E·XFL

NXP USA Inc. - PK20N512VLL100 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Detailo	
Product Status	Discontinued at Digi-Key
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, SD, SPI, UART/USART, USB, USB OTG
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	66
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 25x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/pk20n512vll100

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VBAT}	Average current when CPU is not accessing RTC registers					10
	• @ 1.8V					
	• @ -40 to 25°C	_	0.71	0.81	μA	
	• @ 70°C	_	1.01	1.3	μA	
	• @ 105°C		2.82	4.3	μA	
	• @ 3.0V					
	• @ -40 to 25°C	_	0.84	0.94	μA	
	• @ 70°C		1.17	1.5	μΑ	
	• @ 105°C	_	3.16	4.6	μA	

Table 6. Power consumption operating behaviors (continued)

- 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
- 2. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock . MCG configured for FEI mode. All peripheral clocks disabled.
- 3. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock. MCG configured for FEI mode. All peripheral clocks enabled.
- 4. Max values are measured with CPU executing DSP instructions.
- 5. 25MHz core and system clock, 25MHz bus clock, and 12.5MHz FlexBus and flash clock. MCG configured for FEI mode.
- 6. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing from flash.
- 7. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash.
- 8. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.
- 9. Data reflects devices with 128 KB of RAM. For devices with 64 KB of RAM, power consumption is reduced by 2 µA.
- 10. Includes 32kHz oscillator current and RTC operation.

5.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at greater than 50 MHz frequencies.
- USB regulator disabled
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFL

- 2. $V_{DD} = 3.3 \text{ V}, T_A = 25 \text{ °C}, f_{OSC} = 12 \text{ MHz} \text{ (crystal)}, f_{SYS} = 96 \text{ MHz}, f_{BUS} = 48 \text{ MHz}$
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

5.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

5.2.8 Capacitance attributes

Table 8. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	—	7	pF
C _{IN_D}	Input capacitance: digital pins	—	7	pF

5.3 Switching specifications

5.3.1 Device clock specifications

Table 9. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes
	Normal run mod	e			
f _{SYS}	System and core clock	_	100	MHz	
f _{SYS_USB}	System and core clock when Full Speed USB in operation	20	_	MHz	
f _{BUS}	Bus clock	_	50	MHz	
FB_CLK	FlexBus clock	_	50	MHz	
f _{FLASH}	Flash clock	_	25	MHz	
f _{LPTMR}	LPTMR clock	_	25	MHz	

6.1 Core modules

6.1.1 Debug trace timing specifications

 Table 12.
 Debug trace operating behaviors

Symbol	Description	Min.	Max.	Unit
T _{cyc}	Clock period	Frequency	MHz	
T _{wl}	Low pulse width	2		ns
T _{wh}	High pulse width	2		ns
Tr	Clock and data rise time		3	ns
T _f	Clock and data fall time		3	ns
Ts	Data setup	3	_	ns
T _h	Data hold	2	_	ns

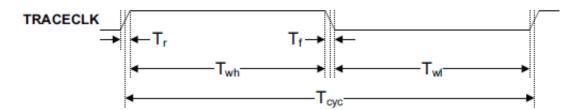


Figure 3. TRACE_CLKOUT specifications

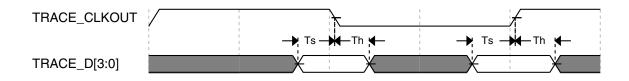


Figure 4. Trace data specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	—	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	—	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)		V _{DD}	_	V	

Table 16. Oscillator DC electrical specifications (continued)

- 1. V_{DD} =3.3 V, Temperature =25 °C
- 2. See crystal or resonator manufacturer's recommendation
- 3. C_x,C_y can be provided by using either the integrated capacitors or by using external components.
- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

6.3.2.2 Oscillator frequency specifications Table 17. Oscillator frequency spe

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low frequency mode (MCG_C2[RANGE]=00)	32		40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)		_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	—	—	50	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_	750	-	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	_	250	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

- 1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.
- 2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.

Symbol Description Min. Unit Notes Typ. Max. Swap Control execution time control code 0x01 200 μs t_{swapx01} control code 0x02 70 150 μs t_{swapx02} control code 0x04 70 150 t_{swapx04} μs control code 0x08 30 μs t_{swapx08} Program Partition for EEPROM execution time 256 KB FlexNVM ms t_{pgmpart64k} 450 tpgmpart256k Set FlexRAM Function execution time: Control Code 0xFF 70 μs tsetramff 32 KB EEPROM backup 0.8 1.2 t_{setram32k} ms • 64 KB EEPROM backup 1.3 1.9 ms t_{setram64k} 256 KB EEPROM backup 4.5 5.5 ms t_{setram256k} Byte-write to FlexRAM for EEPROM operation Byte-write to erased FlexRAM location execution 175 3 260 μs t_{eewr8bers} time Byte-write to FlexRAM execution time: 32 KB EEPROM backup 385 1800 μs teewr8b32k 64 KB EEPROM backup 475 2000 teewr8b64k μs 128 KB EEPROM backup 650 2400 μs teewr8b128k 256 KB EEPROM backup 1000 3200 μs teewr8b256k Word-write to FlexRAM for EEPROM operation Word-write to erased FlexRAM location 175 260 μs teewr16bers execution time Word-write to FlexRAM execution time: 32 KB EEPROM backup 385 1800 μs t_{eewr16b32k} 2000 64 KB EEPROM backup 475 teewr16b64k μs 128 KB EEPROM backup 650 2400 teewr16b128k μs 256 KB EEPROM backup 1000 3200 μs teewr16b256k Longword-write to FlexRAM for EEPROM operation Longword-write to erased FlexRAM location 360 540 t_{eewr32bers} μs execution time Longword-write to FlexRAM execution time: 32 KB EEPROM backup 630 2050 teewr32b32k μs 2250 64 KB EEPROM backup 810 teewr32b64k μs teewr32b128k 128 KB EEPROM backup 1200 2675 μs 256 KB EEPROM backup 1900 3500 μs t_{eewr32b256k}

Table 21. Flash command timing specifications (continued)

6.4.1.5 Write endurance to FlexRAM for EEPROM

When the FlexNVM partition code is not set to full data flash, the EEPROM data set size can be set to any of several non-zero values.

The bytes not assigned to data flash via the FlexNVM partition code are used by the flash memory module to obtain an effective endurance increase for the EEPROM data. The built-in EEPROM record management system raises the number of program/erase cycles that can be attained prior to device wear-out by cycling the EEPROM data through a larger EEPROM NVM storage space.

While different partitions of the FlexNVM are available, the intention is that a single choice for the FlexNVM partition code and EEPROM data set size is used throughout the entire lifetime of a given application. The EEPROM endurance equation and graph shown below assume that only one configuration is ever used.

 $Writes_subsystem = \frac{EEPROM - 2 \times EEESPLIT \times EEESIZE}{EEESPLIT \times EEESIZE} \times Write_efficiency \times n_{nvmcycd}$

where

- Writes_subsystem minimum number of writes to each FlexRAM location for subsystem (each subsystem can have different endurance)
- EEPROM allocated FlexNVM for each EEPROM subsystem based on DEPART; entered with the Program Partition command
- EEESPLIT FlexRAM split factor for subsystem; entered with the Program Partition command
- EEESIZE allocated FlexRAM based on DEPART; entered with the Program Partition command
- Write_efficiency
 - 0.25 for 8-bit writes to FlexRAM
 - 0.50 for 16-bit or 32-bit writes to FlexRAM
- n_{nvmcycd} data flash cycling endurance (the following graph assumes 10,000 cycles)

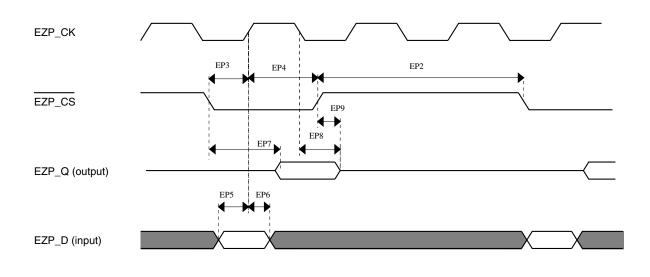


Figure 10. EzPort Timing Diagram

6.4.3 Flexbus Switching Specifications

All processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency.

The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	2.7	3.6	V	
	Frequency of operation	_	FB_CLK	MHz	
FB1	Clock period	20	—	ns	
FB2	Address, data, and control output valid	—	11.5	ns	1
FB3	Address, data, and control output hold	0.5	_	ns	1
FB4	Data and FB_TA input setup	8.5	_	ns	2
FB5	Data and FB_TA input hold	0.5	_	ns	2

Table 25. Flexbus limited voltage range switching specifications

1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W, FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS.

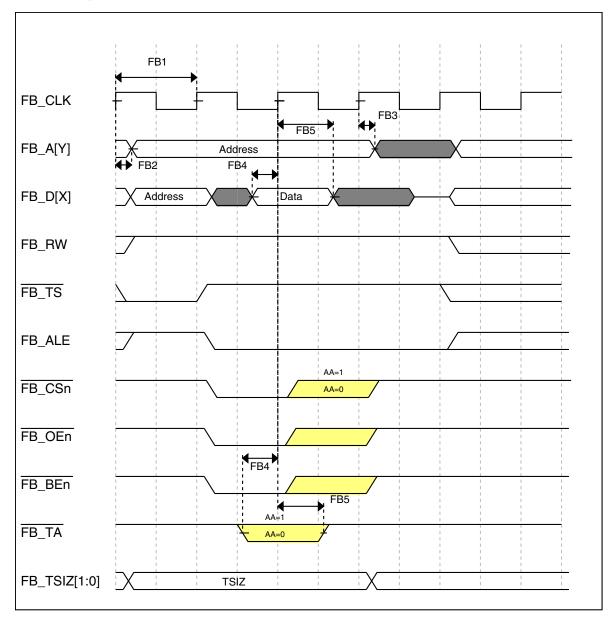


Figure 11. FlexBus read timing diagram

Peripheral operating requirements and behaviors

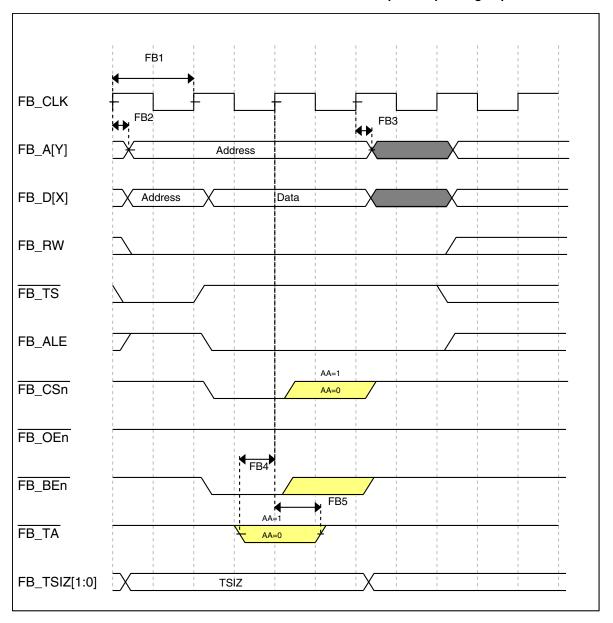
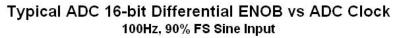
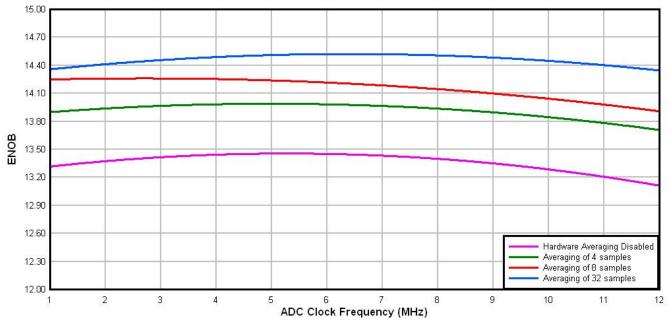


Figure 12. FlexBus write timing diagram

6.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.


6.6 Analog



Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
EIL	Input leakage error			$I_{In} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	

1. All accuracy numbers assume the ADC is calibrated with $V_{REFH} = V_{DDA}$

- Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power). For lowest power operation the ADLPC bit must be set, the HSC bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.

Peripheral operating requirements and behaviors

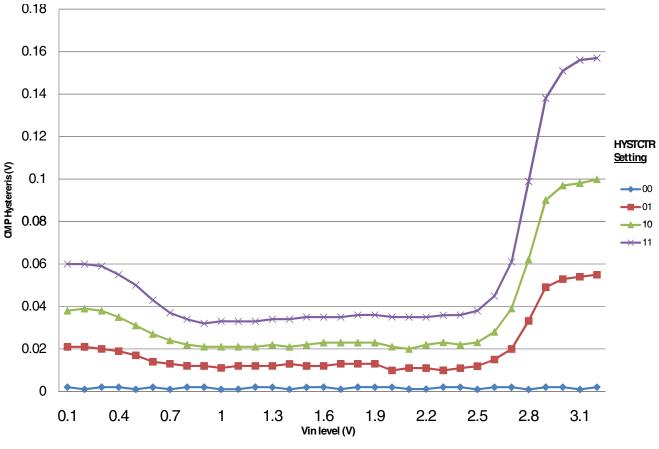


Figure 17. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=1)

6.6.3 12-bit DAC electrical characteristics

6.6.3.1 12-bit DAC operating requirements Table 32. 12-bit DAC operating requirements

Symbol	Desciption	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
V _{DACR}	Reference voltage	1.13	3.6	V	1
T _A	Temperature	Operating temperature range of the device		°C	
CL	Output load capacitance	_	100	pF	2
١L	Output load current	—	1	mA	

1. The DAC reference can be selected to be V_{DDA} or the voltage output of the VREF module (VREF_OUT)

2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC

Peripheral operating requirements and behaviors

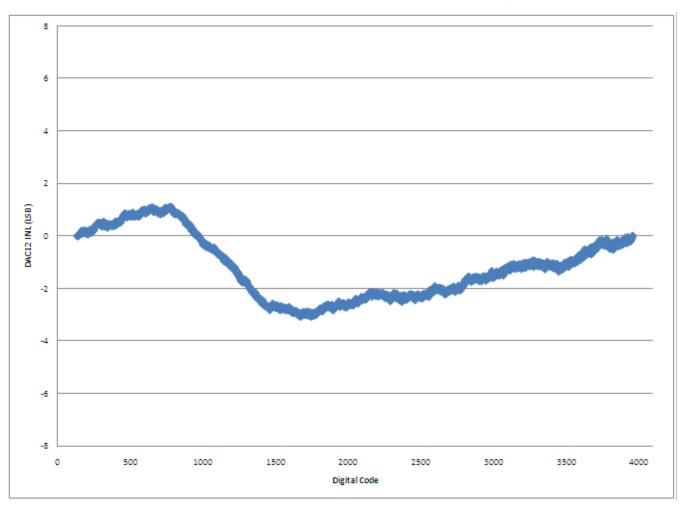


Figure 18. Typical INL error vs. digital code

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim at nominal V_{DDA} and temperature=25C	1.1915	1.195	1.1977	V	
V _{out}	Voltage reference output — factory trim	1.1584	—	1.2376	V	
V _{step}	Voltage reference trim step	_	0.5	—	mV	
V _{tdrift}	Temperature drift (Vmax -Vmin across the full temperature range)	_	_	80	mV	
I _{bg}	Bandgap only current	—	—	80	μA	1
I _{lp}	Low-power buffer current	_	—	360	uA	1
I _{hp}	High-power buffer current	_	—	1	mA	1
ΔV_{LOAD}	Load regulation				mV	1, 2
	• current = + 1.0 mA	_	2	_		
	• current = - 1.0 mA	_	5	_		
T _{stup}	Buffer startup time			100	μs	
V _{vdrift}	Voltage drift (Vmax -Vmin across the full voltage range)	—	2	—	mV	1

Table 35. VREF full-range operating behaviors

1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.

2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load

Table 36. VREF limited-range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
T _A	Temperature	0	50	°C	

Table 37. VREF limited-range operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim	1.173	1.225	V	

6.7 Timers

See General switching specifications.

6.8 Communication interfaces

6.8.1 USB electrical specifications

The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit **usb.org**.

6.8.2 USB DCD electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DP_SRC}	USB_DP source voltage (up to 250 µA)	0.5	—	0.7	V
V _{LGC}	Threshold voltage for logic high	0.8	—	2.0	V
I _{DP_SRC}	USB_DP source current	7	10	13	μA
I _{DM_SINK}	USB_DM sink current	50	100	150	μA
R _{DM_DWN}	D- pulldown resistance for data pin contact detect	14.25	—	24.8	kΩ
V _{DAT_REF}	Data detect voltage	0.25	0.33	0.4	V

6.8.3 USB VREG electrical specifications

Table 39. USB VREG electrical specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
VREGIN	Input supply voltage	2.7	_	5.5	V	
I _{DDon}	Quiescent current — Run mode, load current equal zero, input supply (VREGIN) > 3.6 V	—	120	186	μA	
I _{DDstby}	Quiescent current — Standby mode, load current equal zero	—	1.27	30	μA	
I _{DDoff}	 Quiescent current — Shutdown mode VREGIN = 5.0 V and temperature=25 °C Across operating voltage and temperature 	_	650 —	4	nA μA	
I _{LOADrun}	Maximum load current — Run mode		—	120	mA	
I _{LOADstby}	Maximum load current — Standby mode		_	1	mA	
V _{Reg33out}	Regulator output voltage — Input supply (VREGIN) > 3.6 V					
	Run mode	3	3.3	3.6	v	
	Standby mode	2.1	2.8	3.6	V	
V _{Reg33out}	Regulator output voltage — Input supply (VREGIN) < 3.6 V, pass-through mode	2.1		3.6	V	2
C _{OUT}	External output capacitor	1.76	2.2	8.16	μF	
ESR	External output capacitor equivalent series resistance	1	—	100	mΩ	

Table continues on the next page...

6.8.6 DSPI switching specifications (full voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

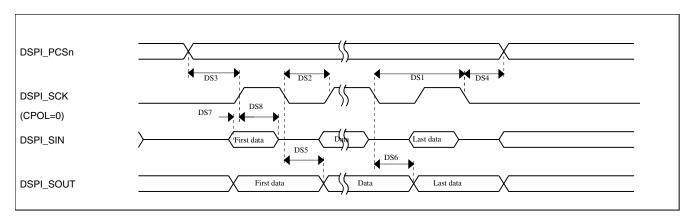

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	1
	Frequency of operation	_	12.5	MHz	
DS1	DSPI_SCK output cycle time	4 x t _{BUS}	_	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 4	_	ns	2
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) – 4	_	ns	3
DS5	DSPI_SCK to DSPI_SOUT valid	_	10	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-4.5	—	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	20.5	—	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	—	ns	

Table 42. Master mode DSPI timing (full voltage range)

1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced.

2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 22. DSPI classic SPI timing — master mode

Table 43. Slave mode DSPI timing (full voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
	Frequency of operation	—	6.25	MHz

Table continues on the next page...

Characteristic	Symbol	Standard Mode		Fast Mode		Unit
		Minimum	Maximum	Minimum	Maximum	
Fall time of SDA and SCL signals	t _f	—	300	20 +0.1C _b ⁵	300	ns
Set-up time for STOP condition	t _{SU} ; STO	4	_	0.6		μs
Bus free time between STOP and START condition	t _{BUF}	4.7	_	1.3	—	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns

Table 44. I²C timing (continued)

- The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
 acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL
 lines.
- 2. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
- 3. Input signal Slew = 10ns and Output Load = 50pf
- 4. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- 5. A Fast mode l²C bus device can be used in a Standard mode l2C bus system, but the requirement t_{SU; DAT} ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line t_{max} + t_{SU; DAT} = 1000 + 250 = 1250 ns (according to the Standard mode l²C bus specification) before the SCL line is released.
- 6. $C_b = total capacitance of the one bus line in pF.$

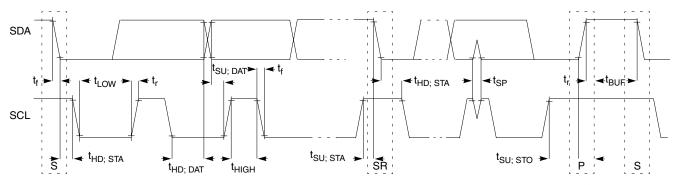
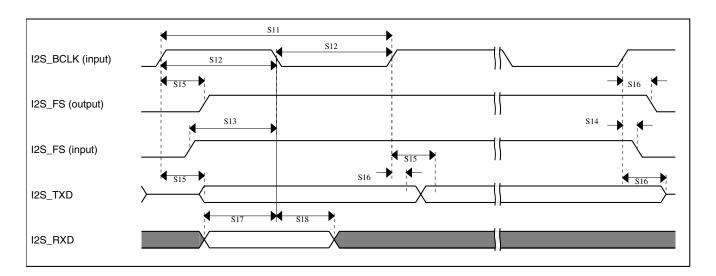


Figure 24. Timing definition for fast and standard mode devices on the I²C bus


6.8.8 UART switching specifications

See General switching specifications.

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
S11	I2S_BCLK cycle time (input)	8 x t _{SYS}	—	ns
S12	I2S_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_FS input setup before I2S_BCLK	10		ns
S14	I2S_FS input hold after I2S_BCLK	3	—	ns
S15	I2S_BCLK to I2S_TXD/I2S_FS output valid	—	20	ns
S16	I2S_BCLK to I2S_TXD/I2S_FS output invalid	0		ns
S17	I2S_RXD setup before I2S_BCLK	10	—	ns
S18	I2S_RXD hold after I2S_BCLK	2	—	ns

Figure 27. I²S timing — slave modes

Table 48. I²S master mode timing (full voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	2 x t _{SYS}		ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_BCLK cycle time	5 x t _{SYS}	_	ns
S4	I2S_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_BCLK to I2S_FS output valid	—	15	ns
S6	I2S_BCLK to I2S_FS output invalid	-4.3	_	ns
S7	I2S_BCLK to I2S_TXD valid	—	15	ns
S8	I2S_BCLK to I2S_TXD invalid	-4.6	_	ns
S9	I2S_RXD/I2S_FS input setup before I2S_BCLK	23.9	_	ns
S10	I2S_RXD/I2S_FS input hold after I2S_BCLK	0	_	ns

											Pin
100 LQFP	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPor
2	PTE1/ LLWU_P0	ADC1_SE5a	ADC1_SE5a	PTE1/ LLWU_P0	SPI1_SOUT	UART1_RX	SDHC0_D0		I2C1_SCL		
3	PTE2/ LLWU_P1	ADC1_SE6a	ADC1_SE6a	PTE2/ LLWU_P1	SPI1_SCK	UART1_CTS_b	SDHC0_DCLK				
4	PTE3	ADC1_SE7a	ADC1_SE7a	PTE3	SPI1_SIN	UART1_RTS_b	SDHC0_CMD				
5	PTE4/ LLWU_P2	DISABLED		PTE4/ LLWU_P2	SPI1_PCS0	UART3_TX	SDHC0_D3				
6	PTE5	DISABLED		PTE5	SPI1_PCS2	UART3_RX	SDHC0_D2				
7	PTE6	DISABLED		PTE6	SPI1_PCS3	UART3_CTS_b	I2S0_MCLK		I2S0_CLKIN		
8	VDD	VDD	VDD								
9	VSS	VSS	VSS								
10	USB0_DP	USB0_DP	USB0_DP								
11	USB0_DM	USB0_DM	USB0_DM								
12	VOUT33	VOUT33	VOUT33								
13	VREGIN	VREGIN	VREGIN								
14	ADC0_DP1	ADC0_DP1	ADC0_DP1								
15	ADC0_DM1	ADC0_DM1	ADC0_DM1								
16	ADC1_DP1	ADC1_DP1	ADC1_DP1								
17	ADC1_DM1	ADC1_DM1	ADC1_DM1								
18	PGA0_DP/ ADC0_DP0/ ADC1_DP3	PGA0_DP/ ADC0_DP0/ ADC1_DP3	PGA0_DP/ ADC0_DP0/ ADC1_DP3								
19	PGA0_DM/ ADC0_DM0/ ADC1_DM3	PGA0_DM/ ADC0_DM0/ ADC1_DM3	PGA0_DM/ ADC0_DM0/ ADC1_DM3								
20	PGA1_DP/ ADC1_DP0/ ADC0_DP3	PGA1_DP/ ADC1_DP0/ ADC0_DP3	PGA1_DP/ ADC1_DP0/ ADC0_DP3								
21	PGA1_DM/ ADC1_DM0/ ADC0_DM3	PGA1_DM/ ADC1_DM0/ ADC0_DM3	PGA1_DM/ ADC1_DM0/ ADC0_DM3								
22	VDDA	VDDA	VDDA								
23	VREFH	VREFH	VREFH								
24	VREFL	VREFL	VREFL								
25	VSSA	VSSA	VSSA								
26	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18								
27	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	DAC0_OUT/ CMP1_IN3/ ADC0_SE23								
28	XTAL32	XTAL32	XTAL32								
29	EXTAL32	EXTAL32	EXTAL32								L
30	VBAT	VBAT	VBAT								

K20 Sub-Family Data Sheet Data Sheet, Rev. 7, 02/2013.

UART4_TX

CAN1_TX

ADC0_SE17

ADC0_SE17

PTE24

PTE24

31

EWM_OUT_b

100 LQFP	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
32	PTE25	ADC0_SE18	ADC0_SE18	PTE25	CAN1_RX	UART4_RX			EWM_IN		
33	PTE26	DISABLED		PTE26		UART4_CTS_b			RTC_CLKOUT	USB_CLKIN	
34	PTA0	JTAG_TCLK/ SWD_CLK/ EZP_CLK	TSI0_CH1	PTA0	UARTO_CTS_b	FTM0_CH5				JTAG_TCLK/ SWD_CLK	EZP_CLK
35	PTA1	JTAG_TDI/ EZP_DI	TSI0_CH2	PTA1	UARTO_RX	FTM0_CH6				JTAG_TDI	EZP_DI
36	PTA2	JTAG_TDO/ TRACE_SWO/ EZP_DO	TSI0_CH3	PTA2	UARTO_TX	FTM0_CH7				JTAG_TDO/ TRACE_SWO	EZP_DO
37	PTA3	JTAG_TMS/ SWD_DIO	TSI0_CH4	PTA3	UART0_RTS_b	FTM0_CH0				JTAG_TMS/ SWD_DIO	
38	PTA4/ LLWU_P3	NMI_b/ EZP_CS_b	TSI0_CH5	PTA4/ LLWU_P3		FTM0_CH1				NMI_b	EZP_CS_b
39	PTA5	DISABLED		PTA5		FTM0_CH2		CMP2_OUT	I2S0_RX_BCLK	JTAG_TRST	
40	VDD	VDD	VDD								
41	VSS	VSS	VSS								
42	PTA12	CMP2_IN0	CMP2_IN0	PTA12	CAN0_TX	FTM1_CH0			I2S0_TXD	FTM1_QD_ PHA	
43	PTA13/ LLWU_P4	CMP2_IN1	CMP2_IN1	PTA13/ LLWU_P4	CAN0_RX	FTM1_CH1			I2S0_TX_FS	FTM1_QD_ PHB	
44	PTA14	DISABLED		PTA14	SPI0_PCS0	UART0_TX			I2S0_TX_BCLK		
45	PTA15	DISABLED		PTA15	SPI0_SCK	UART0_RX			I2S0_RXD		
46	PTA16	DISABLED		PTA16	SPI0_SOUT	UART0_CTS_b			I2S0_RX_FS		
47	PTA17	ADC1_SE17	ADC1_SE17	PTA17	SPI0_SIN	UART0_RTS_b			I2S0_MCLK	I2S0_CLKIN	
48	VDD	VDD	VDD								
49	VSS	VSS	VSS								
50	PTA18	EXTAL	EXTAL	PTA18		FTM0_FLT2	FTM_CLKIN0				
51	PTA19	XTAL	XTAL	PTA19		FTM1_FLT0	FTM_CLKIN1		LPT0_ALT1		
52	RESET_b	RESET_b	RESET_b								
53	PTB0/ LLWU_P5	ADC0_SE8/ ADC1_SE8/ TSI0_CH0	ADC0_SE8/ ADC1_SE8/ TSI0_CH0	PTB0/ LLWU_P5	12C0_SCL	FTM1_CH0			FTM1_QD_ Pha		
54	PTB1	ADC0_SE9/ ADC1_SE9/ TSI0_CH6	ADC0_SE9/ ADC1_SE9/ TSI0_CH6	PTB1	I2C0_SDA	FTM1_CH1			FTM1_QD_ PHB		
55	PTB2	ADC0_SE12/ TSI0_CH7	ADC0_SE12/ TSI0_CH7	PTB2	I2C0_SCL	UARTO_RTS_b			FTM0_FLT3		
56	PTB3	ADC0_SE13/ TSI0_CH8	ADC0_SE13/ TSI0_CH8	PTB3	I2C0_SDA	UARTO_CTS_b			FTM0_FLT0		
57	PTB9			PTB9	SPI1_PCS1	UART3_CTS_b		FB_AD20			
58	PTB10	ADC1_SE14	ADC1_SE14	PTB10	SPI1_PCS0	UART3_RX		FB_AD19	FTM0_FLT1		
59	PTB11	ADC1_SE15	ADC1_SE15	PTB11	SPI1_SCK	UART3_TX		FB_AD18	FTM0_FLT2		
60	VSS	VSS	VSS								
61	VDD	VDD	VDD								

nevision History

Rev. No.	Date	Substantial Changes					
3	3/2011	Added sections that were inadvertently removed in previous revision					
4	3/2011	Reworded I _{IC} footnote in "Voltage and Current Operating Requirements" table.					
		Added paragraph to "Peripheral operating requirements and behaviors" section.					
		Added "JTAG full voltage range electricals" table to the "JTAG electricals" section.					
5	6/2011	 Added 51AG full voltage range electricals table for the 51AG electricals section. Changed <i>DC injection current</i> specs in "Voltage and current operating requirements" table Changed <i>Input leakage current</i> and <i>internal pullup/pulldown resistor</i> specs in "Voltage and current operating behaviors" table Split <i>Low power stop mode current</i> specs by temperature range in "Power consumption operating behaviors" table Changed typical <i>I_{DD}</i>, <i>V_{BAT}</i> spec in "Power consumption operating behaviors" table Added LPTIME clock specs to "Device clock specifications" table Changed <i>PLL operating current</i> in "MCG specifications" table Changed <i>PLL operating current</i> in "MCG specifications" table Changed <i>Supply current</i> in "Oscillator DC electrical specifications" table Changed <i>Crystal startup time</i> in "Cscillator frequency specifications" table Changed <i>Operating voltage</i> in "EzPort switching specifications" table Changed <i>Crystal startup time</i> in "Cscillator frequency specifications" table Changed <i>Crystal startup time</i> in "Cscillator sections" table Changed <i>Crystal startup time</i> in "Cscillator frequency specifications" table Changed <i>Crystal startup time</i> in "Cscillator frequency specifications" table Changed <i>Alog Casynchronous clock source</i> specs in "16-bit ADC characteristics" table Changed <i>Alog Casynchronous clock source</i> specs in "16-bit ADC with PGA characteristics" table Changed <i>Analog comparator initialization delay</i> in "Comparator and 6-bit DAC electrical specifications" table Changed <i>Analog comparator initialization delay</i> in "Comparator and 6-bit DAC electrical specifications" table Changed <i>Analog comparator initialization delay</i> in "Comparator and 6-bit DAC electrical specifications" table Changed <i>Analog comparator initialization delay</i>					

Table 51. Revision History (continued)

Table continues on the next page...