E · Cattice Semiconductor Corporation - LFSCM3GA25EP1-7FFA1020C Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	6250
Number of Logic Elements/Cells	25000
Total RAM Bits	1966080
Number of I/O	476
Number of Gates	-
Voltage - Supply	0.95V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1020-BBGA, FCBGA
Supplier Device Package	1020-OFcBGA Rev 2 (33x33)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/lfscm3ga25ep1-7ffa1020c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LatticeSC/M Family Data Sheet Architecture

December 2008

Data Sheet DS1004

Architecture Overview

The LatticeSC architecture contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Interspersed between the rows of logic blocks are rows of sysMEM Embedded Block RAM (EBR). The upper left and upper right corners of the devices contain SERDES blocks and their associated PCS blocks, as show in Figure 2-1.

Top left and top right corner of the device contain blocks of SERDES. Each block of SERDES contains four channels (quad). Each channel contains a single serializer and de-serializer, synchronization and word alignment logic. The SERDES quad connects with the Physical Coding Sub-layer (PCS) blocks that contain logic to simultaneously perform alignment, coding, de-coding and other functions. The SERDES quad block has separate supply, ground and reference voltage pins.

The PICs contain logic to facilitate the conditioning of signals to and from the I/O before they leave or enter the FPGA fabric. The block provides DDR and shift register capabilities that act as a gearbox between high speed I/O and the FPGA fabric. The blocks also contain programmable Adaptive Input Logic that adjusts the delay applied to signals as they enter the device to optimize setup and hold times and ensure robust performance.

sysMEM EBRs are large dedicated fast memory blocks. They can be configured as RAM, ROM or FIFO. These blocks have dedicated logic to simplify the implementation of FIFOs.

The PFU, PIC and EBR blocks are arranged in a two-dimensional grid with rows and columns as shown in Figure 2-1. These blocks are connected with many vertical and horizontal routing channel resources. The place and route software tool automatically allocates these routing resources.

The corners contain the sysCLOCK Analog Phase Locked Loop (PLL) and Delay Locked Loop (DLL) Blocks. The PLLs have multiply, divide and phase shifting capability; they are used to manage the phase relationship of the clocks. The LatticeSC architecture provides eight analog PLLs per device and 12 DLLs. The DLLs provide a simple delay capability and can also be used to calibrate other delays within the device.

Every device in the family has a JTAG Port with internal Logic Analyzer (ispTRACY) capability. The sysCONFIG[™] port which allows for serial or parallel device configuration. The system bus simplifies the connections of the external microprocessor to the device for tasks such as SERDES and PCS configuration or interface to the general FPGA logic. The LatticeSC devices use 1.2V as their core voltage operation with 1.0V operation also possible.

^{© 2008} Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Modes of Operation

Each Slice is capable of four modes of operation: Logic, Ripple, RAM and ROM. Table 2-2 lists the modes and the capability of the Slice blocks.

Table 2-2. Slice Modes

	Logic	Ripple	RAM	ROM
PFU Slice	LUT 4x2 or LUT 5x1	2-bit Arithmetic Unit	SPR 16x2 DPR 16x2	ROM 16x2

Logic Mode

In this mode, the LUTs in each Slice are configured as combinatorial lookup tables. A LUT4 can have 16 possible input combinations. Any logic function with four inputs can be generated by programming this lookup table. Since there are two LUT4s per Slice, a LUT5 can be constructed within one Slice. Larger lookup tables such as LUT6, LUT7 and LUT8 can be constructed by concatenating other Slices in the PFU.

Ripple Mode

Ripple mode allows the efficient implementation of small arithmetic functions. In ripple mode, the following functions can be implemented by each Slice:

- Addition 2-bit
- Subtraction 2-bit
- Up counter 2-bit
- Down counter 2-bit
- Comparator functions of A and B inputs
 - A greater-than-or-equal-to B
 - A not-equal-to B
 - A less-than-or-equal-to B

Ripple Mode includes an optional configuration that performs arithmetic using fast carry chain methods. In this configuration (also referred to as CCU2 mode) two additional signals, Carry Generate and Carry Propagate, are generated on a per slice basis to allow fast arithmetic functions to be constructed by concatenating Slices.

RAM Mode

In this mode, distributed RAM can be constructed using each LUT block as a 16x1-bit memory. Through the combination of LUTs and Slices, a variety of different memories can be constructed.

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the software will construct these using distributed memory primitives that represent the capabilities of the Slice. Table 2-3 shows the number of Slices required to implement different distributed RAM primitives. Dual port memories involve the pairing of two Slices, one Slice functions as the read-write port. The other companion Slice supports the readonly port. For more information on RAM mode, please see details of additional technical documentation at the end of this data sheet.

Table 2-3. Number of Slices Required For Implementing Distributed RAM

	SPR16x2	DPR16x2		
Number of Slices	1	2		
Nets ODD Official Dest DAM DDD Dest Dam				

Note: SPR = Single Port RAM, DPR = Dual Port RAM

ROM Mode

The ROM mode uses the same principal as the RAM modes, but without the Write port. Pre-loading is accomplished through the programming interface during configuration.

EBR Asynchronous Reset

EBR asynchronous reset or GSR (if used) can only be applied if all clock enables are low for a clock cycle before the reset is applied and released a clock cycle after the low-to-high transition of the reset, as shown in Figure 2-16.

Figure 2-16. EBR Asynchronous Reset (Including GSR) Timing Diagram

If all clock enables remain enabled, the EBR asynchronous reset or GSR may only be applied and released after the EBR read and write clock inputs are in a steady state condition for a minimum of 1/f_{MAX} (EBR clock). The reset release must adhere to the EBR synchronous reset setup time before the next active read or write clock edge.

If an EBR is pre-loaded during configuration, the GSR input must be disabled or the release of the GSR during device Wake Up must occur before the release of the device I/Os becoming active.

These instructions apply to all EBR RAM, ROM, FIFO and shift register implementations. For the EBR FIFO mode, the GSR signal is always enabled and the WE and RE signals act like the clock enable signals in Figure 2-16. The reset timing rules apply to the RPReset input vs. the RE input and the RST input vs. the WE and RE inputs. Both RST and RPReset are always asynchronous EBR inputs. For the EBR shift register mode, the GSR signal is always enabled and the local RESET pin is always asynchronous.

Note that there are no reset restrictions if the EBR synchronous reset is used and the EBR GSR input is disabled. For more information about on-chip memory, see TN1094, <u>On-Chip Memory Usage Guide for LatticeSC Devices</u>.

Programmable I/O Cells (PIC)

Each PIC contains four PIOs connected to their respective PURESPEED I/O Buffer which are then connected to the PADs as shown in Figure 2-17. The PIO Block supplies the output data (DO) and the Tri-state control signal (TO) to PURESPEED I/O buffer, and receives input (DI) from the buffer. The PIO contains advanced capabilities to allow the support of speeds up to 2Gbps. These include dedicated shift and DDR logic and adaptive input logic. The dedicated resources simplify the design of robust interfaces.

	In	put/Output Log	Tri-Sta	te/Bidi	
PIO	x1	x2	x4	x1	x2/x4
A	?	?	?	?	N/A
В	?	No I/O Logic	No I/O Logic	?	N/A
С	?	?	No I/O Logic	?	N/A
D	?	No I/O Logic	No I/O Logic	?	N/A

Table 2-6. Input/Output/Tristate Gearing Resource Rules

Note: Pin can still be used without I/O logic.

Control Logic Block

The control logic block allows the modification of control signals selected by the routing before they are used in the PIO. It can optionally invert all signals passing through it except the Global Set/Reset. Global Set/Reset can be enabled or disabled. It can route either the edge clock or the clock to the high-speed clock nets. The clock provided to the PIO by routing is used as the slow-speed clocks. In addition this block contains delays that can be inserted in the clock nets to enable Lattice's unique cycle boosting capability.

Update Block

The update block is used to generate the POS update and NEG update signals used by the DDR/Shift register blocks within the PIO. Note the update block is only required in shift modes. This is required in order to do the high speed to low speed handoff. One of these update signals is also selected and output from the PIC as the signal UPDATE. It consists of a shift chain that operates off either the high-speed input or output clock. The values of each register in the chain are set or reset depending on the desired mode of operation. The set/reset signal is generated from either the edge reset ELSR or the local reset LSR. These signals are optionally inverted by the Control Logic Block and provided to the update block as ELSRUP and LSRUP. The Lattice design tools automatically configure and connect the update block when one of the DDR or shift register primitives is used.

Figure 2-25. Update Block

PURESPEED I/O Buffer

Each I/O is associated with a flexible buffer referred to as PURESPEED I/O buffer. These buffers are arranged around the periphery of the device in seven groups referred to as Banks. The PURESPEED I/O buffers allow users to implement the wide variety of standards that are found in today's systems including LVCMOS, SSTL, HSTL, LVDS and LVPECL. The availability of programmable on-chip termination for both input and output use, further enhances the utility of these buffers.

this allows for easy integration with the rest of the system. These capabilities make the LatticeSC ideal for many multiple power supply and hot-swap applications. The maximum current during hot socketing is 4mA. See Hot Socketing Specifications in Chapter 3 of this data sheet.

Power-Up Requirements

To prevent high power supply and input pin currents, each VCC, VCC12, VCCAUX, VCCIO and VCCJ power supplies must have a monotonic ramp up time of 75 ms or less to reach its minimum operating voltage. Apart from VCC and VCC12, which have an additional requirement, and VCCIO and VCCAUX, which also have an additional requirement, the VCC, VCC12, VCCAUX, VCCIO and VCCJ power supplies can ramp up in any order, with no restriction on the time between them. However, the ramp time for each must be 75 ms or less. Configuration of the device will not proceed until the last power supply has reached its minimum operating voltage.

Additional Requirement for VCC and VCC12:

VCC12 must always be higher than VCC. This condition must be maintained at ALL times, including during powerup and power-down. Note that for 1.2V only operation, it is advisable to source both of these supplies from the same power supply.

Additional Requirement for VCCIO and VCCAUX:

If any VCCIOs are 1.2/1.5/1.8V, then VCCAUX MUST be applied before them. If any VCCIO is 1.2/1.5/1.8V and is powered up before VCCAUX, then when VCCAUX is powered up, it may drag VCCIO up with it as it crosses through the VCCIO value. (Note: If the VCCIO supply is capable of sinking current, as well as the more usual sourcing capability, this behavior is eliminated. However, the amount of current that the supply needs to sink is unknown and is likely to be in the hundreds of milliamps range).

Power-Down Requirements

To prevent high power supply and input pin currents, power must be removed monotonically from either VCC or VCCAUX (and must reach the power-down trip point of 0.5V for VCC, 0.95V for VCCAUX) before power is removed monotonically from VCC12, any of the VCCIOs, or VCCJ. Note that VCC12 can be removed at the same time as VCC, but it cannot be removed earlier. In many applications, VCC and VCC12 will be sourced from the same power supply and so will be removed together. For systems where disturbance of the user pins is a don't care condition, the power supplies can be removed in any order as long as they power down monotonically within 200ms of each other.

Additionally, if any banks have VCCIO=3.3V nominal (potentially banks 1, 4, 5) then VCCIO for those banks must not be lower than VCCAUX during power-down. The normal variation in ramp-up times of power supplies and voltage regulators is not a concern here.

Note: The SERDES power supplies are NOT included in these requirements and have no specific sequencing requirements. However, when using the SERDES with VDDIB or VDDOB that is greater than 1.2V (1.5V nominal for example), the SERDES should not be left in a steady state condition with the 1.5V power applied and the 1.2V power not applied. Both the 1.2V and 1.5V power should be applied to the SERDES at nominally the same time. The normal variation in the ramp-up times of power supplies and voltage regulators is not a concern here.

SERDES Power Supply Sequencing Requirements

When using the SERDES with 1.5V VDDIB or VDDOB supplies, the SERDES should not be left in a steady state condition with the 1.5V power applied and the 1.2V power not applied. Both the 1.2V and the 1.5V power should be applied to the SERDES at nominally the same time. The normal variation in ramp-up times of power supples and voltage regulators is not a concern.

Additional Requirement for SERDES Power Supply

All VCC12 pins need to be connected on all devices independent of functionality used on the device. This analog supply is used by both the RX and TX portions of the SERDES and is used to control the core SERDES logic regardless of the SERDES being used in the design. VDDIB and VDDOB are used as supplies for the terminations on the CML input and output buffers. If a particular channel is not used, these can be UNCONNECTED (floating).

Power Supply Ramp Rates

Symbol	Parameter	Condition	Min.	Тур.	Max	Units
t	Power supply ramp rates for all power supplies	Over process, voltage,	3.45			mV/μs
RAMP Fower supply famp fates for all power supplies	temperature		-	75	ms	

1. See the Power-up and Power-Down requirements section for more details on power sequencing.

2. From 0.5V to minimum operating voltage.

Hot Socketing Specifications¹

Symbol	Parameter	Condition	Min.	Тур.	Мах	Units
I _{DK}	Programmable and dedicated Input or I/O leakage current ^{2, 3, 4, 5, 6}	0 <= V _{IN} <= V _{IH} (MAX)	_	—	±1500	μΑ
I _{HDIN}	SERDES average input current when device powered down and inputs driven ⁷		_	_	4	mA

1. See Hot Socket power up/down information in Chapter 2 of this document.

2. Assumes monotonic rise/fall rates for all power supplies.

3. Sensitive to power supply sequencing as described in hot socketing section.

4. Assumes power supplies are between 0 and maximum recommended operations conditions.

5. IDK is additive to I_{PU} , I_{PD} or I_{BH} .

6. Represents DC conditions. For the first 20ns after hot insertion, current specification is 8 mA.

7. Assumes that the device is powered down with all supplies grounded, both P and N inputs driven by a CML driver with maximum allowed VDDOB of 1.575V, 8b/10b data and internal AC coupling.

DC Electrical Characteristics⁵

Over Recommended Operating Conditions

Symbol	Parameter	Condition	Min. ³	Тур.	Max.	Units
$I_{IL,}I_{IH}^{1}$	Input or I/O Low leakage	$0 \le V_{IN} \le V_{IH}$ (MAX)	—	_	10	μA
I _{PU}	I/O Active Pull-up Current	$0 \le V_{IN} \le 0.7 \ V_{CCIO}$	-30	_	-210	μΑ
I _{PD}	I/O Active Pull-down Cur- rent	$V_{IL} (MAX) \le V_{IN} \le V_{IH} (MAX)$	30	_	210	μΑ
I _{BHLS}	Bus Hold Low Sustaining Current	$V_{IN} = V_{IL}$ (MAX)	30		_	μΑ
I _{BHHS}	Bus Hold High Sustaining Current	$V_{IN} = 0.7 V_{CCIO}$	-30		_	μΑ
I _{BHLO}	Bus Hold Low Overdrive Current	$0 \le V_{IN} \le V_{IH}$ (MAX)	_		210	μΑ
I _{BHLH}	Bus Hold High Overdrive Current	$0 \le V_{IN} \le V_{IH}$ (MAX)	_		-210	μΑ
I _{CL}	PCI Low Clamp Current	-3 < V _{IN} ≤ -1	-25 + (V _{IN} + 1)/0.015	_	—	mA
I _{CH}	PCI High Clamp Current	$V_{CC} + 4 > V_{IN} \ge V_{CC} + 1$	25 + (V _{IN} - V _{CC} -1)/ 0.015	_	-	mA
V _{BHT}	Bus Hold trip Points	$0 \le V_{IN} \le V_{IH}$ (MAX)	V _{IL} (MAX)	_	V _{IH} (MIN)	V
C1	I/O Capacitance ²		_	8	_	pf
C3 ²	Dedicated Input Capacitance ²		_	6	_	pf

1. Input or I/O leakage current is measured with the pin configured as an input or as an I/O with the output driver tri-stated. It is not measured with the output driver active. Bus maintenance circuits are disabled.

2. T_A 25°C, f = 1.0MHz

3. I_{PU}, I_{PD}, I_{BHLS} and I_{BHHS} have minimum values of 15 or -15µA if V_{CCIO} is set to 1.2V nominal.

4. This table does not apply to SERDES pins.

5. For programmable I/Os.

PURESPEED I/O Recommended Operating Conditions

	V _{CCIO} (V)			V _{REF} (V)		
Standard	Min.	Тур.	Max.	Min.	Тур.	Max.
LVCMOS 33	3.135	3.3	3.465	—	_	—
LVCMOS 25	2.375	2.5	2.625	—	_	—
LVCMOS 18	1.71	1.8	1.89	—	_	—
LVCMOS 15	1.425	1.5	1.575	—	_	—
LVCMOS 12	1.14	1.2	1.26	—		—
LVTTL	3.135	3.3	3.465	—	_	—
PCI33	3.135	3.3	3.465	—	_	—
PCIX33	3.135	3.3	3.465	—	_	—
PCIX15	1.425	1.5	1.575	0.49V _{CCIO}	0.5V _{CCIO}	0.51V _{CCIO}
AGP1X33	3.135	3.3	3.465	—	_	—
AGP2X33	3.135	3.3	3.465	0.39V _{CCIO}	0.4V _{CCIO}	0.41V _{CCIO}
SSTL18_I, II ³	1.71	1.8	1.89	0.833	0.9	0.969
SSTL25_I, II ³	2.375	2.5	2.625	1.15	1.25	1.35
SSTL33_I, II ³	3.135	3.3	3.465	1.3	1.5	1.7
HSTL15_I, II ³	1.425	1.5	1.575	0.68	0.75	0.9
HSTL15_III ^{1, 3} and IV ^{1, 3}	1.425	1.5	1.575	0.68	0.9	0.9
HSTL 18_I ³ , II ³	1.71	1.8	1.89	0.816	0.9	1.08
HSTL 18_ III ^{1, 3} , IV ^{1, 3}	1.71	1.8	1.89	0.816	1.08	1.08
GTL12 ^{1, 3} , GTLPLUS15 ^{1, 3}	—	—	—	0.882	1.0	1.122
LVDS	—	—	—	—	_	—
Mini-LVDS	—	—	—	—	_	—
RSDS	—	—	—	—	_	—
LVPECL33 (outputs) ²	3.135	3.3	3.465	—	_	—
LVPECL33 (inputs) ^{2, 4}	—	≤ 2.5	—	—	_	—
BLVDS25 ^{2, 3}	2.375	2.5	2.625	—	_	—
MLVDS25 ^{2, 3}	2.375	2.5	2.625	—	_	—
SSTL18D_I ³ , II ³	1.71	1.8	1.89	—	_	—
SSTL25D_I ³ , II ³	2.375	2.5	2.625	—	_	—
SSTL33D_I ³ , II ³	3.135	3.3	3.465	—	—	—
HSTL15D_I ³ , II ³	1.425	1.5	1.575	—	_	—
HSTL18D_I ³ , II ³	1.71	1.8	1.89			

1. Input only.

2. Inputs on chip. Outputs are implemented with the addition of external resisters.

3. Input for this standard does not depend on the value of V_{CCIO}. 4. Inputs for this standard cannot be in 3.3V VCCIO banks (\leq 2.5V only).

PURESPEED I/O Single-Ended DC Electrical Characteristics

In nut/Outnut		VII VIH		V Max	V Min			
Standard	Min. (V)	Max. (V)	Min. (V)	Max. (V)	V _{OL} Wax. (V)	V _{OH} Win. (V)	' _{OL} (mA)	^י он (mA)
LVCMOS 33	-0.3	0.8	2	3.465	0.4	2.4	24, 16, 8	-24, -16, -8
					0.2	VCCIO - 0.2	0.1	-0.1
LVTTL	-0.3	0.8	2	3.465	0.4	2.4	24, 16, 8	-24, -16, -8
					0.2	VCCIO - 0.2	0.1	-0.1
LVCMOS 25	-0.3	0.7	1.7	2.65	0.4	VCCIO - 0.4	16, 12, 8, 4	-16, -12, -8, -4
					0.2	VCCIO - 0.2	0.1	-0.1
LVCMOS 18	-0.3	0.35VCCIO	0.65VCCIO	2.65	0.4	VCCIO - 0.4	16, 12, 8, 4	-16, -12, -8, -4
					0.2	VCCIO - 0.2	0.1	-0.1
LVCMOS 15	-0.3	0.35VCCIO	0.65VCCIO	2.65	0.4	VCCIO - 0.4	16, 12, 8, 4	-16, -12, -8, -4
					0.2	VCCIO - 0.2	0.1	-0.1
LVCMOS 12	-0.3	0.35VCCIO	0.65VCCIO	2.65	0.3	VCCIO - 0.3	12, 8, 4, 2	-12, -8, -4, -2
					0.2	VCCIO - 0.2	0.1	-0.1
PCIX15	-0.3	0.3VCCIO	0.5VCCIO	1.5	0.1VCCIO	0.9VCCIO	1.5	-0.5
PCI33	-0.3	0.3VCCIO	0.5VCCIO	3.465	0.1VCCIO	0.9VCCIO	1.5	-0.5
PCIX33	-0.3	0.35VCCIO	0.5VCCIO	3.465	0.1VCCIO	0.9VCCIO	1.5	-0.5
AGP-1X, AGP-2X	-0.3	0.3VCCIO	0.5VCCIO	3.465	0.1VCCIO	0.9VCCIO	1.5	-0.5
SSTL3_I	-0.3	VREF - 0.2	VREF + 0.2	3.465	0.7	VCCIO - 1.1	8	-8
SSTS3_I OST ²	-0.3	VREF - 0.2	VREF + 0.2	3.465	0.9	VCCIO - 1.3	8	-8
SSTL3_II	-0.3	VREF - 0.2	VREF + 0.2	3.465	0.5	VCCIO - 0.9	16	-16
SSTL3_II OST ²	-0.3	VREF - 0.2	VREF + 0.2	3.465	0.9	VCCIO - 0.13	16	-16
SSTL2_I	-0.3	VREF - 0.18	VREF + 0.18	2.65	0.54	VCCIO - 0.62	7.6	-7.6
SSTL2_I OST ²	-0.3	VREF - 0.18	VREF + 0.18	2.65	0.73	VCCIO - 0.81	7.6	-7.6
SSTL2_II	-0.3	VREF - 0.18	VREF + 0.18	2.65	0.35	VCCIO - 0.43	15.2	-15.2
SSTL2_II OST ²	-0.3	VREF - 0.18	VREF + 0.18	2.65	0.73	VCCIO - 0.81	15.2	-15.2
SSTL18_I	-0.3	VREF - 0.125	VREF + 0.125	2.65	0.28	VCCIO - 0.28	13.4	-13.4
SSTL18_II	-0.3	VREF - 0.125	VREF + 0.125	2.65	0.28	VCCIO - 0.28	13.4	-13.4
HSTL15_I	-0.3	VREF - 0.1	VREF + 0.1	2.65	0.4	VCCIO - 0.4	8	-8
HSTL15_II	-0.3	VREF - 0.1	VREF + 0.1	2.65	0.4	VCCIO - 0.4	16	-16
HSTL15_III ¹	-0.3	VREF - 0.1	VREF + 0.1	2.65	N/A	N/A	N/A	N/A
HSTL15_IV ¹	-0.3	VREF - 0.1	VREF + 0.1	2.65	N/A	N/A	N/A	N/A
HSTL18_I	-0.3	VREF - 0.1	VREF + 0.1	2.65	0.4	VCCIO - 0.4	9.6	-9.6
HSTL18_II	-0.3	VREF - 0.1	VREF + 0.1	2.65	0.4	VCCIO - 0.4	19.2	-19.2
HSTL18_III ¹	-0.3	VREF - 0.1	VREF + 0.1	2.65	N/A	N/A	N/A	N/A
HSTL18_IV ¹	-0.3	VREF - 0.1	VREF + 0.1	2.65	N/A	N/A	N/A	N/A
GTL12 ¹ , GTLPLUS15 ¹	-0.3	VREF - 0.2	VREF + 0.2	N/A	N/A	N/A	N/A	N/A

Over Recommended Operating Conditions

1. Input only.

2. Input with on-chip series termination.

Typical Building Block Function Performance

Over Recommended Commercial Operating Conditions at VCC = 1.2V +/- 5%

Pin to Pin Performance (LVCMOS25 12 mA Drive)

-7*	Units				
6.65	ns				
5.58	ns				
Embedded Memory Functions (Single Port RAM)					
1.66	ns				
8.54	ns				
Distributed (PFU) RAM (Single Port RAM)					
1.32	ns				
6.83	ns				
	-7* 6.65 5.58 1.66 8.54 1.32 6.83				

*Typical performance per function

Register-to-Register Performance

Function	-7*	Units				
Basic Functions						
32-Bit Decoder	539	MHz				
64-Bit Decoder	517	MHz				
16:1 MUX	1003	MHz				
32:1 MUX	798	MHz				
16-Bit Adder	672	MHz				
64-Bit Adder	353	MHz				
16-Bit Counter	719	MHz				
64-Bit Counter	369	MHz				
32x8 SP RAM (PFU, Output Registered)	768	MHz				
128x8 SP RAM (PFU, Output Registered)	545	MHz				
Embedded Memory Functions						
Single Port RAM (512x36 Bits)	372	MHz				
True Dual Port RAM 1024x18 Bits (No EBR Out Reg)	326	MHz				
True dual port RAM 1024x18 Bits (EBR Reg)	372	MHz				
FIFO port (A: x36 bits, B: x9 Bits, No EBR Out Reg)	353	MHz				
FIFO port (A: x36 bits, B: x9 Bits, EBR Reg)	375	MHz				
True DP RAM Width Cascading (1024x72)	372	MHz				
DSP Functions						
9x9 1-stage Multiplier	209	MHz				
18x18 1-Stage Multiplier	155	MHz				
9x9 3-Stage Pipelined Multiplier	373	MHz				
18x18 4-Stage Pipelined Multiplier	314	MHz				
9x9 Constant Multiplier	372	MHz				

*Typical performance per function

Signal Descriptions (Cont.)

Signal Name	I/O	Description
RESETN		Reset. (Also sent to general routing). During configuration it resets the configuration state machine. After configuration this pin can perform the global set/reset (GSR) functions or can be used as a general input pin.
CFGIRQN	0	MPI Interrupt request active low signal is controlled by system bus interrupt controller and may be sourced from any bus error or MPI configuration error. It can be connected to one of MPC860 IRQ pins.
TSALLN	Ι	Tristates all I/O.
Configuration Pads (User I/O if not used.	Used durin	ng sysCONFIG.)
		High During Configuration is output high until configuration is com- plete. It is used as a control output, indicating that configuration is not complete.
HDC/SI	Ο	For SPI modes, this pin is used to download the read command and initial read address into the Flash memory device on the falling edge of SCK. This pin will be connected to SI of the memory. If the SPI mode is used, the 8-bit instruction code 0x03 will be downloaded followed by a 24-bit starting address of 0x000000 or a non-zero stat address for partial reconfiguration. If the SPIX mode has been selected, the 8-bit instruction captured on D[7:0] at power-up will be shifted in and followed by a 32-bit starting address of 0x000000.
		Low During Configuration is output low until configuration is complete. It is used as a control output, indicating that configuration is not com- plete.
LDCN/SCS	0	For SPI modes, this is an active low chip select for Flash memories. It will go active after INITN goes high but before SCK begins. During power up LDCN will be low. Once INITN goes high, LDCN will go high for 100ns-200ns after which time it will go back low and configuration can begin. During the 100ns-200ns period, the read instruction will be latched for SPIX mode.
DOUT	ο	Serial data output that can drive the D0/DIN of daisy-chained slave devices. The data-stream from this output will propagate preamble bits of the bitstream to daisy-chained devices. Data out on DOUT changes on the rising edge of CCLK.
QOUT/CEON	0	During daisy-chaining configuration, QOUT is the serial data output that can drive the D0/DIN of daisy-chained slave devices that do not propagate preamble bits. Data out on QOUT changes on the rising edge of CCLK.
		During parallel-chaining configuration, active low CEON enables the cascaded slave device to receive bitstream data.
RDN	I	Used in the asynchronous peripheral configuration mode. A low on RDN changes D[7:3] into status outputs. WRN and RDN should not be used simultaneously. If they are, the write strobe overrides.
WRN	I	When the FPGA is selected, a low on the write strobe, WRN, loads the data on D[7:0] inputs into an internal data buffer.
CS0N CS1	I	Used in the asynchronous peripheral, slave parallel and MPI modes. The FPGA is selected when CS0N is low and CS1 is high. During con- figuration, a pull-up is enabled on both except with MPI DMA access control.
A[21:0]	I/O	In master parallel mode, A[21:0] is an output and will address the con- figuration EPROMs up to 4 MB space. For MPI configuration mode, A[17:0] will be the MPI address MPI_ADDR[31:14], A[19:18] will be the transfer size and A[21:20] will be the burst mode and burst in pro- cess.

LFSC/M15, LFSC/M25 Logic Signal Connections: 900 fpBGA^{1, 2} (Cont.)

	LFSC/M15			LFSC/M25			
Ball Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function	
AK14	PB25A	5		PB35A	5		
AK15	PB25B	5		PB35B	5		
AK16	PB27A	4		PB37A	4		
AK17	PB27B	4		PB37B	4		
AJ16	PB28A	4		PB38A	4		
AJ17	PB28B	4		PB38B	4		
AE16	PB28C	4		PB38C	4		
AH16	PB29A	4		PB39A	4		
AG16	PB29B	4		PB39B	4		
AK18	PB31A	4		PB41A	4		
AK19	PB31B	4		PB41B	4		
AH17	PB32A	4		PB42A	4		
AH18	PB32B	4		PB42B	4		
AG17	PB32D	4		PB42D	4		
AJ18	PB33A	4		PB43A	4		
AJ19	PB33B	4		PB43B	4		
AK20	PB35A	4	PCLKT4_2	PB46A	4	PCLKT4_2	
AK21	PB35B	4	PCLKC4_2	PB46B	4	PCLKC4_2	
AF18	PB36A	4	PCLKT4_1	PB47A	4	PCLKT4_1	
AG18	PB36B	4	PCLKC4_1	PB47B	4	PCLKC4_1	
AJ20	PB37A	4	PCLKT4_0	PB49A	4	PCLKT4_0	
AJ21	PB37B	4	PCLKC4_0	PB49B	4	PCLKC4_0	
AG19	PB37C	4	VREF2_4	PB49C	4	VREF2_4	
AK22	PB39A	4	PCLKT4_5	PB51A	4	PCLKT4_5	
AK23	PB39B	4	PCLKC4_5	PB51B	4	PCLKC4_5	
AH19	PB39C	4		PB51C	4		
AK24	PB40A	4	PCLKT4_3	PB52A	4	PCLKT4_3	
AK25	PB40B	4	PCLKC4_3	PB52B	4	PCLKC4_3	
AE19	PB40C	4	PCLKT4_4	PB52C	4	PCLKT4_4	
AE20	PB40D	4	PCLKC4_4	PB52D	4	PCLKC4_4	
AE21	PB41A	4		PB53A	4		
AF21	PB41B	4		PB53B	4		
AG21	PB43A	4		PB55A	4		
AG22	PB43B	4		PB55B	4		
AH22	PB44A	4		PB56A	4		
AH23	PB44B	4		PB56B	4		
AH21	PB44C	4		PB56C	4		
AK28	PB45A	4		PB60A	4		
AK29	PB45B	4		PB60B	4		
AE22	PB45C	4		PB60C	4		
AJ28	PB47A	4		PB67A	4		
AH28	PB47B	4		PB67B	4		
AE24	PB47C	4	VREF1_4	PB67C	4	VREF1_4	
AE25	PB47D	4		PB67D	4		
AJ29	PB48A	4	LRC_DLLT_IN_C/LRC_DLLT_FB_D	PB68A	4	LRC_DLLT_IN_C/LRC_DLLT_FB_D	

LFSC/M15, LFSC/M25 Logic Signal Connections: 900 fpBGA^{1, 2} (Cont.)

	LFSC/M15		LFSC/M25			
Ball Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function
AG11	VCCIO5	-		VCCIO5	-	
AJ9	VCCIO5	-		VCCIO5	-	
AJ23	VCCIO4	-		VCCIO4	-	
AG20	VCCIO4	-		VCCIO4	-	
AJ26	VCCIO4	-		VCCIO4	-	
AG23	VCCIO4	-		VCCIO4	-	
AC29	VCCIO3	-		VCCIO3	-	
AA26	VCCIO3	-		VCCIO3	-	
Y28	VCCIO3	-		VCCIO3	-	
AA29	VCCIO3	-		VCCIO3	-	
G30	VCCIO2	-		VCCIO2	-	
J29	VCCIO2	-		VCCIO2	-	
K27	VCCIO2	-		VCCIO2	-	
N25	VCCIO2	-		VCCIO2	-	
F20	VCCIO1	-		VCCIO1	-	
C19	VCCIO1	-		VCCIO1	-	
C12	VCCIO1	-		VCCIO1	-	
F11	VCCIO1	-		VCCIO1	-	
H1	GND	-		GND	-	
L4	GND	-		GND	-	
M3	GND	-		GND	-	
N5	GND	-		GND	-	
K2	GND	-		GND	-	
M2	GND	-		GND	-	
P6	GND	-		GND	-	
G4	GND	-		GND	-	
H3	GND	-		GND	-	
AC2	GND	-		GND	-	
AA3	GND	-		GND	-	
AE1	GND	-		GND	-	
Y4	GND	-		GND	-	
AB4	GND	-		GND	-	
AA5	GND	-		GND	-	
AE6	GND	-		GND	-	
AE8	GND	-		GND	-	
AH5	GND	-		GND	-	
AG9	GND	-		GND	-	
AG6	GND	-		GND	-	
AF11	GND	-		GND	-	
AG12	GND	-		GND	-	
AJ10	GND	-		GND	-	
AK26	GND	-		GND	-	
AJ22	GND	-		GND	-	
AF20	GND	-		GND	-	
AJ25	GND	-		GND	-	

LFSC/M25, LFSC/M40 Logic Signal Connections: 1020 fcBGA^{1, 2} (Cont.)

D. II	LFSC/M25			LFSC/M40			
Ball Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function	
H1	PR25B	2		PR23B	2		
H2	PR25A	2		PR23A	2		
N8	PR22D	2		PR25D	2		
M8	PR22C	2		PR25C	2		
H4	PR22B	2		PR25B	2		
J4	PR22A	2		PR25A	2		
G1	PR21B	2		PR22B	2		
G2	PR21A	2		PR22A	2		
L7	PR20D	2		PR21D	2		
L8	PR20C	2		PR21C	2		
F2	PR20B	2		PR21B	2		
F1	PR20A	2		PR21A	2		
K5	PR18D	2	VREF2_2	PR18D	2	VREF2_2	
J5	PR18C	2		PR18C	2		
E2	PR18B	2	URC_DLLC_IN_D/URC_DLLC_FB_C	PR18B	2	URC_DLLC_IN_D/URC_DLLC_FB_C	
E1	PR18A	2	URC_DLLT_IN_D/URC_DLLT_FB_C	PR18A	2	URC_DLLT_IN_D/URC_DLLT_FB_C	
N10	PR17D	2	URC_PLLC_IN_B/URC_PLLC_FB_A	PR17D	2	URC_PLLC_IN_B/URC_PLLC_FB_A	
M10	PR17C	2	URC_PLLT_IN_B/URC_PLLT_FB_A	PR17C	2	URC_PLLT_IN_B/URC_PLLT_FB_A	
D2	PR17B	2	URC_DLLC_IN_C/URC_DLLC_FB_D	PR17B	2	URC_DLLC_IN_C/URC_DLLC_FB_D	
D1	PR17A	2	URC_DLLT_IN_C/URC_DLLT_FB_D	PR17A	2	URC_DLLT_IN_C/URC_DLLT_FB_D	
K6	PR16D	2		PR16D	2		
K7	PR16C	2		PR16C	2		
J8	PR16B	2	URC_PLLC_IN_A/URC_PLLC_FB_B	PR16B	2	URC_PLLC_IN_A/URC_PLLC_FB_B	
K8	PR16A	2	URC_PLLT_IN_A/URC_PLLT_FB_B	PR16A	2	URC_PLLT_IN_A/URC_PLLT_FB_B	
J10	VCCJ	-		VCCJ	-		
J9	TDO	-	TDO	TDO	-	TDO	
К9	TMS	-		TMS	-		
J12	тск	-		тск	-		
J13	TDI	-		TDI	-		
K12	PROGRAMN	1		PROGRAMN	1		
K13	MPIIRQN	1	CFGIRQN/MPI_IRQ_N	MPIIRQN	1	CFGIRQN/MPI_IRQ_N	
K10	CCLK	1		CCLK	1		
F5	RESP_URC	-		RESP_URC	-		
B5	VCC12	-		VCC12	-		
D5	A_REFCLKN_R	-		A_REFCLKN_R	-		
C5	A_REFCLKP_R	-		A_REFCLKP_R	-		
B2	A_VDDIB0_R	-		A_VDDIB0_R	-		
C1	A_HDINP0_R	-	PCS 3E0 CH 0 IN P	A_HDINP0_R	-	PCS 3E0 CH 0 IN P	
C2	A_HDINN0_R	-	PCS 3E0 CH 0 IN N	A_HDINN0_R	-	PCS 3E0 CH 0 IN N	
A3	A_HDOUTP0_R	-	PCS 3E0 CH 0 OUT P	A_HDOUTP0_R	-	PCS 3E0 CH 0 OUT P	
D3	A_VDDOB0_R	-		A_VDDOB0_R	-		
B3	A_HDOUTN0_R	-	PCS 3E0 CH 0 OUT N	A_HDOUTN0_R	-	PCS 3E0 CH 0 OUT N	
D4	A VDDOB1 R	-		A VDDOB1 R	-		
B4	A_HDOUTN1 R	-	PCS 3E0 CH 1 OUT N	A_HDOUTN1 R	-	PCS 3E0 CH 1 OUT N	
A4	A HDOUTP1 R	-	PCS 3E0 CH 1 OUT P	A HDOUTP1 R	-	PCS 3E0 CH 1 OUT P	
H5	A_HDINN1 R	-	PCS 3E0 CH 1 IN N	A_HDINN1 R	-	PCS 3E0 CH 1 IN N	
G5	A_HDINP1 R	-	PCS 3E0 CH 1 IN P	A_HDINP1 R	-	PCS 3E0 CH 1 IN P	
F4	A_VDDIB1_R	-		A_VDDIB1_R	-		
H6	A_VDDIB2 R	-		A_VDDIB2 R	-		
F6	A_HDINP2 R	-	PCS 3E0 CH 2 IN P	A_HDINP2 R	-	PCS 3E0 CH 2 IN P	
L		l			I		

LFSC/M25, LFSC/M40 Logic Signal Connections: 1020 fcBGA^{1, 2} (Cont.)

Ball		LFS	C/M25	LFSC/M40			
Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function	
U12	VCC12	-		VCC12	-		
U21	VCC12	-		VCC12	-		
AA16	VCC12	-		VCC12	-		
AA17	VCC12	-		VCC12	-		
M14	VCC12	-		VCC12	-		
P12	VCC12	-		VCC12	-		
W12	VCC12	-		VCC12	-		
AA14	VCC12	-		VCC12	-		
AA19	VCC12	-		VCC12	-		
W21	VCC12	-		VCC12	-		
P21	VCC12	-		VCC12	-		
M19	VCC12	-		VCC12	-		
A2	GND	-		GND	-		
A10	GND	-		GND	-		
E28	NC	-		NC	-		
E5	NC	-		NC	-		
F10	NC	-		NC	-		
E10	NC	-		NC	-		
E23	NC	-		NC	-		
F23	NC	-		NC	-		

1. Differential pair grouping within a PIC is A (True) and B (Complement) and C (True) and D (Complement).

2. The LatticeSC/M25 and LatticeSC/M40 in a 1020-pin package support a 16-bit MPI interface.

LFSC/M115 Logic Signal Connections: 1152 fcBGA^{1, 2}

		LFSC/M115	
Ball Number	Ball Function	VCCIO Bank	Dual Function
D9	B_VDDIB2_R	-	
E12	B_HDINP2_R	-	PCS 3E1 CH 2 IN P
F12	B_HDINN2_R	-	PCS 3E1 CH 2 IN N
K11	VCC12	-	
A13	B_HDOUTP2_R	-	PCS 3E1 CH 2 OUT P
D12	B_VDDOB2_R	-	
B13	B_HDOUTN2_R	-	PCS 3E1 CH 2 OUT N
D13	B_VDDOB3_R	-	
B14	B_HDOUTN3_R	-	PCS 3E1 CH 3 OUT N
L11	VCC12	-	
A14	B_HDOUTP3_R	-	PCS 3E1 CH 3 OUT P
F13	B_HDINN3_R	-	PCS 3E1 CH 3 IN N
E13	B_HDINP3_R	-	PCS 3E1 CH 3 IN P
G13	VCC12	-	
E9	B_VDDIB3_R	-	
L13	VCC12	-	
J11	B_REFCLKN_R	-	
H11	B_REFCLKP_R	-	
M15	PT93D	1	HDC/SI
M16	PT93C	1	LDCN/SCS
F14	PT93B	1	D8/MPI_DATA8
G14	PT93A	1	CS1/MPI_CS1
L15	PT90D	1	D9/MPI_DATA9
L14	PT90C	1	D10/MPI_DATA10
D14	PT90B	1	CS0N/MPI_CS0N
E14	PT90A	1	RDN/MPI_STRB_N
L16	PT89D	1	WRN/MPI_WR_N
K16	PT89C	1	D7/MPI_DATA7
G15	PT89B	1	D6/MPI_DATA6
F15	PT89A	1	D5/MPI_DATA5
K14	PT87D	1	D4/MPI_DATA4
K13	PT87C	1	D3/MPI_DATA3
B15	PT87B	1	D2/MPI_DATA2
A15	PT87A	1	D1/MPI_DATA1
J14	PT86D	1	D16/PCLKC1_3/MPI_DATA16
H14	PT86C	1	D17/PCLKT1_3/MPI_DATA17
A16	PT86B	1	D0/MPI_DATA0
B16	PT86A	1	QOUT/CEON
J13	PT83D	1	VREF2_1
H13	PT83C	1	D18/MPI_DATA18
D15	PT83B	1	DOUT
E15	PT83A	1	MCA_DONE_IN
J16	PT81D	1	D19/PCLKC1_2/MPI_DATA19

LFSC/M115 Logic Signal Connections: 1152 fcBGA^{1, 2}

	LFSC/M115						
Ball Number	Ball Function	VCCIO Bank	Dual Function				
K26	GND	-					
K28	GND	-					
K6	GND	-					
K9	GND	-					
L12	GND	-					
L32	GND	-					
L4	GND	-					
M10	GND	-					
M17	GND	-					
M24	GND	-					
N29	GND	-					
N7	GND	-					
P15	GND	-					
P20	GND	-					
P3	GND	-					
P31	GND	-					
R10	GND	-					
R14	GND	-					
R16	GND	-					
R19	GND	-					
R21	GND	-					
R26	GND	-					
T15	GND	-					
T17	GND	-					
T18	GND	-					
T20	GND	-					
T28	GND	-					
Т6	GND	-					
U16	GND	-					
U19	GND	-					
U23	GND	-					
U32	GND	-					
U4	GND	-					
V12	GND	-					
V16	GND	-					
V19	GND	-					
V3	GND	-					
V31	GND	-					
W15	GND	-					
W17	GND	-					
W18	GND	-					
W20	GND	-					
W29	GND	-					

LFSC/M115 Logic Signal Connections: 1152 fcBGA^{1, 2}

	LFSC/M115						
Ball Number	Ball Function	VCCIO Bank	Dual Function				
Y18	VCC	-					
Y20	VCC	-					
AB15	VCC12	-					
AB20	VCC12	-					
N15	VCC12	-					
N20	VCC12	-					
R13	VCC12	-					
R22	VCC12	-					
Y13	VCC12	-					
Y22	VCC12	-					
AA12	VCCAUX	-					
AA23	VCCAUX	-					
AB12	VCCAUX	-					
AB16	VCCAUX	-					
AB17	VCCAUX	-					
AB18	VCCAUX	-					
AB19	VCCAUX	-					
AB23	VCCAUX	-					
AC12	VCCAUX	-					
AC13	VCCAUX	-					
Y19	GND	-					
AC14	VCCAUX	-					
AC17	VCCAUX	-					
AC21	VCCAUX	-					
AC22	VCCAUX	-					
AC23	VCCAUX	-					
M13	VCCAUX	-					
M14	VCCAUX	-					
M18	VCCAUX	-					
M21	VCCAUX	-					
M22	VCCAUX	-					
N12	VCCAUX	-					
N16	VCCAUX	-					
N17	VCCAUX	-					
N18	VCCAUX	-					
N19	VCCAUX	-					
N23	VCCAUX	-					
P12	VCCAUX	-					
P23	VCCAUX	-					
T13	VCCAUX	-					
T22	VCCAUX	-					
U12	VCCAUX	-					
U13	VCCAUX	-					

LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA^{1, 2} (Cont.)

	LFSC/M80			LFSC/M115			
Ball Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function	
AP8	PB117D	4		PB131D	4		
AY3	PB119A	4		PB133A	4		
AW3	PB119B	4		PB133B	4		
AR6	PB119C	4		PB133C	4		
AR5	PB119D	4		PB133D	4		
AU5	PB120A	4		PB134A	4		
AV5	PB120B	4		PB134B	4		
AL12	PB120C	4		PB134C	4		
AL11	PB120D	4		PB134D	4		
AV3	PB121A	4		PB135A	4		
AV4	PB121B	4		PB135B	4		
AN9	PB121C	4		PB135C	4		
AN8	PB121D	4		PB135D	4		
AW1	PB123A	4		PB138A	4		
AY1	PB123B	4		PB138B	4		
AK14	PB123C	4	VREF1_4	PB138C	4	VREF1_4	
AK13	PB123D	4		PB138D	4		
AV2	PB124A	4	LRC_DLLT_IN_C/LRC_DLLT_FB_D	PB139A	4	LRC_DLLT_IN_C/LRC_DLLT_FB_D	
AW2	PB124B	4	LRC_DLLC_IN_C/LRC_DLLC_FB_D	PB139B	4	LRC_DLLC_IN_C/LRC_DLLC_FB_D	
AM10	PB124C	4		PB139C	4		
AM9	PB124D	4		PB139D	4		
AV1	PB125A	4	LRC_PLLT_IN_A/LRC_PLLT_FB_B	PB141A	4	LRC_PLLT_IN_A/LRC_PLLT_FB_B	
AU1	PB125B	4	LRC_PLLC_IN_A/LRC_PLLC_FB_B	PB141B	4	LRC_PLLC_IN_A/LRC_PLLC_FB_B	
AL10	PB125C	4	LRC_DLLT_IN_D/LRC_DLLT_FB_C	PB141C	4	LRC_DLLT_IN_D/LRC_DLLT_FB_C	
AL9	PB125D	4	LRC_DLLC_IN_D/LRC_DLLC_FB_C	PB141D	4	LRC_DLLC_IN_D/LRC_DLLC_FB_C	
AT3	PROBE_VCC	-		PROBE_VCC	-		
AU2	PROBE_GND	-		PROBE_GND	-		
AP7	PR95D	3	LRC_PLLC_IN_B/LRC_PLLC_FB_A	PR117D	3	LRC_PLLC_IN_B/LRC_PLLC_FB_A	
AN7	PR95C	3	LRC_PLLT_IN_B/LRC_PLLT_FB_A	PR117C	3	LRC_PLLT_IN_B/LRC_PLLT_FB_A	
AR3	PR95B	3	LRC_DLLC_IN_F/LRC_DLLC_FB_E	PR117B	3	LRC_DLLC_IN_F/LRC_DLLC_FB_E	
AR4	PR95A	3	LRC_DLLT_IN_F/LRC_DLLT_FB_E	PR117A	3	LRC_DLLT_IN_F/LRC_DLLT_FB_E	
AP6	PR94D	3		PR116D	3		
AN6	PR94C	3		PR116C	3		
AT2	PR94B	3		PR116B	3		
AR2	PR94A	3		PR116A	3		
AM6	PR93D	3	LRC_DLLC_IN_E/LRC_DLLC_FB_F	PR115D	3	LRC_DLLC_IN_E/LRC_DLLC_FB_F	
AL6	PR93C	3	LRC_DLLT_IN_E/LRC_DLLT_FB_F	PR115C	3	LRC_DLLT_IN_E/LRC_DLLT_FB_F	
AP5	PR93B	3		PR115B	3		
AN5	PR93A	3		PR115A	3		
AL8	PR91D	3		PR112D	3		
AK8	PR91C	3		PR112C	3		
AP2	PR91B	3		PR112B	3		
AN2	PR91A	3		PR112A	3		
AJ12	PR90D	3		PR109D	3		
AH12	PR90C	3		PR109C	3		

LFSC/M80, LFSC/M115 Logic Signal Connections: 1704 fcBGA^{1, 2} (Cont.)

	LFSC/M80		LFSC/M115			
Ball Number	Ball Function	VCCIO Bank	Dual Function	Ball Function	VCCIO Bank	Dual Function
AM27	GND	-		GND	-	
AM36	GND	-		GND	-	
AM7	GND	-		GND	-	
AP4	GND	-		GND	-	
AP40	GND	-		GND	-	
AR14	GND	-		GND	-	
AR20	GND	-		GND	-	
AR23	GND	-		GND	-	
AR29	GND	-		GND	-	
AR35	GND	-		GND	-	
AR8	GND	-		GND	-	
AT11	GND	-		GND	-	
AT17	GND	-		GND	-	
AT26	GND	-		GND	-	
AT32	GND	-		GND	-	
AU3	GND	-		GND	-	
AU39	GND	-		GND	-	
AW12	GND	-		GND	-	
AW18	GND	-		GND	-	
AW22	GND	-		GND	-	
AW28	GND	-		GND	-	
AW34	GND	-		GND	-	
AW6	GND	-		GND	-	
AY15	GND	-		GND	-	
AY21	GND	-		GND	-	
AY25	GND	-		GND	-	
AY31	GND	-		GND	-	
AY37	GND	-		GND	-	
AY9	GND	-		GND	-	
B1	GND	-		GND	-	
B42	GND	-		GND	-	
BA1	GND	-		GND	-	
BA42	GND	-		GND	-	
BB2	GND	-		GND	-	
BB41	GND	-		GND	-	
C10	GND	-		GND	-	
C12	GND	-		GND	-	
C13	GND	-		GND	-	
C16	GND	-		GND	-	
C18	GND	-		GND	-	
C19	GND	-		GND	-	
C22	GND	-		GND	-	
C24	GND	-		GND	-	
C27	GND	-		GND	-	
C28	GND	-		GND		

Industrial, Cont.

Part Number	Grade	Package	Balls	Temp.	LUTs (K)
LFSC3GA115E-6FC1152I1	-6	Ceramic fcBGA	1152	IND	115.2
LFSC3GA115E-5FC1152I1	-5	Ceramic fcBGA	1152	IND	115.2
LFSC3GA115E-6FF1152I	-6	Organic fcBGA	1152	IND	115.2
LFSC3GA115E-5FF1152I	-5	Organic fcBGA	1152	IND	115.2
LFSC3GA115E-6FC1704l1	-6	Ceramic fcBGA	1704	IND	115.2
LFSC3GA115E-5FC1704l1	-5	Ceramic fcBGA	1704	IND	115.2
LFSC3GA115E-6FF1704I	-6	Organic fcBGA	1704	IND	115.2
LFSC3GA115E-5FF1704I	-5	Organic fcBGA	1704	IND	115.2

1. Converted to organic flip-chip BGA package per PCN #01A-10.

Part Number	Grade	Package	Balls	Temp.	LUTs (K)
LFSCM3GA115EP1-6FC1152I ¹	-6	Ceramic fcBGA	1152	IND	115.2
LFSCM3GA115EP1-5FC1152I ¹	-5	Ceramic fcBGA	1152	IND	115.2
LFSCM3GA115EP1-6FF1152I	-6	Organic fcBGA	1152	IND	115.2
LFSCM3GA115EP1-5FF1152I	-5	Organic fcBGA	1152	IND	115.2
LFSCM3GA115EP1-6FC1704I ¹	-6	Ceramic fcBGA	1704	IND	115.2
LFSCM3GA115EP1-5FC1704I1	-5	Ceramic fcBGA	1704	IND	115.2
LFSCM3GA115EP1-6FF1704I	-6	Organic fcBGA	1704	IND	115.2
LFSCM3GA115EP1-5FF1704I	-5	Organic fcBGA	1704	IND	115.2

1. Converted to organic flip-chip BGA package per PCN #01A-10.