



Welcome to E-XFL.COM

#### Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

#### Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

#### Details

| Product Status          | Active                                                                |
|-------------------------|-----------------------------------------------------------------------|
| Туре                    | Floating Point                                                        |
| Interface               | DAI, DPI, EBI/EMI, I <sup>2</sup> C, SPI, SPORT, UART/USART           |
| Clock Rate              | 300MHz                                                                |
| Non-Volatile Memory     | ROM (4Mbit)                                                           |
| On-Chip RAM             | 3Mbit                                                                 |
| Voltage - I/O           | 3.30V                                                                 |
| Voltage - Core          | 1.30V                                                                 |
| Operating Temperature   | 0°C ~ 70°C (TA)                                                       |
| Mounting Type           | Surface Mount                                                         |
| Package / Case          | 196-LFBGA, CSPBGA                                                     |
| Supplier Device Package | 196-CSPBGA (12x12)                                                    |
| Purchase URL            | https://www.e-xfl.com/product-detail/analog-devices/adsp-21478kbcz-3a |
|                         |                                                                       |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

bits within the 48-bit instruction to create more efficient and compact code. The program sequencer supports fetching these 16-bit and 32-bit instructions from both internal and external SDRAM memory. This support is not extended to the asynchronous memory interface (AMI). Source modules need to be built using the VISA option, in order to allow code generation tools to create these more efficient opcodes.

### **On-Chip Memory**

The processors contain varying amounts of internal RAM and internal ROM which is shown in Table 3 through Table 5. Each block can be configured for different combinations of code and data storage. Each memory block supports single-cycle, independent accesses by the core processor and I/O processor.

The processor's SRAM can be configured as a maximum of 160k words of 32-bit data, 320k words of 16-bit data, 106.7k words of 48-bit instructions (or 40-bit data), or combinations of different word sizes up to 5M bits. All of the memory can be accessed as 16-bit, 32-bit, 48-bit, or 64-bit words. A 16-bit

floating-point storage format is supported that effectively doubles the amount of data that may be stored on-chip. Conversion between the 32-bit floating-point and 16-bit floating-point formats is performed in a single instruction. While each memory block can store combinations of code and data, accesses are most efficient when one block stores data using the DM bus for transfers, and the other block stores instructions and data using the PM bus for transfers.

Using the DM bus and PM buses, with one bus dedicated to a memory block, assures single-cycle execution with two data transfers. In this case, the instruction must be available in the cache.

The memory maps in Table 3 through Table 5 display the internal memory address space of the processors. The 48-bit space section describes what this address range looks like to an instruction that retrieves 48-bit memory. The 32-bit section describes what this address range looks like to an instruction that retrieves 32-bit memory.

| IOP Registers 0x0000 0000-0>        | IOP Registers 0x0000 0000–0x0003 FFFF                      |                                     |                                     |  |  |  |
|-------------------------------------|------------------------------------------------------------|-------------------------------------|-------------------------------------|--|--|--|
| Long Word (64 Bits)                 | Extended Precision Normal or<br>Instruction Word (48 Bits) | Normal Word (32 Bits)               | Short Word (16 Bits)                |  |  |  |
| Block 0 ROM (Reserved)              | Block 0 ROM (Reserved)                                     | Block 0 ROM (Reserved)              | Block 0 ROM (Reserved)              |  |  |  |
| Reserved                            | Reserved                                                   | Reserved                            | Reserved                            |  |  |  |
| 0x0004 8000-0x0004 8FFF             | 0x0008 AAAA-0x0008 BFFF                                    | 0x0009 0000-0x0009 1FFF             | 0x0012 0000-0x0012 FFFF             |  |  |  |
| Block 0 SRAM                        | Block 0 SRAM                                               | Block 0 SRAM                        | Block 0 SRAM                        |  |  |  |
| 0x0004 9000–0x0004 BFFF             | 0x0008 C000-0x0008 FFFF                                    | 0x0009 2000–0x0009 7FFF             | 0x0012 4000-0x0012 FFFF             |  |  |  |
| Reserved<br>0x0004 C000–0x0004 FFFF | Reserved<br>0x0009 000–0x0009 5554                         | Reserved<br>0x0009 8000–0x0009 FFFF | Reserved<br>0x0013 0000–0x0013 FFFF |  |  |  |
| Block 1 ROM (Reserved)              | Block 1 ROM (Reserved)                                     | Block 1 ROM (Reserved)              | Block 1 ROM (Reserved)              |  |  |  |
| 0x0005 0000-0x0005 7FFF             | 0x000A 0000-0x000A AAA9                                    | 0x000A 0000-0x000AFFFF              | 0x0014 0000-0x0015 FFFF             |  |  |  |
| Reserved                            | Reserved                                                   | Reserved                            | Reserved                            |  |  |  |
| 0x0005 8000-0x0005 8FFF             | 0x000A AAAA-0x000A BFFF                                    | 0x000B 0000-0x000B 1FFF             | 0x0016 0000-0x0016 3FFF             |  |  |  |
| Block 1 SRAM                        | Block 1 SRAM                                               | Block 1 SRAM                        | Block 1 SRAM                        |  |  |  |
| 0x0005 9000-0x0005 BFFF             | 0x000A C000-0x000A FFFF                                    | 0x000B 2000-0x000B 7FFF             | 0x0016 4000-0x0016 FFFF             |  |  |  |
| Reserved                            | Reserved                                                   | Reserved                            | Reserved                            |  |  |  |
| 0x0005 C000-0x0005 FFFF             | 0x000B 0000-0x000B 5554                                    | 0x000B 8000-0x000B FFFF             | 0x0017 0000-0x0017 FFFF             |  |  |  |
| Block 2 SRAM                        | Block 2 SRAM                                               | Block 2 SRAM                        | Block 2 SRAM                        |  |  |  |
| 0x0006 0000-0x0006 0FFF             | 0x000C 0000-0x000C 1554                                    | 0x000C 0000-0x000C 1FFF             | 0x0018 0000-0x0018 3FFF             |  |  |  |
| Reserved                            | Reserved                                                   | Reserved                            | Reserved                            |  |  |  |
| 0x0006 1000- 0x0006 FFFF            | 0x000C 1555-0x000D 5554                                    | 0x000C 2000-0x000D FFFF             | 0x0018 4000-0x001B FFFF             |  |  |  |
| Block 3 SRAM                        | Block 3 SRAM                                               | Block 3 SRAM                        | Block 3 SRAM                        |  |  |  |
| 0x0007 0000-0x0007 0FFF             | 0x000E 0000-0x000E 1554                                    | 0x000E 0000-0x000E 1FFF             | 0x001C 0000-0x001C 3FFF             |  |  |  |
| Reserved                            | Reserved                                                   | Reserved                            | Reserved                            |  |  |  |
| 0x0007 1000-0x0007 FFFF             | 0x000E 1555-0x000F 5554                                    | 0x000E 2000-0x000F FFFF             | 0x001C 4000-0x001F FFFF             |  |  |  |

Table 3. ADSP-21477 Internal Memory Space (2M bits)

### Digital Peripheral Interface (DPI)

The digital peripheral interface provides connections to two serial peripheral interface ports (SPI), one universal asynchronous receiver-transmitter (UART), 12 flags, a 2-wire interface (TWI), three PWM modules (PWM3–1), and two generalpurpose timers.

### Serial Peripheral (Compatible) Interface (SPI)

The SPI is an industry-standard synchronous serial link, enabling the SPI-compatible port to communicate with other SPI compatible devices. The SPI consists of two data pins, one device select pin, and one clock pin. It is a full-duplex synchronous serial interface, supporting both master and slave modes. The SPI port can operate in a multi-master environment by interfacing with up to four other SPI-compatible devices, either acting as a master or slave device. The SPI-compatible peripheral implementation also features programmable baud rate and clock phase and polarities. The SPI-compatible port uses open drain drivers to support a multi-master configuration and to avoid data contention.

#### **UART Port**

The processors provide a full-duplex Universal Asynchronous Receiver/Transmitter (UART) port, which is fully compatible with PC-standard UARTs. The UART port provides a simplified UART interface to other peripherals or hosts, supporting full-duplex, DMA-supported, asynchronous transfers of serial data. The UART also has multiprocessor communication capability using 9-bit address detection. This allows it to be used in multidrop networks through the RS-485 data interface standard. The UART port also includes support for 5 to 8 data bits, 1 or 2 stop bits, and none, even, or odd parity. The UART port supports two modes of operation:

- PIO (programmed I/O) The processor sends or receives data by writing or reading I/O-mapped UART registers. The data is double-buffered on both transmit and receive.
- DMA (direct memory access) The DMA controller transfers both transmit and receive data. This reduces the number and frequency of interrupts required to transfer data to and from memory. The UART has two dedicated DMA channels, one for transmit and one for receive. These DMA channels have lower default priority than most DMA channels because of their relatively low service rates.

The UART port's baud rate, serial data format, error code generation and status, and interrupts are programmable:

- Support for bit rates ranging from ( $f_{PCLK}/1,048,576$ ) to ( $f_{PCLK}/16$ ) bits per second.
- Support for data formats from 7 to 12 bits per frame.
- Both transmit and receive operations can be configured to generate maskable interrupts to the processor.

In conjunction with the general-purpose timer functions, autobaud detection is supported.

#### **Pulse-Width Modulation**

The PWM module is a flexible, programmable, PWM waveform generator that can be programmed to generate the required switching patterns for various applications related to motor and engine control or audio power control. The PWM generator can generate either center-aligned or edge-aligned PWM waveforms. In addition, it can generate complementary signals on two outputs in paired mode or independent signals in nonpaired mode (applicable to a single group of four PWM waveforms).

The entire PWM module has four groups of four PWM outputs generating 16 PWM outputs in total. Each PWM group produces two pairs of PWM signals on the four PWM outputs.

The PWM generator is capable of operating in two distinct modes while generating center-aligned PWM waveforms: single update mode or double update mode. In single update mode the duty cycle values are programmable only once per PWM period. This results in PWM patterns that are symmetrical about the midpoint of the PWM period. In double update mode, a second updating of the PWM registers is implemented at the midpoint of the PWM period. In this mode, it is possible to produce asymmetrical PWM patterns that produce lower harmonic distortion in three-phase PWM inverters.

PWM signals can be mapped to the external port address lines or to the DPI pins.

#### Timers

The processors have a total of three timers: a core timer that can generate periodic software interrupts and two general-purpose timers that can generate periodic interrupts and be independently set to operate in one of three modes:

- Pulse waveform generation mode
- Pulse width count/capture mode
- External event watch dog mode

The core timer can be configured to use FLAG3 as a timer expired signal, and the general-purpose timers have one bidirectional pin and four registers that implement its mode of operation: a 6-bit configuration register, a 32-bit count register, a 32-bit period register, and a 32-bit pulse width register. A single control and status register enables or disables the generalpurpose timer.

#### 2-Wire Interface Port (TWI)

The TWI is a bidirectional 2-wire serial bus used to move 8-bit data while maintaining compliance with the  $I^2C$  bus protocol. The TWI master incorporates the following features:

- 7-bit addressing
- Simultaneous master and slave operation on multiple device systems with support for multi-master data arbitration
- · Digital filtering and timed event processing
- 100 kbps and 400 kbps data rates
- Low interrupt rate

### **PIN FUNCTION DESCRIPTIONS**

### Table 11. Pin Descriptions

| Name                 | Туре        | State During/<br>After Reset | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------|-------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ADDR <sub>23-0</sub> | I/O/T (ipu) | High-Z/driven<br>low (boot)  | <b>External Address.</b> The processor outputs addresses for external memory and peripherals on these pins. The ADDR pins can be multiplexed to support the external memory interface address, FLAGS15–8 (I/O) and PWM (O). After reset, all ADDR pins are in EMIF mode, and FLAG(0–3) pins are in FLAGS mode (default). When configured in the IDP_PDAP_CTL register, IDP channel 0 scans the ADDR <sub>23-4</sub> pins for parallel input data.                                                                                                                                                                                                                           |
| DATA <sub>15-0</sub> | I/O/T (ipu) | High-Z                       | <b>External Data.</b> The data pins can be multiplexed to support the external memory interface data (I/O) and FLAGS <sub>7-0</sub> (I/O).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| AMI_ACK              | l (ipu)     |                              | <b>Memory Acknowledge.</b> External devices can deassert AMI_ACK (low) to add wait states to an external memory access. AMI_ACK is used by I/O devices, memory controllers, or other peripherals to hold off completion of an external memory access.                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MS <sub>0-1</sub>    | O/T (ipu)   | High-Z                       | <b>Memory Select Lines 0–1.</b> These lines are asserted (low) as chip selects for the corresponding banks of external memory. The $\overline{\text{MS}}_{1.0}$ lines are decoded memory address lines that change at the same time as the other address lines. When no external memory access is occurring the $\overline{\text{MS}}_{1.0}$ lines are inactive; they are active however when a conditional memory access instruction is executed, when the condition evaluates as true.<br>The $\overline{\text{MS1}}$ pin can be used in EPORT/FLASH boot mode. For more information on processor booting, see the <i>ADSP-214xx SHARC Processor Hardware Reference</i> . |
| AMI_RD               | O/T (ipu)   | High-Z                       | <b>AMI Port Read Enable.</b> AMI_RD is asserted whenever the processor reads a word from external memory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| AMI_WR               | O/T (ipu)   | High-Z                       | <b>AMI Port Write Enable.</b> AMI_WR is asserted when the processor writes a word to external memory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FLAG0/IRQ0           | I/O (ipu)   | FLAG[0] INPUT                | FLAG0/Interrupt Request0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FLAG1/IRQ1           | I/O (ipu)   | FLAG[1] INPUT                | FLAG1/Interrupt Request1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| FLAG2/IRQ2/MS2       | I/O (ipu)   | FLAG[2] INPUT                | <b>FLAG2/Interrupt Request2/Memory Select2.</b> This pin is multiplexed with MS2 in the 196-ball BGA package only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| FLAG3/TMREXP/MS3     | I/O (ipu)   | FLAG[3] INPUT                | <b>FLAG3/Timer Expired/Memory Select3.</b> This pin is multiplexed with MS3 in the 196-ball BGA package only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

The following symbols appear in the Type column of Table 11:  $\mathbf{A}$  = asynchronous,  $\mathbf{I}$  = input,  $\mathbf{O}$  = output,  $\mathbf{S}$  = synchronous,  $\mathbf{A}/\mathbf{D}$  = active drive,  $\mathbf{O}/\mathbf{D}$  = open drain, and  $\mathbf{T}$  = three-state, **ipd** = internal pull-down resistor, **ipu** = internal pull-up resistor.

The internal pull-up (ipu) and internal pull-down (ipd) resistors are designed to hold the internal path from the pins at the expected logic levels. To pull-up or pull-down the external pads to the expected logic levels, use external resistors. Internal pull-up/pull-down resistors cannot be enabled/disabled and the value of these resistors cannot be programmed. The range of an ipu resistor can be  $26 \text{ k}\Omega$  to  $63 \text{ k}\Omega$ . The range of an ipd resistor can be  $31 \text{ k}\Omega$  to  $85 \text{ k}\Omega$ . The three-state voltage of ipu pads will not reach to full the V<sub>DD\_EXT</sub> level; at typical conditions the voltage is in the range of 2.3 V to 2.7 V.

In this table, all pins are LVTTL compliant with the exception of the thermal diode, shift register, and real-time clock (RTC) pins. Not all pins are available in the 88-lead LFCSP\_VQ and 100-lead LQFP package. For more information, see Table 2 on Page 3 and Table 62 on Page 70.

#### **Power-Up Sequencing**

The timing requirements for processor startup are given in Table 19. While no specific power-up sequencing is required between  $V_{DD\_EXT}$  and  $V_{DD\_INT}$ , there are some considerations that the system designs should take into account.

- No power supply should be powered up for an extended period of time (>200 ms) before another supply starts to ramp up.
- If the  $V_{DD\_INT}$  power supply comes up after  $V_{DD\_EXT}$ , any pin, such as RESETOUT and RESET, may actually drive momentarily until the  $V_{DD\_INT}$  rail has powered up. Systems sharing these signals on the board must determine if there are any issues that need to be addressed based on this behavior.

Note that during power-up, when the  $V_{DD\_INT}$  power supply comes up after  $V_{DD\_EXT}$ , a leakage current of the order of three-state leakage current pull-up, pull-down, may be observed on any pin, even if that is an input only (for example, the  $\overline{RESET}$  pin), until the  $V_{DD\_INT}$  rail has powered up.

| Table 19 | Power-Up | > Sequencing | Timing | Requirements | (Processor | Startup) |
|----------|----------|--------------|--------|--------------|------------|----------|
|----------|----------|--------------|--------|--------------|------------|----------|

| Parameter                        |                                                                | Min                                    | Мах         | Unit |
|----------------------------------|----------------------------------------------------------------|----------------------------------------|-------------|------|
| Timing Requirements              | 5                                                              |                                        |             |      |
| t <sub>RSTVDD</sub>              | RESET Low Before V <sub>DD_EXT</sub> or V <sub>DD_INT</sub> On | 0                                      |             | ms   |
| t <sub>IVDDEVDD</sub>            | V <sub>DD_INT</sub> On Before V <sub>DD_EXT</sub>              | -200                                   | +200        | ms   |
| t <sub>CLKVDD</sub> <sup>1</sup> | CLKIN Valid After $V_{DD_{INT}}$ and $V_{DD_{EXT}}$ Valid      | 0                                      | 200         | ms   |
| t <sub>CLKRST</sub>              | CLKIN Valid Before RESET Deasserted                            | 10 <sup>2</sup>                        |             | μs   |
| t <sub>PLLRST</sub>              | PLL Control Setup Before RESET Deasserted                      | 20 <sup>3</sup>                        |             | μs   |
| Switching Characteri             | istic                                                          |                                        |             |      |
| t <sub>CORERST</sub>             | Core Reset Deasserted After RESET Deasserted                   | $4096 \times t_{CK} + 2 \times t_{CK}$ | 4, 5<br>CLK |      |

<sup>1</sup> Valid V<sub>DD\_INT</sub> and V<sub>DD\_EXT</sub> assumes that the supplies are fully ramped to their nominal values (it does not matter which supply comes up first). Voltage ramp rates can vary from microseconds to hundreds of milliseconds depending on the design of the power supply subsystem.

<sup>2</sup> Assumes a stable CLKIN signal, after meeting worst-case startup timing of crystal oscillators. Refer to your crystal oscillator manufacturer's data sheet for startup time. Assume a 25 ms maximum oscillator startup time if using the XTAL pin and internal oscillator circuit in conjunction with an external crystal.

<sup>3</sup> Based on CLKIN cycles.
<sup>4</sup> Applies after the power-up sequence is complete. Subsequent resets require a minimum of four CLKIN cycles for RESET to be held low in order to properly initialize and propagate default states at all I/O pins.

<sup>5</sup> The 4096 cycle count depends on t<sub>SRST</sub> specification in Table 21. If setup time is not met, one additional CLKIN cycle may be added to the core reset time, resulting in 4097 cycles maximum.



Figure 6. Power-Up Sequencing

### **Clock Input**

### Table 20. Clock Input

|                                  |                                  | 2    | 200 MHz |                 | 266 MHz | 3                  | 00 MHz |      |
|----------------------------------|----------------------------------|------|---------|-----------------|---------|--------------------|--------|------|
| Parameter                        |                                  | Min  | Max     | Min             | Мах     | Min                | Мах    | Unit |
| Timing Requ                      | irements                         |      |         |                 |         |                    |        |      |
| t <sub>CK</sub>                  | CLKIN Period                     | 40   | 100     | 30 <sup>1</sup> | 100     | 26.66 <sup>1</sup> | 100    | ns   |
| t <sub>CKL</sub>                 | CLKIN Width Low                  | 20   | 45      | 15              | 45      | 13.33              | 45     | ns   |
| t <sub>CKH</sub>                 | CLKIN Width High                 | 20   | 45      | 15              | 45      | 13.33              | 45     | ns   |
| t <sub>CKRF</sub>                | CLKIN Rise/Fall (0.4 V to 2.0 V) |      | 3       |                 | 3       |                    | 3      | ns   |
| t <sub>CCLK</sub> <sup>2</sup>   | CCLK Period                      | 5    | 10      | 3.75            | 10      | 3.33               | 10     | ns   |
| f <sub>VCO</sub> <sup>3</sup>    | VCO Frequency                    | 200  | 600     | 200             | 600     | 200                | 600    | MHz  |
| t <sub>CKJ</sub> <sup>4, 5</sup> | CLKIN Jitter Tolerance           | -250 | +250    | -250            | +250    | -250               | +250   | ps   |

 $^1$  Applies only for CLKCFG1–0 = 00 and default values for PLL control bits in PMCTL.  $^2$  Any changes to PLL control bits in the PMCTL register must meet core clock timing specification t<sub>cclk</sub>.

<sup>3</sup>See Figure 5 for VCO diagram.

<sup>4</sup> Actual input jitter should be combined with ac specifications for accurate timing analysis.

<sup>5</sup> Jitter specification is maximum peak-to-peak time interval error (TIE) jitter.



Figure 7. Clock Input

### **Running Reset**

The following timing specification applies to RESETOUT/ RUNRSTIN pin when it is configured as RUNRSTIN.

#### Table 22. Running Reset

| Parameter            |                                       | Min               | Мах | Unit |
|----------------------|---------------------------------------|-------------------|-----|------|
| Timing Requirem      | nents                                 |                   |     |      |
| t <sub>wrunrst</sub> | Running RESET Pulse Width Low         | $4 \times t_{CK}$ |     | ns   |
| t <sub>srunrst</sub> | Running RESET Setup Before CLKIN High | 8                 |     | ns   |





### Interrupts

The following timing specification applies to the FLAG0, FLAG1, and FLAG2 pins when they are configured as IRQ0, IRQ1, and IRQ2 interrupts, as well as the DAI\_P20-1 and DPI\_P14-1 pins when they are configured as interrupts.

#### Table 23. Interrupts

| Parameter        |                  | Min                     | Max | Unit |
|------------------|------------------|-------------------------|-----|------|
| Timing Requirem  | ent              |                         |     |      |
| t <sub>IPW</sub> | IRQx Pulse Width | $2 \times t_{PCLK} + 2$ |     | ns   |



Figure 11. Interrupts

### **Core Timer**

The following timing specification applies to FLAG3 when it is configured as the core timer (TMREXP).

### Table 24. Core Timer

|                    |                    | 88-Lead LFCSP Package      |     | All Other Packages        |     |      |
|--------------------|--------------------|----------------------------|-----|---------------------------|-----|------|
| Parameter          |                    | Min                        | Мах | Min                       | Max | Unit |
| Switching C        | haracteristic      |                            |     |                           |     |      |
| t <sub>WCTIM</sub> | TMREXP Pulse Width | $4 \times t_{PCLK} - 1.55$ |     | $4 \times t_{PCLK} - 1.2$ |     | ns   |



Figure 12. Core Timer

### Timer PWM\_OUT Cycle Timing

The following timing specification applies to timer0 and timer1 in PWM\_OUT (pulse-width modulation) mode. Timer signals are routed to the DPI\_P14-1 pins through the DPI SRU. Therefore, the timing specifications provided below are valid at the DPI\_P14-1 pins.

#### Table 25. Timer PWM\_OUT Timing

|                   |                          | 88-Lead LFCSP Package      |                                    | All Other Packages        |                                    |      |
|-------------------|--------------------------|----------------------------|------------------------------------|---------------------------|------------------------------------|------|
| Parameter         |                          | Min                        | Max                                | Min                       | Max                                | Unit |
| Switching C       | haracteristic            |                            |                                    |                           |                                    |      |
| t <sub>PWMO</sub> | Timer Pulse Width Output | $2 \times t_{PCLK} - 1.65$ | $2\times(2^{31}-1)\times t_{PCLK}$ | $2 \times t_{PCLK} - 1.2$ | $2\times(2^{31}-1)\times t_{PCLK}$ | ns   |



Figure 13. Timer PWM\_OUT Timing

### Pin to Pin Direct Routing (DAI and DPI)

For direct pin connections only (for example, DAI\_PB01\_I to DAI\_PB02\_O).

### Table 28. DAI/DPI Pin to Pin Routing

| Parameter         |                                                       | Min | Max | Unit |
|-------------------|-------------------------------------------------------|-----|-----|------|
| Timing Requirem   | pent                                                  |     |     |      |
| t <sub>DPIO</sub> | Delay DAI/DPI Pin Input Valid to DAI/DPI Output Valid | 1.5 | 10  | ns   |



Figure 16. DAI Pin to Pin Direct Routing

### AMI Read

Use these specifications for asynchronous interfacing to memories. Note that timing for AMI\_ACK, ADDR, DATA, AMI\_RD, AMI\_WR, and strobe timing parameters only apply to asynchronous access mode.

#### Table 32. AMI Read

| Parameter                           |                                        | Min                    | Мах                    | Unit |
|-------------------------------------|----------------------------------------|------------------------|------------------------|------|
| Timing Require                      | ments                                  |                        |                        |      |
| t <sub>DAD</sub> <sup>1, 2, 3</sup> | Address Selects Delay to Data Valid    |                        | $W + t_{SDCLK} - 6.32$ | ns   |
| t <sub>DRLD</sub> <sup>1, 3</sup>   | AMI_RD Low to Data Valid               |                        | W – 3                  | ns   |
| t <sub>SDS</sub> <sup>4, 5</sup>    | Data Setup to AMI_RD High              | 2.6                    |                        | ns   |
| t <sub>HDRH</sub>                   | Data Hold from AMI_RD High             | 0.4                    |                        | ns   |
| t <sub>DAAK</sub> <sup>2, 6</sup>   | AMI_ACK Delay from Address Selects     |                        | $t_{SDCLK} - 10 + W$   | ns   |
| t <sub>DSAK</sub> <sup>4</sup>      | AMI_ACK Delay from AMI_RD Low          |                        | W – 7.0                | ns   |
| Switching Char                      | acteristics                            |                        |                        |      |
| t <sub>DRHA</sub>                   | Address Selects Hold After AMI_RD High | RHC + 0.38             |                        | ns   |
| t <sub>DARL</sub> <sup>2</sup>      | Address Selects to AMI_RD Low          | t <sub>SDCLK</sub> – 5 |                        | ns   |
| t <sub>RW</sub>                     | AMI_RD Pulse Width                     | W – 1.4                |                        | ns   |
| t <sub>RWR</sub>                    | AMI_RD High to AMI_RD Low              | $HI + t_{SDCLK} - 1.2$ |                        | ns   |

W = (number of wait states specified in AMICTLx register)  $\times$  t<sub>SDCLK</sub>.

RHC = (number of Read Hold Cycles specified in AMICTLx register)  $\times t_{SDCLK}$ 

### Where PREDIS = 0

HI = RHC (if IC = 0): Read to Read from same bank

 $HI = RHC + t_{SDCLK}$  (if IC > 0): Read to Read from same bank

HI = RHC + IC: Read to Read from different bank

 $HI = RHC + Max (IC, (4 \times t_{SDCLK}))$ : Read to Write from same or different bank

Where PREDIS = 1

 $HI = RHC + Max (IC, (4 \times t_{SDCLK}))$ : Read to Write from same or different bank

 $HI = RHC + (3 \times t_{SDCLK})$ : Read to Read from same bank

 $HI = RHC + Max (IC, (3 \times t_{SDCLK}))$ : Read to Read from different bank

IC = (number of idle cycles specified in AMICTLx register)  $\times$  t<sub>SDCLK</sub>

H = (number of hold cycles specified in AMICTLx register)  $\times$  t<sub>SDCLK</sub>.

 $^1$  Data delay/setup: System must meet  $t_{\text{DAD}}, t_{\text{DRLD}}, \text{ or } t_{\text{SDS}}$ 

 $^{2}$  The falling edge of  $\overline{AMI\_MS}x$ , is referenced.

<sup>3</sup> The maximum limit of timing requirement values for t<sub>DAD</sub> and t<sub>DRLD</sub> parameters are applicable for the case where AMI\_ACK is always high and when the ACK feature is not used.

<sup>4</sup> Note that timing for AMI\_ACK, ADDR, DATA, AMI\_RD, AMI\_WR, and strobe timing parameters only apply to asynchronous access mode.

<sup>5</sup> Data hold: User must meet t<sub>HDRH</sub> in asynchronous access mode. See Test Conditions for the calculation of hold times given capacitive and dc loads.

<sup>6</sup> AMI\_ACK delay/setup: User must meet t<sub>daak</sub>, or t<sub>dsak</sub>, for deassertion of AMI\_ACK (low).



Figure 20. AMI Read

### AMI Write

Use these specifications for asynchronous interfacing to memories. Note that timing for AMI\_ACK, ADDR, DATA, AMI\_RD, AMI\_WR, and strobe timing parameters only apply to asynchronous access mode.

#### Table 33. AMI Write

| Parameter           |                                                              | Min                           | Max                           | Unit |
|---------------------|--------------------------------------------------------------|-------------------------------|-------------------------------|------|
| Timing Requ         | irements                                                     |                               |                               |      |
| t <sub>DAAK</sub>   | AMI_ACK Delay from Address Selects <sup>1, 2</sup>           |                               | t <sub>sDCLK</sub> – 10.1 + W | ns   |
| t <sub>DSAK</sub>   | AMI_ACK Delay from AMI_WR Low <sup>1, 3</sup>                |                               | W – 7.1                       | ns   |
| Switching Ch        | paracteristics                                               |                               |                               |      |
| t <sub>DAWH</sub>   | Address Selects to AMI_WR Deasserted <sup>2</sup>            | $t_{SDCLK} - 4.4 + W$         |                               | ns   |
| t <sub>DAWL</sub>   | Address Selects to AMI_WR Low <sup>2</sup>                   | t <sub>sdclk</sub> – 4.5      |                               | ns   |
| t <sub>ww</sub>     | AMI_WR Pulse Width                                           | W – 1.3                       |                               | ns   |
| t <sub>DDWH</sub>   | Data Setup Before AMI_WR High                                | $t_{SDCLK} - 4.3 + W$         |                               | ns   |
| t <sub>DWHA</sub>   | Address Hold After AMI_WR Deasserted                         | н                             |                               | ns   |
| t <sub>DWHD</sub>   | Data Hold After AMI_WR Deasserted                            | н                             |                               | ns   |
| t <sub>DATRWH</sub> | Data Disable After AMI_WR Deasserted <sup>4</sup>            | t <sub>sDCLK</sub> – 1.37 + H | t <sub>sDCLK</sub> + 6.75 + H | ns   |
| t <sub>WWR</sub>    | AMI_WR High to AMI_WR Low⁵                                   | $t_{SDCLK} - 1.5 + H$         |                               | ns   |
| t <sub>DDWR</sub>   | Data Disable Before AMI_RD Low                               | $2 \times t_{SDCLK} - 7.1$    |                               | ns   |
| t <sub>WDE</sub>    | Data Enabled to AMI_WR Low                                   | t <sub>sdclk</sub> – 4.5      |                               | ns   |
| W = (number)        | $r$ of wait states specified in AMICTLy register) $\times t$ |                               |                               |      |

W = (number of wait states specified in AMICTLx register)  $\times$  t<sub>SDCLK</sub>

H = (number of hold cycles specified in AMICTLx register)  $\times$  t<sub>SDCLK</sub>

 $^1\,AMI\_ACK$  delay/setup: System must meet  $t_{DAAK},$  or  $t_{DSAK},$  for deassertion of AMI\\_ACK (low).

 $^2$  The falling edge of  $\overline{\text{AMI}\_\text{MSx}}$  is referenced.

<sup>3</sup>Note that timing for AMI\_ACK, ADDR, DATA, AMI\_RD, AMI\_WR, and strobe timing parameters only applies to asynchronous access mode.

<sup>4</sup>See Test Conditions for calculation of hold times given capacitive and dc loads.

 $^{5}$  For Write to Write: t<sub>SDCLK</sub> + H, for both same bank and different bank. For Write to Read:  $3 \times t_{SDCLK}$  + H, for the same bank and different banks.

### Parallel Data Acquisition Port (PDAP)

The timing requirements for the PDAP are provided in Table 40. PDAP is the parallel mode operation of Channel 0 of the IDP. For details on the operation of the PDAP, see the PDAP chapter of the *ADSP-214xx SHARC Processor Hardware Reference*. Note that the 20 bits of external PDAP data can be provided through the ADDR23–0 pins or over the DAI pins.

#### Table 40. Parallel Data Acquisition Port (PDAP)

|                                  |                                                                     | 88-Lead LFCSP Package            | All Other Packages               |      |
|----------------------------------|---------------------------------------------------------------------|----------------------------------|----------------------------------|------|
| Parameter                        |                                                                     | Min Max                          | Min Max                          | Unit |
| Timing Requireme                 | nts                                                                 |                                  |                                  |      |
| t <sub>SPHOLD</sub> <sup>1</sup> | PDAP_HOLD Setup Before PDAP_CLK Sample Edge                         | 4                                | 2.5                              | ns   |
| t <sub>HPHOLD</sub> <sup>1</sup> | PDAP_HOLD Hold After PDAP_CLK Sample Edge                           | 4                                | 2.5                              | ns   |
| t <sub>PDSD</sub> <sup>1</sup>   | PDAP_DAT Setup Before SCLK PDAP_CLK Sample Edge                     | 5                                | 3.85                             | ns   |
| t <sub>PDHD</sub> <sup>1</sup>   | PDAP_DAT Hold After SCLK PDAP_CLK Sample Edge                       | 4                                | 2.5                              | ns   |
| t <sub>PDCLKW</sub>              | Clock Width                                                         | $(t_{PCLK} \times 4) \div 2 - 3$ | $(t_{PCLK} \times 4) \div 2 - 3$ | ns   |
| t <sub>PDCLK</sub>               | Clock Period                                                        | $t_{PCLK} \times 4$              | $t_{PCLK} \times 4$              | ns   |
| Switching Charact                | reristics                                                           |                                  |                                  |      |
| t <sub>PDHLDD</sub>              | Delay of PDAP Strobe After Last PDAP_CLK<br>Capture Edge for a Word | $2 \times t_{PCLK} + 3$          | $2 \times t_{PCLK} + 3$          | ns   |
| t <sub>PDSTRB</sub>              | PDAP Strobe Pulse Width                                             | $2 \times t_{PCLK} - 1.5$        | $2 \times t_{PCLK} - 1.5$        | ns   |

<sup>1</sup> Source pins of DATA and control are ADDR23-0 or DAI pins. Source pins for SCLK and FS are: 1) DAI pins, 2) CLKIN through PCG, or 3) DAI pins through PCG.



Figure 27. PDAP Timing

#### **Pulse-Width Modulation Generators (PWM)**

The following timing specifications apply when the ADDR23-8/DPI\_14-1 pins are configured as PWM.

### Table 43. Pulse-Width Modulation (PWM) Timing

|                   |                        | 88-Lea                  | 88-Lead LFCSP Package          |                           | All Other Packages             |      |  |
|-------------------|------------------------|-------------------------|--------------------------------|---------------------------|--------------------------------|------|--|
| Paramet           | er                     | Min                     | Мах                            | Min                       | Max                            | Unit |  |
| Switching         | g Characteristics      |                         |                                |                           |                                |      |  |
| t <sub>PWMW</sub> | PWM Output Pulse Width | t <sub>PCLK</sub> – 2   | $(2^{16}-2) \times t_{PCLK}$   | t <sub>PCLK</sub> – 2     | $(2^{16} - 2) \times t_{PCLK}$ | ns   |  |
| t <sub>PWMP</sub> | PWM Output Period      | $2 \times t_{PCLK} - 2$ | $(2^{16} - 1) \times t_{PCLK}$ | $2 \times t_{PCLK} - 1.5$ | $(2^{16} - 1) \times t_{PCLK}$ | ns   |  |



Figure 30. PWM Timing



Figure 38. MLB Timing (3-Pin Interface)

| Paramete                        | Parameter                                       |    | Тур | Max | Unit   |
|---------------------------------|-------------------------------------------------|----|-----|-----|--------|
| 5-Pin Char                      | acteristics                                     |    |     |     |        |
| t <sub>MLBCLK</sub>             | MLB Clock Period                                |    |     |     |        |
|                                 | 512 FS                                          |    | 40  |     | ns     |
|                                 | 256 FS                                          |    | 81  |     | ns     |
| t <sub>MCKL</sub>               | MLBCLK Low Time                                 |    |     |     |        |
|                                 | 512 FS                                          | 15 |     |     | ns     |
|                                 | 256 FS                                          | 30 |     |     | ns     |
| t <sub>мскн</sub>               | MLBCLK High Time                                |    |     |     |        |
|                                 | 512 FS                                          | 15 |     |     | ns     |
|                                 | 256 FS                                          | 30 |     |     | ns     |
| t <sub>MCKR</sub>               | MLBCLK Rise Time ( $V_{IL}$ to $V_{IH}$ )       |    |     | 6   | ns     |
| t <sub>MCKF</sub>               | MLBCLK Fall Time ( $V_{IH}$ to $V_{IL}$ )       |    |     | 6   | ns     |
| t <sub>MPWV</sub> <sup>1</sup>  | MLBCLK Pulse Width Variation                    |    |     | 2   | ns p-p |
| t <sub>DSMCF</sub> <sup>2</sup> | DAT/SIG Input Setup Time                        | 3  |     |     | ns     |
| t <sub>DHMCF</sub>              | DAT/SIG Input Hold Time                         | 5  |     |     | ns     |
| t <sub>MCDRV</sub>              | DS/DO Output Data Delay From MLBCLK Rising Edge |    |     | 8   | ns     |
| t <sub>MCRDL</sub> <sup>3</sup> | DO/SO Low From MLBCLK High                      |    |     |     |        |
|                                 | 512 FS                                          |    |     | 10  | ns     |
|                                 | 256 FS                                          |    |     | 20  | ns     |
| C <sub>mlb</sub>                | DS/DO Pin Load                                  |    |     | 40  | pf     |

<sup>1</sup>Pulse width variation is measured at 1.25 V by triggering on one edge of MLBCLK and measuring the spread on the other edge, measured in ns peak-to-peak (p-p). <sup>2</sup>Gate delays due to OR'ing logic on the pins must be accounted for.

<sup>3</sup>When a node is not driving valid data onto the bus, the MLBSO and MLBDO output lines shall remain low. If the output lines can float at anytime, including while in reset, external pull-down resistors are required to keep the outputs from corrupting the MediaLB signal lines when not being driven.



Figure 39. MLB Timing (5-Pin Interface)



Figure 40. MLB 3-Pin and 5-Pin MLBCLK Pulse Width Variation Timing

### Universal Asynchronous Receiver-Transmitter (UART) Ports—Receive and Transmit Timing

For information on the UART port receive and transmit operations, see the ADSP-214xx SHARC Hardware Reference Manual.

### 2-Wire Interface (TWI)—Receive and Transmit Timing

For information on the TWI receive and transmit operations, see the *ADSP-214xx SHARC Hardware Reference Manual*.

#### JTAG Test Access Port and Emulation

### Table 55. JTAG Test Access Port and Emulation

|                                |                                     | 88-Lea            | d LFCSP Package     | All C             | ther Packages       |      |
|--------------------------------|-------------------------------------|-------------------|---------------------|-------------------|---------------------|------|
| Parameter                      |                                     | Min               | Мах                 | Min               | Max                 | Unit |
| Timing Requi                   | rements                             |                   |                     |                   |                     |      |
| t <sub>TCK</sub>               | TCK Period                          | 20                |                     | 20                |                     | ns   |
| t <sub>STAP</sub>              | TDI, TMS Setup Before TCK High      | 5                 |                     | 5                 |                     | ns   |
| t <sub>HTAP</sub>              | TDI, TMS Hold After TCK High        | 6                 |                     | 6                 |                     | ns   |
| t <sub>ssys</sub> <sup>1</sup> | System Inputs Setup Before TCK High | 7                 |                     | 7                 |                     | ns   |
| t <sub>HSYS</sub> <sup>1</sup> | System Inputs Hold After TCK High   | 18                |                     | 18                |                     | ns   |
| t <sub>TRSTW</sub>             | TRST Pulse Width                    | $4 \times t_{CK}$ |                     | $4 \times t_{CK}$ |                     | ns   |
| Switching Ch                   | aracteristics                       |                   |                     |                   |                     |      |
| t <sub>DTDO</sub>              | TDO Delay from TCK Low              |                   | 11.5                |                   | 10.5                | ns   |
| t <sub>DSYS</sub> <sup>2</sup> | System Outputs Delay After TCK Low  |                   | $t_{CK} \div 2 + 7$ |                   | $t_{CK} \div 2 + 7$ | ns   |

<sup>1</sup> System Inputs = DATA15-0, CLK\_CFG1-0, RESET, BOOT\_CFG1-0, DAI\_Px, DPI\_Px, FLAG3-0, MLBCLK, MLBDAT, MLBSIG, SR\_SCLK, SR\_CLR, SR\_SDI, and SR\_LAT.

<sup>2</sup> System Outputs = DAI\_Px, DPI\_Px, ADDR23-0, AMI\_RD, AMI\_WR, FLAG3-0, SDRAS, SDCAS, SDWE, SDCKE, SDA10, SDDQM, SDCLK, MLBDAT, MLBSIG, MLBDO, MLBSO, SR\_SDO, SR\_LDO, and EMU.



Figure 46. IEEE 1149.1 JTAG Test Access Port



Figure 51. Typical Output Rise/Fall Time (20% to 80%,  $V_{DD EXT} = Min$ )



Figure 52. Typical Output Delay or Hold vs. Load Capacitance (at Ambient Temperature)

### THERMAL CHARACTERISTICS

The processor is rated for performance over the temperature range specified in Operating Conditions.

Table 58 airflow measurements comply with JEDEC standards JESD51-2 and JESD51-6 and the junction-to-board measurement complies with JESD51-8. Test board design complies with JEDEC standards JESD51-7 (PBGA). The junction-to-case measurement complies with MIL- STD-883. All measurements use a 2S2P JEDEC test board.

To determine the junction temperature of the device while on the application PCB, use:

$$T_J = T_{CASE} + (\Psi_{JT} \times P_D)$$

#### where:

 $T_J$  = junction temperature (°C)

 $T_{\text{CASE}}$  = case temperature (°C) measured at the top center of the package

 $\Psi_{JT}$  = junction-to-top (of package) characterization parameter is the typical value from Table 58

 $P_D$  = power dissipation

Values of  $\theta_{JA}$  are provided for package comparison and PCB design considerations.  $\theta_{JA}$  can be used for a first order approximation of  $T_J$  by the equation:

$$T_J = T_A + (\theta_{JA} \times P_D)$$

where:

 $T_A$  = ambient temperature °C

Values of  $\theta_{JC}$  are provided for package comparison and PCB design considerations when an external heatsink is required.

Note that the thermal characteristics values provided in Table 58 are modeled values.

| Гable 57. | Thermal | Characteristics | for | 88-Lead LFCSP | _VQ |
|-----------|---------|-----------------|-----|---------------|-----|
|-----------|---------|-----------------|-----|---------------|-----|

| Parameter            | Condition       | Typical | Unit |
|----------------------|-----------------|---------|------|
| $\theta_{JA}$        | Airflow = 0 m/s | 22.6    | °C/W |
| $\theta_{JMA}$       | Airflow = 1 m/s | 18.2    | °C/W |
| $\theta_{JMA}$       | Airflow = 2 m/s | 17.3    | °C/W |
| $\theta_{\text{JC}}$ |                 | 7.9     | °C/W |
| $\Psi_{JT}$          | Airflow = 0 m/s | 0.22    | °C/W |
| $\Psi_{\text{JMT}}$  | Airflow = 1 m/s | 0.36    | °C/W |
| $\Psi_{\text{JMT}}$  | Airflow = 2 m/s | 0.44    | °C/W |

Table 58. Thermal Characteristics for 100-Lead LQFP\_EP

| Parameter           | Condition                 | Typical | Unit |
|---------------------|---------------------------|---------|------|
| $\theta_{JA}$       | Airflow = 0 m/s           | 18.1    | °C/W |
| $\theta_{JMA}$      | Airflow = 1 m/s           | 15.5    | °C/W |
| $\theta_{JMA}$      | Airflow = $2 \text{ m/s}$ | 14.6    | °C/W |
| $\theta_{JC}$       |                           | 2.4     | °C/W |
| $\Psi_{JT}$         | Airflow = $0 \text{ m/s}$ | 0.22    | °C/W |
| $\Psi_{\text{JMT}}$ | Airflow = 1 m/s           | 0.36    | °C/W |
| $\Psi_{JMT}$        | Airflow = $2 \text{ m/s}$ | 0.50    | °C/W |

Table 59. Thermal Characteristics for 196-Ball CSP\_BGA

| Parameter           | Condition                 | Typical | Unit |
|---------------------|---------------------------|---------|------|
| θ <sub>JA</sub>     | Airflow = 0 m/s           | 29.0    | °C/W |
| θ <sub>JMA</sub>    | Airflow = 1 m/s           | 26.1    | °C/W |
| θ <sub>JMA</sub>    | Airflow = $2 \text{ m/s}$ | 25.1    | °C/W |
| θ <sub>JC</sub>     |                           | 8.8     | °C/W |
| $\Psi_{JT}$         | Airflow = 0 m/s           | 0.23    | °C/W |
| $\Psi_{\text{JMT}}$ | Airflow = 1 m/s           | 0.42    | °C/W |
| $\Psi_{\text{JMT}}$ | Airflow = $2 \text{ m/s}$ | 0.52    | °C/W |

## 88-LFCSP\_VQ LEAD ASSIGNMENT

Table 61 lists the 88-Lead LFCSP\_VQ package lead names.

| Lead Name           | Lead No. |
|---------------------|----------|---------------------|----------|---------------------|----------|---------------------|----------|
| CLK_CFG1            | 1        | V <sub>DD_EXT</sub> | 23       | DAI_P10             | 45       | V <sub>DD_INT</sub> | 67       |
| BOOT_CFG0           | 2        | DPI_P08             | 24       | V <sub>DD_INT</sub> | 46       | FLAG0               | 68       |
| V <sub>DD_EXT</sub> | 3        | DPI_P07             | 25       | V <sub>DD_EXT</sub> | 47       | $V_{DD_{INT}}$      | 69       |
| V <sub>DD_INT</sub> | 4        | DPI_P09             | 26       | DAI_P20             | 48       | FLAG1               | 70       |
| BOOT_CFG1           | 5        | DPI_P10             | 27       | V <sub>DD_INT</sub> | 49       | FLAG2               | 71       |
| GND                 | 6        | DPI_P11             | 28       | DAI_P08             | 50       | FLAG3               | 72       |
| CLK_CFG0            | 7        | DPI_P12             | 29       | DAI_P04             | 51       | GND                 | 73       |
| V <sub>DD_INT</sub> | 8        | DPI_P13             | 30       | DAI_P14             | 52       | GND                 | 74       |
| CLKIN               | 9        | DAI_P03             | 31       | DAI_P18             | 53       | $V_{DD\_EXT}$       | 75       |
| XTAL                | 10       | DPI_P14             | 32       | DAI_P17             | 54       | GND                 | 76       |
| V <sub>DD_EXT</sub> | 11       | V <sub>DD_INT</sub> | 33       | DAI_P16             | 55       | $V_{DD_{INT}}$      | 77       |
| V <sub>DD_INT</sub> | 12       | DAI_P13             | 34       | DAI_P15             | 56       | TRST                | 78       |
| V <sub>DD_INT</sub> | 13       | DAI_P07             | 35       | DAI_P12             | 57       | EMU                 | 79       |
| RESETOUT/RUNRSTIN   | 14       | DAI_P19             | 36       | DAI_P11             | 58       | TDO                 | 80       |
| V <sub>DD_INT</sub> | 15       | DAI_P01             | 37       | V <sub>DD_INT</sub> | 59       | $V_{DD\_EXT}$       | 81       |
| DPI_P01             | 16       | DAI_P02             | 38       | GND                 | 60       | $V_{DD_{INT}}$      | 82       |
| DPI_P02             | 17       | V <sub>DD_INT</sub> | 39       | THD_M               | 61       | TDI                 | 83       |
| DPI_P03             | 18       | V <sub>DD_EXT</sub> | 40       | THD_P               | 62       | тск                 | 84       |
| V <sub>DD_INT</sub> | 19       | V <sub>DD_INT</sub> | 41       | V <sub>DD_THD</sub> | 63       | V <sub>DD_INT</sub> | 85       |
| DPI_P05             | 20       | DAI_P06             | 42       | V <sub>DD_INT</sub> | 64       | RESET               | 86       |
| DPI_P04             | 21       | DAI_P05             | 43       | V <sub>DD_INT</sub> | 65       | TMS                 | 87       |
| DPI_P06             | 22       | DAI_P09             | 44       | V <sub>DD_INT</sub> | 66       | V <sub>DD_INT</sub> | 88       |
|                     |          |                     |          |                     |          | GND                 | 89*      |

| Table 61. | 88-Lead LFCSP | _VQ Lead | Assignments | (Numerical by | y Lead Number) |
|-----------|---------------|----------|-------------|---------------|----------------|
|-----------|---------------|----------|-------------|---------------|----------------|

\* Lead no. 89 is the GND supply (see Figure 53 and Figure 54) for the processor; this pad must be **robustly** connected to GND in order for the processor to function.

### **100-LQFP\_EP LEAD ASSIGNMENT**

Table 62 lists the 100-Lead LQFP\_EP lead names.

| Lead Name           | Lead No. | Lead Name           | Lead No. | Lead Name                   | Lead No. | Lead Name                   | Lead No. |
|---------------------|----------|---------------------|----------|-----------------------------|----------|-----------------------------|----------|
| V <sub>DD_INT</sub> | 1        | V <sub>DD_EXT</sub> | 26       | DAI_P10                     | 51       | V <sub>DD_INT</sub>         | 76       |
| CLK_CFG1            | 2        | DPI_P08             | 27       | V <sub>DD_INT</sub>         | 52       | FLAG0                       | 77       |
| BOOT_CFG0           | 3        | DPI_P07             | 28       | V <sub>DD_EXT</sub>         | 53       | $V_{DD_{INT}}$              | 78       |
| V <sub>DD_EXT</sub> | 4        | V <sub>DD_INT</sub> | 29       | DAI_P20                     | 54       | $V_{DD_{INT}}$              | 79       |
| V <sub>DD_INT</sub> | 5        | DPI_P09             | 30       | V <sub>DD_INT</sub>         | 55       | FLAG1                       | 80       |
| BOOT_CFG1           | 6        | DPI_P10             | 31       | DAI_P08                     | 56       | FLAG2                       | 81       |
| GND                 | 7        | DPI_P11             | 32       | DAI_P04                     | 57       | FLAG3                       | 82       |
| NC                  | 8        | DPI_P12             | 33       | DAI_P14                     | 58       | MLBCLK                      | 83       |
| NC                  | 9        | DPI_P13             | 34       | DAI_P18                     | 59       | MLBDAT                      | 84       |
| CLK_CFG0            | 10       | DAI_P03             | 35       | DAI_P17                     | 60       | MLBDO                       | 85       |
| V <sub>DD_INT</sub> | 11       | DPI_P14             | 36       | DAI_P16                     | 61       | V <sub>DD_EXT</sub>         | 86       |
| CLKIN               | 12       | V <sub>DD_INT</sub> | 37       | DAI_P15                     | 62       | MLBSIG                      | 87       |
| XTAL                | 13       | V <sub>DD_INT</sub> | 38       | DAI_P12                     | 63       | $V_{DD_{INT}}$              | 88       |
| V <sub>DD_EXT</sub> | 14       | V <sub>DD_INT</sub> | 39       | V <sub>DD_INT</sub>         | 64       | MLBSO                       | 89       |
| V <sub>DD_INT</sub> | 15       | DAI_P13             | 40       | DAI_P11                     | 65       | TRST                        | 90       |
| V <sub>DD_INT</sub> | 16       | DAI_P07             | 41       | V <sub>DD_INT</sub>         | 66       | EMU                         | 91       |
| RESETOUT/RUNRSTIN   | 17       | DAI_P19             | 42       | V <sub>DD_INT</sub>         | 67       | TDO                         | 92       |
| V <sub>DD_INT</sub> | 18       | DAI_P01             | 43       | GND                         | 68       | V <sub>DD_EXT</sub>         | 93       |
| DPI_P01             | 19       | DAI_P02             | 44       | THD_M                       | 69       | $V_{DD_{INT}}$              | 94       |
| DPI_P02             | 20       | V <sub>DD_INT</sub> | 45       | THD_P                       | 70       | TDI                         | 95       |
| DPI_P03             | 21       | V <sub>DD_EXT</sub> | 46       | V <sub>DD_THD</sub>         | 71       | ТСК                         | 96       |
| V <sub>DD_INT</sub> | 22       | V <sub>DD_INT</sub> | 47       | V <sub>DD_INT</sub>         | 72       | $V_{DD_{INT}}$              | 97       |
| DPI_P05             | 23       | DAI_P06             | 48       | V <sub>DD_INT</sub>         | 73       | RESET                       | 98       |
| DPI_P04             | 24       | DAI_P05             | 49       | $V_{DD_{INT}}$              | 74       | TMS                         | 99       |
| DPI_P06             | 25       | DAI_P09             | 50       | $V_{\text{DD}\_\text{INT}}$ | 75       | $V_{\text{DD}\_\text{INT}}$ | 100      |
|                     |          |                     |          |                             |          | GND                         | 101*     |

Table 62. 100-Lead LQFP\_EP Lead Assignments (Numerical by Lead Number)

\* Lead no. 101 is the GND supply (see Figure 55 and Figure 56) for the processor; this pad must be **robustly** connected to GND. MLB pins (pins 83, 84, 85, 87, and 89) are available for automotive models only. For non-automotive models, these pins should be connected to ground (GND).

Figure 55 shows the top view configuration of the 100-lead LQFP\_EP package. Figure 56 shows the bottom view configuration of the 100-lead LQFP\_EP package.



Figure 55. 100-Lead LQFP\_EP Lead Configuration (Top View)



Figure 56. 100-Lead LQFP\_EP Lead Configuration (Bottom View)