOS outputs in conjunction with a parallel external resistor across the driver outputs. MLVDS is intended for use when multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-1 is one possible solution for bi-directional multi-point differential signals.

Table	3-1.	ML	VDS	DC	Conditions ¹
lance	• • •				0011410110

	Nominal			
Symbol	Description	Zo = 50	Zo = 70	Units
Z _{OUT}	Output impedance	50	50	ohm
R _{TLEFT}	Left end termination	50	70	ohm
R _{TRIGHT}	Right end termination	50	70	ohm
V _{OH}	Output high voltage	1.50	1.575	V
V _{OL}	Output low voltage	1.00	0.925	V
V _{OD}	Output differential voltage	0.50	0.65	V
V _{CM}	Output common mode voltage	1.25	1.25	V
I _{DC}	DC output current	20.0	18.5	mA

1. For input buffer, see LVDS table.

sysCLOCK PLL Timing

Parameter	Description	Conditions	Min.	Тур	Max.	Units
f _{IN}	Input Clock Frequency (CLKI, CLKFB)		2	—	1000	MHz
f _{OUT}	Output Clock Frequency (CLKOP, CLKOS)		1.5625	—	1000	MHz
f _{VCO}	PLL VCO Frequency		100	—	1000	MHz
f _{PFD}	Phase Detector Input Frequency		2	—	700	MHz
AC Charac	teristics		•			
t _{DT}	Output Clock Duty Cycle	Default duty cycle selected (at 50% levels)	45	—	55	%
↓ 1	Output Clock Pariod litter	$2 \text{ MHz} \le f_{PFD} \le 10 \text{ MHz}$	—	—	200	ps
t _{OPJIT} 1	Output Clock Period Jitter	f _{PFD} > 10 MHz	—	—	100	ps
t _{CPJIT} 1	Output Clock Cycle-to-Cycle Jitter		—	—	100	ps
t _{SKEW}	Output Clock-to-Clock Skew (Between Two Outputs with the Same Phase Set- ting)		_	_	20	ps
t _{LOCK}	PLL Lock-in Time		—	—	1	ms
t _{IPJIT}	Input Clock Period Jitter		—	—	±250	ps
t _{HI}	Input Clock High Time	At 80% level	350	—	_	ps
t _{LO}	Input Clock Low Time	At 20% level	350	—	—	ps
t _{RSWA}	Analog Reset Signal Pulse Width		100	—	—	ns
t _{RSWD}	Digital Reset Signal Pulse Width		3	—	_	ns
t _{DEL}	Timeshift Delay Step Size		40	80	120	ps
t _{RANGE}	Timeshift Delay Range		—	+/- 560	—	ps
f _{SS}	Spread Spectrum Modulation Frequency		30	—	500	KHz
% Spread	Percentage Downspread for SS Mode		0.5	—	1.5	%
	VCO Clock Phase Adjustment Accuracy		-5	—	5	0

Over Recommended Operating Conditions

1. Values are measured with FPGA logic active, no additional I/Os toggling and REFCLK total jitter = 30 ps

LatticeSC/M Family Data Sheet Pinout Information

January 2008

Data Sheet DS1004

Signal Descriptions

Signal Name	I/O	Description
General Purpose		
		[Edge] indicates the edge of the device on which the pad is located. Valid edge designations are L (Left), B (Bottom), R (Right), T (Top).
		[Row/Column Number] indicates the PIC row or the column of the device on which the PIC exists. When Edge is T (Top) or (Bottom), only need to specify Row Number. When Edge is L (Left) or R (Right), only need to specify Column Number.
P[Edge] [Row/Column Number*]_[A/B/C/D]	I/O	[A/B/C/D] indicates the PIO within the PIC to which the pad is connected.
		Some of these user programmable pins are shared with special func- tion pins. These pin when not used as special purpose pins can be programmed as I/Os for user logic.
		During configuration the user-programmable I/Os are tri-stated with an internal pull-up resistor enabled. If any pin is not used (or not bonded to a package pin), it is also tri-stated with an internal pull-up resistor enabled after configuration.
VREF1_x, VREF2_x	_	The reference supply pins for I/O bank x. Any I/O pin in a bank can be assigned as a reference supply pin, but software defaults use designated pin.
NC	_	No connect. NC pins should not be connected to any active signals, VCC or GND.
Non-SERDES Power Supplies		
VCCIOx	—	VCCIO - The power supply pins for I/O bank x. Dedicated pins.
VCC121	_	1.2V supply for configuration logic, PLLs and SERDES Rx, Tx and PLL. All VCC12 pins must be connected. As VCC12 supplies power for analog circuitry, VCC12 should be quiet and isolated from noisy digital board supplies.
VTT_x	_	Termination voltage for bank x. When VTT termination is not required, or used to provide the common mode termination voltage (VCMT), these pins can be left unconnected on the device. VCMT function is not used in the bank. If the internal or external VCMT function for differential input termination is used, the VTT pins should be unconnected and allowed to float.
GND	_	GND - Ground. Dedicated pins. All grounds must be electrically con- nected at the board level.
VCC		VCC - The power supply pins for core logic. Dedicated pins (1.2V/ 1.0V).
VCCAUX	_	VCCAUX - Auxiliary power supply pin - powers all differential and referenced input buffers. Dedicated pins (2.5V).
VCCJ		VCCJ - The power supply pin for JTAG Test Access Port.
PROBE_VCC	_	VCC signal - Connected to internal VCC node. Can be used for feed- back to control an external board power converter. Can be uncon- nected if not used.

^{© 2008} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

LFSC/M15 Logic Signal Connections: 256 fpBGA^{1,2}

	LFSC/M15					
Ball Number	Ball Function	VCCIO Bank	Dual Function			
E4	A_VDDAX25_L	-				
B1	A_REFCLKP_L	-				
C1	A_REFCLKN_L	-				
D2	RESP_ULC	-				
F5	RESETN	1				
D1	DONE	1				
E1	INITN	1				
E2	MO	1				
E3	M1	1				
E5	M2	1				
E6	M3	1				
F2	PL15A	7	ULC_PLLT_IN_A/ULC_PLLT_FB_I			
F1	PL15B	7	ULC_PLLC_IN_A/ULC_PLLC_FB_			
F3	PL17A	7	ULC_DLLT_IN_C/ULC_DLLT_FB_			
G1	PL17B	7	ULC_DLLC_IN_C/ULC_DLLC_FB_			
G4	PL18D	7	VREF2_7			
H3	PL22A	7				
H2	PL22B	7				
H5	PL22C	7	VREF1_7			
G5	PL22D	7	DIFFR_7			
H1	PL23A	7	PCLKT7_1			
J1	PL23B	7	PCLKC7_1			
J2	PL24A	7	PCLKT7_0			
J3	PL24B	7	PCLKC7_0			
H4	PL24C	7	PCLKT7_2			
H6	PL24D	7	PCLKC7_2			
J4	PL26A	6	PCLKT6_0			
K5	PL26B	6	PCLKC6_0			
J5	PL26C	6	PCLKT6_1			
J6	PL26D	6	PCLKC6_1			
K1	PL28A	6				
L1	PL28B	6				
L4	PL28C	6	PCLKT6_2			
K4	PL28D	6	PCLKC6_2			
L2	PL31C	6	VREF1_6			
L3	PL35A	6				
M3	PL35B	6				
M2	PL35D	6	DIFFR_6			
M1	PL37A	6				
N1	PL37B	6				
P2	PL41D	6	VREF2_6			
M5	PL43A	6				

LFSC/M15, LFSC/M25 Logic Signal Connections: 900 fpBGA^{1, 2}

		LFSC/M15				LFSC/M25	
Ball Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function	
F7	A_VDDAX25_L	-		A_VDDAX25_L	-		
B1	A_REFCLKP_L	-		A_REFCLKP_L	-		
C1	A_REFCLKN_L	-		A_REFCLKN_L	-		
D5	VCC12	-		VCC12	-		
A2	RESP_ULC	-		RESP_ULC	-		
E5	VCC12	-		VCC12	-		
D4	VCC12	-		VCC12	-		
H5	RESETN	1		RESETN	1		
H6	TSALLN	1		TSALLN	1		
G6	DONE	1		DONE	1		
G5	INITN	1		INITN	1		
F5	MO	1		MO	1		
F6	M1	1		M1	1		
F4	M2	1		M2	1		
E4	M3	1		MЗ	1		
D3	PL15A	7	ULC_PLLT_IN_A/ULC_PLLT_FB_B	PL16A	7	ULC_PLLT_IN_A/ULC_PLLT_FB_B	
D2	PL15B	7	ULC_PLLC_IN_A/ULC_PLLC_FB_B	PL16B	7	ULC_PLLC_IN_A/ULC_PLLC_FB_B	
J6	PL15C	7		PL16C	7		
J5	PL15D	7		PL16D	7		
E3	PL17A	7	ULC_DLLT_IN_C/ULC_DLLT_FB_D	PL17A	7	ULC_DLLT_IN_C/ULC_DLLT_FB_D	
E2	PL17B	7	ULC_DLLC_IN_C/ULC_DLLC_FB_D	PL17B	7	ULC_DLLC_IN_C/ULC_DLLC_FB_D	
K4	PL17C	7	ULC_PLLT_IN_B/ULC_PLLT_FB_A	PL17C	7	ULC_PLLT_IN_B/ULC_PLLT_FB_A	
J4	PL17D	7	ULC_PLLC_IN_B/ULC_PLLC_FB_A	PL17D	7	ULC_PLLC_IN_B/ULC_PLLC_FB_A	
F3	PL18A	7	ULC_DLLT_IN_D/ULC_DLLT_FB_C	PL18A	7	ULC_DLLT_IN_D/ULC_DLLT_FB_C	
G3	PL18B	7	ULC_DLLC_IN_D/ULC_DLLC_FB_C	PL18B	7	ULC_DLLC_IN_D/ULC_DLLC_FB_C	
K5	PL18C	7		PL18C	7		
K6	PL18D	7	VREF2_7	PL18D	7	VREF2_7	
F2	PL19A	7		PL22A	7		
F1	PL19B	7		PL22B	7		
E1	PL19C	7		PL22C	7		
D1	PL19D	7		PL22D	7		
K3	PL22A	7		PL25A	7		
L3	PL22B	7		PL25B	7		
L6	PL22C	7	VREF1_7	PL25C	7	VREF1_7	
M6	PL22D	7	DIFFR_7	PL25D	7	DIFFR_7	
J1	PL23A	7	PCLKT7_1	PL26A	7	PCLKT7_1	
K1	PL23B	7	PCLKC7_1	PL26B	7	PCLKC7_1	
L1	PL24A	7	PCLKT7_0	PL27A	7	PCLKT7_0	
M1	PL24B	7	PCLKC7_0	PL27B	7	PCLKC7_0	
P8	PL24C	7	PCLKT7_2	PL27C	7	PCLKT7_2	
R8	PL24D	7	PCLKC7_2	PL27D	7	PCLKC7_2	
N2	PL26A	6	PCLKT6_0	PL29A	6	PCLKT6_0	
N1	PL26B	6	PCLKC6_0	PL29B	6	PCLKC6_0	
R7	PL26C	6	PCLKT6_1	PL29C	6	PCLKT6_1	
R6	PL26D	6	PCLKC6_1	PL29D	6	PCLKC6_1	

LFSC/M15, LFSC/M25 Logic Signal Connections: 900 fpBGA^{1, 2} (Cont.)

			С/М15			SC/M25
Ball Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function
AB10	VCC	-		VCC	-	
AB21	VCC	-		VCC	-	
J10	VCC	-		VCC	-	
J21	VCC	-		VCC	-	
K10	VCC	-		VCC	-	
K11	VCC	-		VCC	-	
K12	VCC	-		VCC	-	
K13	VCC	-		VCC	-	
K14	VCC	-		VCC	-	
K17	VCC	-		VCC	-	
K18	VCC	-		VCC	-	
K19	VCC	-		VCC	-	
K20	VCC	-		VCC	-	
K21	VCC	-		VCC	-	
K22	VCC	-		VCC	-	
K9	VCC	-		VCC	-	
L10	VCC	-		VCC	-	
L21	VCC	-		VCC	-	
M10	VCC	-		VCC	-	
M21	VCC	-		VCC	-	
N10	VCC	-		VCC	-	
N21	VCC	-		VCC	-	
P10	VCC	-		VCC	-	
P21	VCC	-		VCC	-	
U10	VCC	-		VCC	-	
U21	VCC	-		VCC	-	
V10	VCC	-		VCC	-	
V21	VCC	-		VCC	-	
W10	VCC	-		VCC	-	
W21	VCC	-		VCC	-	
Y10	VCC	-		VCC	-	
Y21	VCC	-		VCC	-	
H11	VCCAUX	-		VCCAUX	-	
H12	VCCAUX	-		VCCAUX	-	
H19	VCCAUX	-		VCCAUX	-	
H20	VCCAUX	-		VCCAUX	-	
M23	VCCAUX	-		VCCAUX	-	
M24	VCCAUX	-		VCCAUX	-	
N23	VCCAUX	-		VCCAUX	-	
N24	VCCAUX	-		VCCAUX	-	
U23	VCCAUX	-		VCCAUX	-	
U24	VCCAUX	-		VCCAUX	-	
V23	VCCAUX	-		VCCAUX	-	
V24	VCCAUX	-		VCCAUX		
V24						

LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA^{1, 2} (Cont.)

			С/М40		LFSC/M80			
Ball Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function		
AL11	GND	-		GND	-			
AL17	GND	-		GND	-			
AL21	GND	-		GND	-			
AL27	GND	-		GND	-			
AL5	GND	-		GND	-			
AM14	GND	-		GND	-			
AM18	GND	-		GND	-			
AM24	GND	-		GND	-			
AM30	GND	-		GND	-			
AM8	GND	-		GND	-			
AN1	GND	-		GND	-			
AN34	GND	-		GND	-			
AP2	GND	-		GND	-			
AP33	GND	-		GND	-			
B1	GND	-		GND	-			
B34	GND	-		GND	-			
C11	GND	-		GND	-			
C12	GND	-		GND	-			
C13	GND	-		GND	-			
C14	GND	-		GND	-			
C17	GND	-		GND	-			
C21	GND	-		GND	-			
C22	GND	-		GND	-			
C23	GND	-		GND	-			
C24	GND	-		GND	-			
C26	GND	-		GND	-			
C27	GND	-		GND	-			
C30	GND	-		GND	-			
C31	GND	-		GND	-			
C4	GND	-		GND	-			
C5	GND	-		GND	-			
C8	GND	-		GND	-			
C9	GND	-		GND	-			
D18	GND	-		GND	-			
E32	GND	-		GND	-			
E4	GND	-		GND	-			
F19	GND	-		GND	-			
G16	GND	-		GND	-			
G29	GND	-		GND	-			
G7	GND	-		GND	-			
H3	GND	-		GND	-			
H31	GND	-		GND	-			
J10	GND	-		GND	-			
J15	GND	-		GND	-			
J26	GND	-		GND	-			

LFSC/M40, LFSC/M80 Logic Signal Connections: 1152 fcBGA^{1, 2} (Cont.)

			LFSC/M40	1		
						LFSC/M80
Ball Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function
AC19	VTT_5	5		VTT_5	5	
AC20	VTT_5	5		VTT_5	5	
AD22	VTT_5	5		VTT_5	5	
AB24	VTT_6	6		VTT_6	6	
W23	VTT_6	6		VTT_6	6	
Y23	VTT_6	6		VTT_6	6	
N24	VTT_7	7		VTT_7	7	
R23	VTT_7	7		VTT_7	7	
T23	VTT_7	7		VTT_7	7	
M12	VDDAX25_R	-		VDDAX25_R	-	
M23	VDDAX25_L	-		VDDAX25_L	-	
Y16	GND	-		GND	-	
Y14	GND	-		GND	-	
N21	VCC12	-		VCC12	-	
P22	VCC12	-		VCC12	-	
AA22	VCC12	-		VCC12	-	
AB21	VCC12	-		VCC12	-	
AB14	VCC12	-		VCC12	-	
AA13	VCC12	-		VCC12	-	
P13	VCC12	-		VCC12	-	
N14	VCC12	-		VCC12	-	
G26	NC	-		NC	-	
G9	NC	-		NC	-	
J12	NC	-		NC	-	
H12	NC	-		NC	-	
H23	NC	-		NC	-	
J23	NC	-		NC	-	

1. Differential pair grouping within a PCI is A (True) and B (complement) and C (True) and D (Complement).

2. The LatticeSC/M40 and LatticeSC/M80 in an 1152-pin package support a 32-bit MPI interface.

LFSC/M115 Logic Signal Connections: 1152 fcBGA^{1, 2}

		LFSC/M115						
all Number	Ball Function	VCCIO Bank	Dual Function					
W30	PL69B	6						
W27	PL69C	6	VREF1_6					
Y27	PL69D	6						
Т33	PL70A	6						
U33	PL70B	6						
V25	PL70C	6						
W25	PL70D	6						
U34	PL71A	6						
V34	PL71B	6						
V26	PL71C	6						
W26	PL71D	6						
V33	PL74A	6						
W33	PL74B	6						
V24	PL74C	6						
W24	PL74D	6						
W31	PL77A	6						
Y31	PL77B	6						
Y29	PL77C	6						
AA29	PL77D	6						
Y33	PL79A	6						
AA33	PL79B	6						
Y28	PL79C	6						
AA28	PL79D	6						
AB32	PL90A	6						
AC32	PL90B	6						
AA26	PL90C	6						
AA27	PL90D	6	DIFFR_6					
AB31	PL91A	6						
AC31	PL91B	6						
Y24	PL91C	6						
AA24	PL91D	6						
AE34	PL92A	6						
AF34	PL92B	6						
AB30	PL92C	6						
AC30	PL92D	6						
AD33	PL94A	6						
AE33	PL94B	6						
AD30	PL94C	6						
AE30	PL94D	6						
AE32	PL96A	6						
AF32	PL96B	6						
AA25	PL96C	6						
AB25	PL96D	6						

LFSC/M115 Logic Signal Connections: 1152 fcBGA^{1, 2}

		LFSC/M115	
Ball Number	Ball Function	VCCIO Bank	Dual Function
F25	B_HDINN0_L	-	PCS 361 CH 0 IN N
E25	B_HDINP0_L	-	PCS 361 CH 0 IN P
D28	B_VDDIB0_L	-	
G25	VCC12	-	
D29	A_VDDIB3_L	-	
C25	VCC12	-	
A25	A_HDINP3_L	-	PCS 360 CH 3 IN P
B25	A_HDINN3_L	-	PCS 360 CH 3 IN N
A26	A_HDOUTP3_L	-	PCS 360 CH 3 OUT P
E27	VCC12	-	
B26	A_HDOUTN3_L	-	PCS 360 CH 3 OUT N
F26	A_VDDOB3_L	-	
B27	A_HDOUTN2_L	-	PCS 360 CH 2 OUT N
F27	A_VDDOB2_L	-	
A27	A_HDOUTP2_L	-	PCS 360 CH 2 OUT P
E28	VCC12	-	
B28	A_HDINN2_L	-	PCS 360 CH 2 IN N
A28	A_HDINP2_L	-	PCS 360 CH 2 IN P
D30	A_VDDIB2_L	-	
C28	VCC12	-	
D31	A_VDDIB1_L	-	
C29	VCC12	-	
A29	A_HDINP1_L	-	PCS 360 CH 1 IN P
B29	A_HDINN1_L	-	PCS 360 CH 1 IN N
A30	A_HDOUTP1_L	-	PCS 360 CH 1 OUT P
E29	VCC12	-	
B30	A_HDOUTN1_L	-	PCS 360 CH 1 OUT N
F28	A_VDDOB1_L	-	
B31	A_HDOUTN0_L	-	PCS 360 CH 0 OUT N
F29	A_VDDOB0_L	-	
A31	A_HDOUTP0_L	-	PCS 360 CH 0 OUT P
E30	VCC12	-	
B32	A_HDINN0_L	-	PCS 360 CH 0 IN N
A32	A_HDINP0_L	-	PCS 360 CH 0 IN P
D32	A_VDDIB0_L	-	
C32	VCC12	-	
E34	PL30A	7	
F34	PL30B	7	
F33	PL34A	7	
G33	PL34B	7	
K30	PL38A	7	
L30	PL38B	7	
G34	PL40A	7	

LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA^{1, 2} (Cont.)

		L	_FSC/M80	LFSC/M115			
Ball Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function	
W33	PL42C	7		PL56C	7		
Y33	PL42D	7		PL56D	7		
W37	PL43A	7		PL57A	7		
Y37	PL43B	7		PL57B	7		
Y32	PL43C	7		PL57C	7		
AA32	PL43D	7		PL57D	7		
U38	PL46A	7		PL60A	7		
V38	PL46B	7		PL60B	7		
W34	PL46C	7		PL60C	7		
Y34	PL46D	7		PL60D	7		
T40	PL47A	7	PCLKT7_1	PL61A	7	PCLKT7_1	
U40	PL47B	7	PCLKC7_1	PL61B	7	PCLKC7_1	
AA33	PL47C	7	PCLKT7_3	PL61C	7	PCLKT7_3	
AB33	PL47D	7	PCLKC7_3	PL61D	7	PCLKC7_3	
R42	PL48A	7	PCLKT7_0	PL62A	7	PCLKT7_0	
T42	PL48B	7	PCLKC7_0	PL62B	7	PCLKC7_0	
AA34	PL48C	7	PCLKT7_2	PL62C	7	PCLKT7_2	
AB34	PL48D	7	PCLKC7_2	PL62D	7	PCLKC7_2	
U41	PL50A	6	PCLKT6_0	PL64A	6	PCLKT6_0	
V41	PL50B	6	PCLKC6_0	PL64B	6	PCLKC6_0	
V36	PL50C	6	PCLKT6_1	PL64C	6	PCLKT6_1	
W36	PL50D	6	PCLKC6_1	PL64D	6	PCLKC6_1	
U42	PL51A	6		PL65A	6		
V42	PL51B	6		PL65B	6		
AB31	PL51C	6	PCLKT6_3	PL65C	6	PCLKT6_3	
AC31	PL51D	6	PCLKC6_3	PL65D	6	PCLKC6_3	
W38	PL52A	6		PL66A	6		
Y38	PL52B	6		PL66B	6		
AA35	PL52C	6	PCLKT6_2	PL66C	6	PCLKT6_2	
AB35	PL52D	6	PCLKC6_2	PL66D	6	PCLKC6_2	
W39	PL55A	6		PL69A	6		
Y39	PL55B	6		PL69B	6		
AB32	PL55C	6	VREF1_6	PL69C	6	VREF1_6	
AC32	PL55D	6		PL69D	6		
W40	PL56A	6		PL70A	6		
Y40	PL56B	6		PL70B	6		
AA36	PL56C	6		PL70C	6		
AB36	PL56D	6		PL70D	6		
W41	PL57A	6		PL71A	6		
Y41	PL57B	6		PL71B	6		
AA37	PL57C	6		PL71C	6		
AB37	PL57D	6		PL71D	6		
W42	PL59A	6		PL73A	6		
Y42	PL59B	6		PL73B	6		
AC33	PL59C	6		PL73C	6		

LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA^{1, 2} (Cont.)

	LFSC/M80				LFSC/M115			
Ball Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function		
AH22	VTT_5	5		VTT_5	5			
AJ22	VTT_5	5		VTT_5	5			
AJ23	VTT_5	5		VTT_5	5			
AJ24	VTT_5	5		VTT_5	5			
AJ25	VTT_5	5		VTT_5	5			
AB28	VTT_6	6		VTT_6	6			
AB29	VTT_6	6		VTT_6	6			
AE29	VTT_6	6		VTT_6	6			
AJ30	VTT_6	6		VTT_6	6			
AA28	VTT_7	7		VTT_7	7			
AA29	VTT_7	7		VTT_7	7			
R31	VTT_7	7		VTT_7	7			
V29	VTT_7	7		VTT_7	7			
Y24	GND	-		GND	-			
Y26	GND	-		GND	-			
Y8	GND	-		GND	-			
Y35	GND	-		GND	-			
AA16	VCC12	-		VCC12	-			
AA27	VCC12	-		VCC12	-			
AB16	VCC12	-		VCC12	-			
AB27	VCC12	-		VCC12	-			
AF16	VCC12	-		VCC12	-			
AF27	VCC12	-		VCC12	-			
AG17	VCC12	-		VCC12	-			
AG21	VCC12	-		VCC12	-			
G33	NC	-		NC	-			
G10	NC	-		NC	-			
M15	NC	-		NC	-			
L15	NC	-		NC	-			
K16	NC	-		NC	-			
J16	NC	-		NC	-			
M18	NC	-		NC	-			
L18	NC	-		NC	-			
M25	NC	-		NC	-			
L25	NC	-		NC	-			
J27	NC	-		NC	-			
K27	NC	-		NC	-			
L28	NC	-		NC	-			
M28	NC	-		NC	-			

1. Differential pair grouping within a PIC is A (True) and B (Complement) and C (True) and D (Complement).

2. The LatticeSC/M80 and LatticeSC/M115 in a 1704-pin package supports a 32-bit MPI interface.

Date	Version	Section	Change Summary
August 2006 (cont.)	01.3 (cont.)	DC and Switching Characteristics (cont.)	Updated LatticeSC Family Timing Adders with ispLEVER 6.0 SP1 results
			Updated PLL Timing Parameters based on PDE testing results
			Removed RDDATA parameter from sysCONFIG readback timing table
		Multiple	Changed TDO/RDDATA to TDO
		Pinout Information	Removed all MPI signals from SC15 256 pin package Dual Function Column
			Added note to SC15, SC25 900 pin package that the package supports a 16 bit MPI
			Added note that pin D3 in an SC15 and SC25 900 pin package should not be used for single-ended outputs
			Added note that pin D28 in an SC15 and SC25 900 pin package should not be used for single-ended outputs
			Added note to SC25 1020 pin package that the package supports a 16 bit MPI
			Added note to SC80 1152 pin package that the package supports a 32 bit MPI
			Added note to SC80 1704 pin package that the package supports a 32 bit MPI
		Ordering Information	Changed "fcBGA" for the 1020 packages to "ffBGA"
November 2006	01.4	Introduction	LatticeSC Family Selection Guide table – I/O count for SC80 device, 1704 fcBGA package changed to 904/32. I/O count for SC115 device, 1704 fcBGA package changed to 942/32.
		DC and Switching Characteristics	DC Electrical Characteristics table – Updated the initialization and standby supply current values.
			DC Electrical Characteristics table – Updated the sysCONFIG Master Parallel mode RCLK low and RCLK high time specifications.
			DC Electrical Characteristics table – Updated VCCIO values for LVPECL33 I/Os.
		Pin Information	Pin Information Summary table - Changed number of single ended user I/Os from 906 to 904 for 1704 fcBGA.
			Removed the single-ended only output restriction on pins D3 and D28 in an SC15 and SC25 900 pin package.
		Ordering Information	Ordering Information tables - Changed number of I/Os from 906 to 904 for 1704 fcBGA.
			Added ordering part numbers for LatticeSC/SCM 40K and 115K LUT devices.
			Added lead-free ordering part numbers.
		Multiple	Changed number of available SC80 I/O from 906 to 904.
			Changed number of available SC115 I/O from 944 to 942.
January 2007	01.4a	Architecture	Added EBR Asynchronous Reset section.
February 2007	01.4b	Architecture	Updated EBR Asynchronous Reset section.
March 2007	01.5	Architecture	Added EBR asynchronous reset clarification
			Clarified that differential drivers are not supported in banks 1, 4 and 5
		DC and Switching Characteristics	Added clarification for the description of the junction temperature speci- fication in the Absolute Maximum Ratings section.
			Updated Initialization and Standby Current table.
			Updated LatticeSC External Switching Characteristics with ispLEVER 6.1 SP1 results.