

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XFl

Product Status	Active
Туре	Floating Point
Interface	EBI/EMI, DAI, I ² C, SPI, SPORT, UART/USART
Clock Rate	266MHz
Non-Volatile Memory	External
On-Chip RAM	3Mbit
Voltage - I/O	3.30V
Voltage - Core	1.10V
Operating Temperature	-40°C ~ 125°C (TJ)
Mounting Type	Surface Mount
Package / Case	176-LQFP Exposed Pad
Supplier Device Package	176-LQFP-EP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/ad21488wbswz1a02

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

GENERAL DESCRIPTION

The ADSP-2148x SHARC[®] processors are members of the SIMD SHARC family of DSPs that feature Analog Devices' Super Harvard Architecture. The processors are source code compatible with the ADSP-2126x, ADSP-2136x, ADSP-2137x, ADSP-2146x, ADSP-2147x and ADSP-2116x DSPs, as well as with first generation ADSP-2106x SHARC processors in SISD (single-instruction, single-data) mode. The ADSP-2148x processors are 32-bit/40-bit floating point processors optimized for high performance audio applications with large on-chip SRAM, multiple internal buses to eliminate I/O bottlenecks, and an innovative digital applications interface (DAI).

Table 1 shows performance benchmarks for the ADSP-2148x processors. Table 2 shows the features of the individual product offerings.

Table 1. Processor Benchmarks

Benchmark Algorithm	Speed (at 400 MHz)	Speed (at 450 MHz)
1024 Point Complex FFT (Radix 4, with Reversal)	23 µs	20.44 µs
FIR Filter (per Tap) ¹	1.25 ns	1.1 ns
llR Filter (per Biquad) ¹	5 ns	4.43 ns
Matrix Multiply (Pipelined)		
$[3 \times 3] \times [3 \times 1]$	11.25 ns	10.0 ns
$[4 \times 4] \times [4 \times 1]$	20 ns	17.78 ns
Divide (y/×)	7.5 ns	6.67 ns
Inverse Square Root	11.25 ns	10.0 ns

¹Assumes two files in multichannel SIMD mode

Feature	ADSP-21483	ADSP-21486	ADSP-21487	ADSP-21488	ADSP-21489		
Maximum Instruction Rate	400 MHz	400 MHz	450 MHz	400 MHz	450 MHz		
RAM	3 Mbits	5	Mbits	2/3 Mbits ¹	5 Mbits		
ROM		4 Mbits			No		
Audio Decoders in ROM ²		Yes			No		
Pulse-Width Modulation		4 Units (3 Units on 100-Leac	l Packages)			
DTCP Hardware Accelerator		(Contact Analog Dev	ices			
External Port Interface (SDRAM, AMI) ³	Yes (16-bit)	AMI Only		Yes (16-bit)			
Serial Ports			8				
Direct DMA from SPORTs to External Port (External Memory)			Yes				
FIR, IIR, FFT Accelerator	Yes						
Watchdog Timer	Yes (176-Lead Package Only)						
MediaLB Interface		A	utomotive Models (Only			
IDP/PDAP			Yes				
UART	1						
DAI (SRU)/DPI (SRU2)	Yes						
S/PDIF Transceiver			Yes				
SPI			Yes				
TWI			1				
SRC Performance ⁴			–128 dB				
Thermal Diode	Yes						
VISA Support			Yes				
Package ³		LQFP EPAD LQFP EPAD	176-Lead LQFP EPAD		d LQFP EPAD I LQFP EPAD⁵		

Table 2. ADSP-2148x Family Features

¹See Ordering Guide on Page 66.

⁴Some models have –140 dB performance. For more information, see Ordering Guide on page 66.

⁵Only available up to 400 MHz. See Ordering Guide on Page 66 for details.

² ROM is factory programmed with latest multichannel audio decoding and post-processing algorithms from Dolby[®] Labs and DTS[®]. Decoder/post-processor algorithm combination support varies depending upon the chip version and the system configurations. Please visit www.analog.com for complete information.

³ The 100-lead packages do not contain an external port. The SDRAM controller pins must be disabled when using this package. For more information, see Pin Function Descriptions on Page 14. The ADSP-21486 processor in the 176-lead package also does not contain a SDRAM controller. For more information, see 176-Lead LQFP_EP Lead Assignment on page 60.

The diagram on Page 1 shows the two clock domains that make up the ADSP-2148x processors. The core clock domain contains the following features:

- Two processing elements (PEx, PEy), each of which comprises an ALU, multiplier, shifter, and data register file
- Data address generators (DAG1, DAG2)
- Program sequencer with instruction cache
- PM and DM buses capable of supporting 2x64-bit data transfers between memory and the core at every core processor cycle
- One periodic interval timer with pinout
- On-chip SRAM (5 Mbit) and mask-programmable ROM (4 Mbit)
- JTAG test access port for emulation and boundary scan. The JTAG provides software debug through user breakpoints which allows flexible exception handling.

The block diagram of the ADSP-2148x on Page 1 also shows the peripheral clock domain (also known as the I/O processor) which contains the following features:

- IOD0 (peripheral DMA) and IOD1 (external port DMA) buses for 32-bit data transfers
- Peripheral and external port buses for core connection
- External port with an AMI and SDRAM controller
- 4 units for PWM control
- 1 memory-to-memory (MTM) unit for internal-to-internal memory transfers
- Digital applications interface that includes four precision clock generators (PCG), an input data port (IDP/PDAP) for serial and parallel interconnects, an S/PDIF receiver/transmitter, four asynchronous sample rate converters, eight serial ports, and a flexible signal routing unit (DAI SRU).
- Digital peripheral interface that includes two timers, a 2-wire interface (TWI), one UART, two serial peripheral interfaces (SPI), 2 precision clock generators (PCG), pulse width modulation (PWM), and a flexible signal routing unit (DPI SRU2).

As shown in the SHARC core block diagram on Page 5, the processor uses two computational units to deliver a significant performance increase over the previous SHARC processors on a range of DSP algorithms. With its SIMD computational hardware, the processors can perform 2.7 GFLOPS running at 450 MHz.

FAMILY CORE ARCHITECTURE

The ADSP-2148x is code compatible at the assembly level with the ADSP-2147x, ADSP-2146x, ADSP-2137x, ADSP-2136x, ADSP-2126x, ADSP-21160, and ADSP-21161, and with the first generation ADSP-2106x SHARC processors. The ADSP-2148x shares architectural features with the ADSP-2126x, ADSP-2136x, ADSP-2137x, ADSP-2146x and ADSP-2116x SIMD SHARC processors, as shown in Figure 2 and detailed in the following sections.

SIMD Computational Engine

The ADSP-2148x contains two computational processing elements that operate as a single-instruction, multiple-data (SIMD) engine. The processing elements are referred to as PEX and PEY and each contains an ALU, multiplier, shifter, and register file. PEx is always active, and PEy may be enabled by setting the PEYEN mode bit in the MODE1 register. SIMD mode allows the processor to execute the same instruction in both processing elements, but each processing element operates on different data. This architecture is efficient at executing math intensive DSP algorithms.

SIMD mode also affects the way data is transferred between memory and the processing elements because twice the data bandwidth is required to sustain computational operation in the processing elements. Therefore, entering SIMD mode also doubles the bandwidth between memory and the processing elements. When using the DAGs to transfer data in SIMD mode, two data values are transferred with each memory or register file access.

Independent, Parallel Computation Units

Within each processing element is a set of computational units. The computational units consist of an arithmetic/logic unit (ALU), multiplier, and shifter. These units perform all operations in a single cycle and are arranged in parallel, maximizing computational throughput. Single multifunction instructions execute parallel ALU and multiplier operations. In SIMD mode, the parallel ALU and multiplier operations occur in both processing elements. These computation units support IEEE 32-bit single-precision floating-point, 40-bit extended precision floating-point, and 32-bit fixed-point data formats.

Timer

The processor contains a core timer that can generate periodic software interrupts. The core timer can be configured to use FLAG3 as a timer expired signal.

Data Register File

Each processing element contains a general-purpose data register file. The register files transfer data between the computation units and the data buses, and store intermediate results. These 10-port, 32-register (16 primary, 16 secondary) register files, combined with the processor's enhanced Harvard architecture, allow unconstrained data flow between computation units and internal memory. The registers in PEX are referred to as R0–R15 and in PEY as S0–S15.

Context Switch

Many of the processor's registers have secondary registers that can be activated during interrupt servicing for a fast context switch. The data registers in the register file, the DAG registers, and the multiplier result registers all have secondary registers. The primary registers are active at reset, while the secondary registers are activated by control bits in a mode control register.

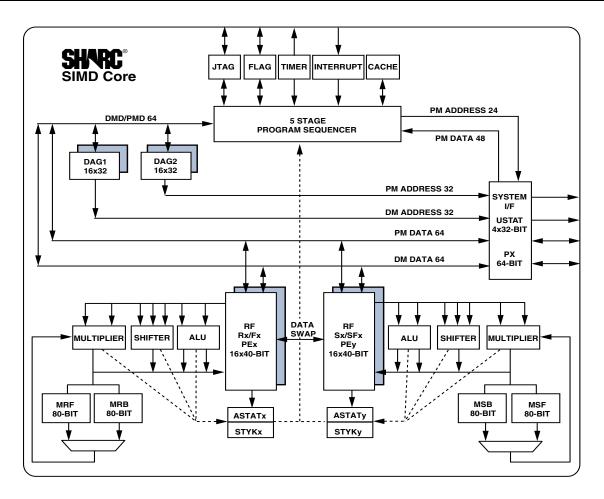


Figure 2. SHARC Core Block Diagram

Universal Registers

These registers can be used for general-purpose tasks. The USTAT (4) registers allow easy bit manipulations (Set, Clear, Toggle, Test, XOR) for all peripheral registers (control/status).

The data bus exchange register (PX) permits data to be passed between the 64-bit PM data bus and the 64-bit DM data bus, or between the 40-bit register file and the PM/DM data bus. These registers contain hardware to handle the data width difference.

Single-Cycle Fetch of Instruction and Four Operands

The ADSP-2148x features an enhanced Harvard architecture in which the data memory (DM) bus transfers data and the program memory (PM) bus transfers both instructions and data. With the its separate program and data memory buses and onchip instruction cache, the processor can simultaneously fetch four operands (two over each data bus) and one instruction (from the cache), all in a single cycle.

Instruction Cache

The processor includes an on-chip instruction cache that enables three-bus operation for fetching an instruction and four data values. The cache is selective—only the instructions whose fetches conflict with PM bus data accesses are cached. This cache allows full speed execution of core, looped operations such as digital filter multiply-accumulates, and FFT butterfly processing.

Data Address Generators With Zero-Overhead Hardware Circular Buffer Support

The two data address generators (DAGs) are used for indirect addressing and implementing circular data buffers in hardware. Circular buffers allow efficient programming of delay lines and other data structures required in digital signal processing, and are commonly used in digital filters and Fourier transforms. The two DAGs contain sufficient registers to allow the creation of up to 32 circular buffers (16 primary register sets, 16 secondary). The DAGs automatically handle address pointer wraparound, reduce overhead, increase performance, and simplify implementation. Circular buffers can start and end at any memory location.

Flexible Instruction Set

The 48-bit instruction word accommodates a variety of parallel operations, for concise programming. For example, the processor can conditionally execute a multiply, an add, and a

• Arbitration logic to coordinate core and DMA transfers between internal and external memory over the external port.

Non-SDRAM external memory address space is shown in Table 5.

Table 5. External Memory for Non-SDRAM Addresses	Table 5.	External Memo	ory for Non-SDRAM Addresses
--	----------	---------------	-----------------------------

Bank	Size in Words	Address Range
Bank 0	6M	0x0020 0000–0x007F FFFF
Bank 1	8M	0x0400 0000-0x047F FFFF
Bank 2	8M	0x0800 0000-0x087F FFFF
Bank 3	8M	0x0C00 0000-0x0C7F FFFF

External Port

The external port provides a high performance, glueless interface to a wide variety of industry-standard memory devices. The external port, available on the 176-lead LQFP, may be used to interface to synchronous and/or asynchronous memory devices through the use of its separate internal memory controllers. The first is an SDRAM controller for connection of industry-standard synchronous DRAM devices while the second is an asynchronous memory controller intended to interface to a variety of memory devices. Four memory select pins enable up to four separate devices to coexist, supporting any desired combination of synchronous and asynchronous device types.

Asynchronous Memory Controller

The asynchronous memory controller provides a configurable interface for up to four separate banks of memory or I/O devices. Each bank can be independently programmed with different timing parameters, enabling connection to a wide variety of memory devices including SRAM, flash, and EPROM, as well as I/O devices that interface with standard memory control lines. Bank 0 occupies a 6M word window and banks 1, 2, and 3 occupy a 8M word window in the processor's address space but, if not fully populated, these windows are not made contiguous by the memory controller logic.

SDRAM Controller

The SDRAM controller provides an interface of up to four separate banks of industry-standard SDRAM devices at speeds up to f_{SDCLK} . Fully compliant with the SDRAM standard, each bank has its own memory select line ($\overline{MS0}$ – $\overline{MS3}$), and can be configured to contain between 4M bytes and 256M bytes of memory. SDRAM external memory address space is shown in Table 6. NOTE: this feature is not available on the ADSP-21486 model.

Table 6.	External	Memory	for S	DRAM	Addresses
----------	----------	--------	-------	------	-----------

Bank	Size in Words	Address Range
Bank 0	62M	0x0020 0000-0x03FF FFFF
Bank 1	64M	0x0400 0000-0x07FF FFFF
Bank 2	64M	0x0800 0000-0x0BFF FFFF
Bank 3	64M	0x0C00 0000-0x0FFF FFFF

A set of programmable timing parameters is available to configure the SDRAM banks to support slower memory devices. Note that 32-bit wide devices are not supported on the SDRAM and AMI interfaces.

The SDRAM controller address, data, clock, and control pins can drive loads up to distributed 30 pF. For larger memory systems, the SDRAM controller external buffer timing should be selected and external buffering should be provided so that the load on the SDRAM controller pins does not exceed 30 pF.

Note that the external memory bank addresses shown are for normal-word (32-bit) accesses. If 48-bit instructions as well as 32-bit data are both placed in the same external memory bank, care must be taken while mapping them to avoid overlap.

SIMD Access to External Memory

The SDRAM controller on the processor supports SIMD access on the 64-bit EPD (external port data bus) which allows access to the complementary registers on the PEy unit in the normal word space (NW). This removes the need to explicitly access the complimentary registers when the data is in external SDRAM memory.

VISA and ISA Access to External Memory

The SDRAM controller on the ADSP-2148x processors supports VISA code operation which reduces the memory load since the VISA instructions are compressed. Moreover, bus fetching is reduced because, in the best case, one 48-bit fetch contains three valid instructions. Code execution from the traditional ISA operation is also supported. Note that code execution is only supported from bank 0 regardless of VISA/ISA. Table 7 shows the address ranges for instruction fetch in each mode.

Table 7. External Bank 0 Instruction Fetch

Access Type	Size in Words	Address Range
ISA (NW)	4M	0x0020 0000-0x005F FFFF
VISA (SW)	10M	0x0060 0000-0x00FF FFFF

Pulse-Width Modulation

The PWM module is a flexible, programmable, PWM waveform generator that can be programmed to generate the required switching patterns for various applications related to motor and engine control or audio power control. The PWM generator can generate either center-aligned or edge-aligned PWM waveforms. In addition, it can generate complementary signals on two outputs in paired mode or independent signals in nonpaired mode (applicable to a single group of four PWM waveforms).

The entire PWM module has four groups of four PWM outputs generating 16 PWM outputs in total. Each PWM group produces two pairs of PWM signals on the four PWM outputs.

Middleware Packages

Analog Devices separately offers middleware add-ins such as real time operating systems, file systems, USB stacks, and TCP/IP stacks. For more information see the following web pages:

- www.analog.com/ucos3
- www.analog.com/ucfs
- www.analog.com/ucusbd
- www.analog.com/lwip

Algorithmic Modules

To speed development, Analog Devices offers add-ins that perform popular audio and video processing algorithms. These are available for use with both CrossCore Embedded Studio and VisualDSP++. For more information visit www.analog.com and search on "Blackfin software modules" or "SHARC software modules".

Designing an Emulator-Compatible DSP Board (Target)

For embedded system test and debug, Analog Devices provides a family of emulators. On each JTAG DSP, Analog Devices supplies an IEEE 1149.1 JTAG Test Access Port (TAP). In-circuit emulation is facilitated by use of this JTAG interface. The emulator accesses the processor's internal features via the processor's TAP, allowing the developer to load code, set breakpoints, and view variables, memory, and registers. The processor must be halted to send data and commands, but once an operation is completed by the emulator, the DSP system is set to run at full speed with no impact on system timing. The emulators require the target board to include a header that supports connection of the DSP's JTAG port to the emulator.

For details on target board design issues including mechanical layout, single processor connections, signal buffering, signal termination, and emulator pod logic, see Analog Devices JTAG Emulation Technical Reference (EE-68). This document is updated regularly to keep pace with improvements to emulator support.

ADDITIONAL INFORMATION

This data sheet provides a general overview of the ADSP-2148x architecture and functionality. For detailed information on the ADSP-2148x family core architecture and instruction set, refer to the programming reference manual.

RELATED SIGNAL CHAINS

A signal chain is a series of signal-conditioning electronic components that receive input (data acquired from sampling either real-time phenomena or from stored data) in tandem, with the output of one portion of the chain supplying input to the next. Signal chains are often used in signal processing applications to gather and process data or to apply system controls based on analysis of real-time phenomena. Analog Devices eases signal processing system development by providing signal processing components that are designed to work together well. A tool for viewing relationships between specific applications and related components is available on the www.analog.com website.

The application signal chains page in the Circuits from the Lab[®] site (http://www.analog.com/circuits) provides:

- Graphical circuit block diagram presentation of signal chains for a variety of circuit types and applications
- Drill down links for components in each chain to selection guides and application information
- Reference designs applying best practice design techniques

Table 11. Pin Descriptions (Continued)

Nama	T	State During/	Description
Name	Туре	After Reset	Description
MLBCLK ¹			Media Local Bus Clock. This clock is generated by the MLB controller that is synchro- nized to the MOST network and provides the timing for the entire MLB interface at 49.152 MHz at FS=48 kHz. When the MLB controller is not used, this pin should be grounded.
MLBDAT ¹	I/O/T in 3 pin mode. I in 5 pin mode.	High-Z	Media Local Bus Data. The MLBDAT line is driven by the transmitting MLB device and is received by all other MLB devices including the MLB controller. The MLBDAT line carries the actual data. In 5-pin MLB mode, this pin is an input only. When the MLB controller is not used, this pin should be grounded.
MLBSIG ¹	I/O/T in 3 pin mode. I in 5 pin mode	High-Z	Media Local Bus Signal. This is a multiplexed signal which carries the Channel/Address generated by the MLB Controller, as well as the Command and RxStatus bytes from MLB devices. In 5-pin mode, this pin is input only. When the MLB controller is not used, this pin should be grounded.
MLBDO ¹	0/Т	High-Z	Media Local Bus Data Output (in 5 pin mode). This pin is used only in 5-pin MLB mode. This serves as the output data pin in 5-pin mode. When the MLB controller is not used, this pin should be connected to ground.
MLBSO ¹	0/Т	High-Z	Media Local Bus Signal Output (in 5 pin mode). This pin is used only in 5-pin MLB mode. This serves as the output signal pin in 5-pin mode. When the MLB controller is not used, this pin should be connected to ground.
TDI	l (ipu)		Test Data Input (JTAG). Provides serial data for the boundary scan logic.
TDO	O/T	High-Z	Test Data Output (JTAG). Serial scan output of the boundary scan path.
TMS	l (ipu)		Test Mode Select (JTAG). Used to control the test state machine.
ТСК	1		Test Clock (JTAG). Provides a clock for JTAG boundary scan. TCK must be asserted (pulsed low) after power-up or held low for proper operation of the device.
TRST	l (ipu)		Test Reset (JTAG). Resets the test state machine. TRST must be asserted (pulsed low) after power-up or held low for proper operation of the processor.
EMU	O (O/D, ipu)	High-Z	Emulation Status. Must be connected to the ADSP-2148x Analog Devices DSP Tools product line of JTAG emulators target board connector only.

The following symbols appear in the Type column of this table: $\mathbf{A} = asynchronous$, $\mathbf{I} = input$, $\mathbf{O} = output$, $\mathbf{S} = synchronous$, $\mathbf{A}/\mathbf{D} = active drive$, $\mathbf{O}/\mathbf{D} = open drain$, and $\mathbf{T} = three-state$, $\mathbf{ipd} = internal pull-down resistor$, $\mathbf{ipu} = internal pull-up resistor$.

The internal pull-up (ipu) and internal pull-down (ipd) resistors are designed to hold the internal path from the pins at the expected logic levels. To pull-up or pull-down the external pads to the expected logic levels, use external resistors. Internal pull-up/pull-down resistors cannot be enabled/disabled and the value of these resistors cannot be programmed. The range of an ipu resistor can be between $26 \text{ k}\Omega - 63 \text{ k}\Omega$. The range of an ipd resistor can be between $31 \text{ k}\Omega - 85 \text{ k}\Omega$. The three-state voltage of ipu pads will not reach to the full V_{DD_EXT} level; at typical conditions the voltage is in the range of 2.3 V to 2.7 V.

In this table, all pins are LVTTL compliant with the exception of the thermal diode pins.

ELECTRICAL CHARACTERISTICS

				300 MHz / 350 MHz / 400 MH	lz / 450 MHz	
Parameter ¹	Description	Test Conditions	Min	Тур	Max	Unit
V _{OH} ²	High Level Output Voltage	@ $V_{DD_EXT} = Min$, $I_{OH} = -1.0 \text{ mA}^3$	2.4			V
V _{OL} ²	Low Level Output Voltage	@ $V_{DD_EXT} = Min$, $I_{OL} = 1.0 \text{ mA}^3$			0.4	v
I _{IH} ^{4, 5}	High Level Input Current	@ V _{DD_EXT} = Max, V _{IN} = V _{DD_EXT} Max			10	μΑ
I _{IL} ⁴	Low Level Input Current	$@V_{DD_{EXT}} = Max, V_{IN} = 0 V$			10	μA
I _{ILPU} ⁵	Low Level Input Current Pull-up	$@V_{DD_{EXT}} = Max, V_{IN} = 0 V$			200	μA
I _{OZH} ^{6, 7}	Three-State Leakage Current	@ V _{DD_EXT} = Max, V _{IN} = V _{DD_EXT} Max			10	μA
I _{OZL} ⁶	Three-State Leakage Current	$@V_{DD_{EXT}} = Max, V_{IN} = 0 V$			10	μA
I _{OZLPU} ⁷	Three-State Leakage Current Pull-up	$@V_{DD_{EXT}} = Max, V_{IN} = 0 V$			200	μA
I _{OZHPD} ⁸	Three-State Leakage Current Pull-down	@ V _{DD_EXT} = Max, V _{IN} = V _{DD_EXT} Max			200	μA
I _{DD_INT} 9	Supply Current (Internal)	f _{CCLK} > 0 MHz			Table 14 + Table 15 × ASF	mA
I _{DD_INT}	Supply Current (Internal)	$V_{DDINT} = 1.1 \text{ V, ASF} = 1,$ T _J = 25°C		410 / 450 / 500 / 550		mA
C _{IN} ^{10, 11}	Input Capacitance	T _{CASE} = 25°C			5	pF

¹ Specifications subject to change without notice.

² Applies to output and bidirectional pins: ADDR23-0, DATA15-0, <u>AMI_RD</u>, <u>AMI_WR</u>, FLAG3-0, DAI_Px, DPI_Px, <u>EMU</u>, TDO, <u>RESETOUT</u> MLBSIG, MLBDAT, MLBDO, MLBSO, <u>SDRAS</u>, <u>SDCAS</u>, <u>SDWE</u>, SDCKE, SDA10, SDDQM, <u>MS0-1</u>.

³See Output Drive Currents on Page 55 for typical drive current capabilities.

⁴Applies to input pins: BOOT_CFGx, CLK_CFGx, TCK, RESET, CLKIN.

⁵ Applies to input pins with internal pull-ups: TRST, TMS, TDI.

⁶Applies to three-statable pin: TDO.

⁷Applies to three-statable pins with pull-ups: DAI_Px, DPI_Px, EMU.

⁸Applies to three-statable pin with pull-down: SDCLK.

⁹See Engineer-to-Engineer Note Estimating Power for ADSP-214xx SHARC Processors (EE-348) for further information.

¹⁰Applies to all signal pins.

¹¹Guaranteed, but not tested.

Total Power Dissipation

The information in this section should be augmented with the Engineer-to-Engineer Note Estimating Power for ADSP-214xx SHARC Processors (EE-348).

Total power dissipation has two components:

- 1. Internal power consumption is additionally comprised of two components:
 - Static current due to leakage. Table 14 shows the static current consumption ($I_{DD_INT_STATIC}$) as a function of junction temperature (T_J) and core voltage (V_{DD_INT}).
 - Dynamic current ($I_{DD_INT_DYNAMIC}$), due to transistor switching characteristics and activity level of the processor. The activity level is reflected by the Activity Scaling Factor (ASF), which represents the activity level of the application code running on the processor core and having various levels of peripheral and external port activity (Table 13).

Dynamic current consumption is calculated by selecting the ASF that corresponds most closely with the user application and then multiplying that with the dynamic current consumption (Table 15).

2. External power consumption is due to the switching activity of the external pins.

Activity	Scaling Factor (ASF)
ldle	0.29
Low	0.53
Medium Low	0.61
Medium High	0.77
Peak Typical (50:50) ²	0.85
Peak Typical (60:40) ²	0.93
Peak Typical (70:30) ²	1.00
High Typical	1.16
High	1.25
Peak	1.31

Table 13. Activity Scaling Factors (ASF)¹

¹See the Engineer-to-Engineer Note Estimating Power for ADSP-214xx SHARC Processors (EE-348) for more information on the explanation of the power vectors specific to the ASF table.

² Ratio of continuous instruction loop (core) to SDRAM control code reads and writes.

(°C) رT	V _{DD_INT} (V)									
	0.975 V	1.0 V	1.025 V	1.05 V	1.075 V	1.10 V	1.125 V	1.15 V	1.175 V	
-45	68	77	86	96	107	118	131	144	159	
-35	74	83	92	103	114	126	140	154	170	
-25	82	92	101	113	125	138	153	168	185	
-15	94	104	115	127	140	155	171	187	205	
-5	109	121	133	147	161	177	194	212	233	
+5	129	142	156	171	188	206	225	245	268	
+15	152	168	183	201	219	240	261	285	309	
+25	182	199	216	237	257	280	305	331	360	
+35	217	237	256	279	303	329	358	388	420	
+45	259	282	305	331	359	389	421	455	492	
+55	309	334	361	391	423	458	495	533	576	
+65	369	398	429	464	500	539	582	626	675	
+75	437	471	506	547	588	633	682	731	789	
+85	519	559	599	645	693	746	802	860	926	
+95	615	662	707	761	816	877	942	1007	1083	
+105	727	779	833	897	958	1026	1103	1179	1266	
+115	853	914	975	1047	1119	1198	1285	1372	1473	
+125	997	1067	1138	1219	1305	1397	1498	1601	1716	

Table 14. Static Current—I_{DD_INT_STATIC} (mA)¹

¹Valid temperature and voltage ranges are model-specific. See Operating Conditions on Page 18.

f _{CCLK} (MHz)	V _{DD_INT} (V)									
	0.975 V	1.0 V	1.025 V	1.05 V	1.075 V	1.10 V	1.125 V	1.15 V	1.175 V	
100	76	77	81	84	87	88	90	92	95	
150	117	119	123	126	130	133	136	139	144	
200	153	156	161	165	170	174	179	183	188	
250	190	195	201	207	212	217	223	229	235	
300	227	233	240	246	253	260	266	273	280	
350	263	272	278	286	294	302	309	318	325	
400	300	309	317	326	335	344	352	361	370	
450	339	349	356	365	374	385	394	405	415	

Table 15. Dynamic Current in CCLK Domain $-I_{DD_{INT}_{DYNAMIC}}$ (mA, with ASF = 1.0)^{1, 2}

¹The values are not guaranteed as standalone maximum specifications. They must be combined with static current per the equations of Electrical Characteristics on Page 19. ²Valid frequency and voltage ranges are model-specific. See Operating Conditions on Page 18.

ABSOLUTE MAXIMUM RATINGS

Stresses at or above those listed in Table 16 may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Table 16. Absolute Maximum Ratings

Parameter	Rating
Internal (Core) Supply Voltage (V _{DD_INT})	–0.3 V to +1.32 V
External (I/O) Supply Voltage (V _{DD_EXT})	–0.3 V to +3.6 V
Thermal Diode Supply Voltage	–0.3 V to +3.6 V
(V _{DD_THD})	
Input Voltage	–0.5 V to +3.6 V
Output Voltage Swing	–0.5 V to V_{DD_EXT} +0.5 V
Storage Temperature Range	–65°C to +150°C
Junction Temperature While Biased	125°C

ESD SENSITIVITY

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

MAXIMUM POWER DISSIPATION

See Engineer-to-Engineer Note Estimating Power for ADSP-214xx SHARC Processors (EE-348) for detailed thermal and power information regarding maximum power dissipation. For information on package thermal specifications, see Thermal Characteristics on Page 56.

PACKAGE INFORMATION

The information presented in Figure 3 provides details about the package branding for the ADSP-2148x processors. For a complete listing of product availability, see Ordering Guide on Page 66.

ANALOG DEVICES
ADSP-2148x
tppZ-cc
vvvvv.x n.n
#yyww country_of_origin
SHARC

Figure 3. Typical Package Brand

Table 17. Package Brand Information¹

Brand Key	Field Description
t	Temperature Range
рр	Package Type
Z	RoHS Compliant Option
сс	See Ordering Guide
vvvvv.x	Assembly Lot Code
n.n	Silicon Revision
#	RoHS Compliant Designation
yyww	Date Code

¹ Non automotive only. For branding information specific to automotive products, contact Analog Devices Inc.

Watchdog Timer Timing

Table 27. Watchdog Timer Timing

Parameter		Min	Max	Unit
Timing Requ	uirement			
twdtclkper		100	1000	ns
Switching C	Characteristics			
t _{RST}	WDT Clock Rising Edge to Watchdog Timer RESET Falling Edge	3	6.4	ns
t _{RSTPW}	Reset Pulse Width	$64 \times t_{WDTCLKPER}$		ns

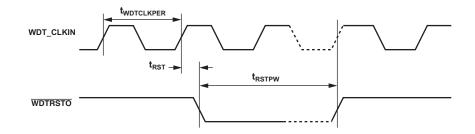


Figure 14. Watchdog Timer Timing

Pin to Pin Direct Routing (DAI and DPI)

For direct pin connections only (for example DAI_PB01_I to DAI_PB02_O).

Table 28. DAI/DPI Pin to Pin Routing

Parameter		Min	Max	Unit
Timing Requirement				
t _{DPIO}	Delay DAI/DPI Pin Input Valid to DAI/DPI Output Valid	1.5	12	ns

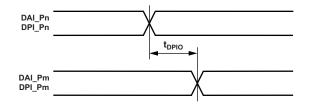


Figure 15. DAI Pin to Pin Direct Routing

AMI Read

Use these specifications for asynchronous interfacing to memories. Note that timing for AMI_ACK, ADDR, DATA, AMI_RD, AMI_WR, and strobe timing parameters only apply to asynchronous access mode.

Table 32. AMI Read

Parameter		Min	Мах	Unit
Timing Requ	irements			
t _{DAD} ^{1, 2, 3}	Address Selects Delay to Data Valid		W + t_{SDCLK} – 5.4	ns
t _{DRLD} ^{1, 3}	AMI_RD Low to Data Valid		W – 3.2	ns
t _{SDS}	Data Setup to AMI_RD High	2.5		ns
HDRH ^{4, 5}	Data Hold from AMI_RD High	0		ns
DAAK ^{2, 6}	AMI_ACK Delay from Address, Selects		$t_{SDCLK} - 9.5 + W$	ns
DSAK ⁴	AMI_ACK Delay from AMI_RD Low		W – 7	ns
Switching Ch	paracteristics			
t _{DRHA}	Address Selects Hold After AMI_RD High	RHC + 0.20		ns
DARL ²	Address Selects to AMI_RD Low	t _{SDCLK} – 3.8		ns
RW	AMI_RD Pulse Width	W – 1.4		ns
t _{RWR}	AMI_RD High to AMI_RD Low	HI + t _{SDCLK} – 1		ns

W = (number of wait states specified in AMICTLx register) \times t_{SDCLK}.

 $\mathsf{RHC} = (\mathsf{number of Read Hold Cycles specified in AMICTLx register}) \times t_{\mathsf{SDCLK}}$

Where PREDIS = 0

HI = RHC (if IC=0): Read to Read from same bank

 $HI = RHC + t_{SDCLK}$ (if IC>0): Read to Read from same bank

HI = RHC + IC: Read to Read from different bank

 $HI = RHC + Max (IC, (4 \times t_{SDCLK}))$: Read to Write from same or different bank

Where PREDIS = 1

 $HI = RHC + Max (IC, (4 \times t_{SDCLK}))$: Read to Write from same or different bank

 $HI = RHC + (3 \times t_{SDCLK})$: Read to Read from same bank

HI = RHC + Max (IC, (3 × t_{SDCLK}): Read to Read from different bank

 $\mathsf{IC} = (\mathsf{number of idle cycles specified in AMICTLx register}) \times \mathsf{t}_{\mathsf{SDCLK}}$

H = (number of hold cycles specified in AMICTLx register) \times tSDCLK

¹Data delay/setup: System must meet t_{DAD}, t_{DRLD}, or t_{SDS}.

² The falling edge of $\overline{\text{MS}}$ x, is referenced.

³The maximum limit of timing requirement values for t_{DAD} and t_{DRLD} parameters are applicable for the case where AMI_ACK is always high and when the ACK feature is not used.

⁴Note that timing for AMI_ACK, ADDR, DATA, AMI_RD, AMI_WR, and strobe timing parameters only apply to asynchronous access mode.

⁵ Data hold: User must meet t_{HDRH} in asynchronous access mode. See Test Conditions on Page 55 for the calculation of hold times given capacitive and dc loads.

⁶AMI_ACK delay/setup: User must meet t_{DAAK}, or t_{DSAK}, for deassertion of AMI_ACK (low).

Table 36. Serial Ports—External Late Frame Sync

Parameter Switching Characteristics		Min	Max	Unit
t _{DDTLFSE} 1	Data Delay from Late External Transmit Frame Sync or External Receive Frame Sync with MCE = 1, MFD = 0		8.5	ns
t _{DDTENFS} ¹	Data Enable for MCE = 1, MFD = 0	0.5		ns

 1 The t_{DDTLFSE} and t_{DDTENFS} parameters apply to left-justified, as well as DSP serial mode, and MCE = 1, MFD = 0.

DRIVE SAMPLE DRIVE DAI_P20-1 (SCLK) t_{HFSE/I} t_{SFSE/I} DAI_P20-1 (FS) t_{DDTE/I} **t**_{DDTENFS} t_{HDTE/I} DAI_P20-1 (DATA CHANNEL A/B) 1ST BIT 2ND BIT \hat{a} t_{DDTLFSE}

EXTERNAL RECEIVE FS WITH MCE = 1, MFD = 0

LATE EXTERNAL TRANSMIT FS

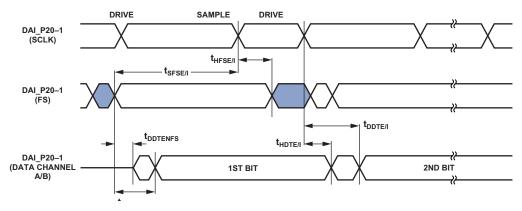


Figure 22. External Late Frame Sync¹

¹This figure reflects changes made to support left-justified mode.

Figure 31 shows the default I²S-justified mode. The frame sync is low for the left channel and HI for the right channel. Data is valid on the rising edge of serial clock. The MSB is left-justified to the frame sync transition but with a delay.

Table 45. S/PDIF Transmitter I²S Mode

Parameter		Nominal	Unit
Timing Requirement			
t _{I2SD}	Frame Sync to MSB Delay in I ² S Mode	1	SCLK

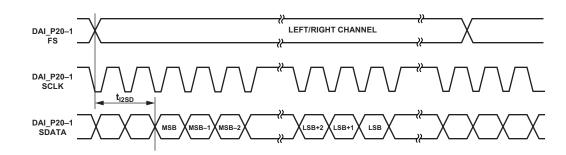


Figure 31. I²S-Justified Mode

Figure 32 shows the left-justified mode. The frame sync is high for the left channel and low for the right channel. Data is valid on the rising edge of serial clock. The MSB is left-justified to the frame sync transition with no delay.

Table 46. S/PDIF Transmitter Left-Justified Mode

Parameter		Nominal	Unit
Timing Requirement			
t _{LJD}	Frame Sync to MSB Delay in Left-Justified Mode	0	SCLK

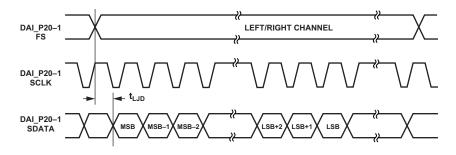


Figure 32. Left-Justified Mode

SPI Interface—Master

The ADSP-2148x contains two SPI ports. Both primary and secondary are available through DPI only. The timing provided in Table 50 and Table 51 applies to both.

Table 50. SPI Interface Protocol-Master Switching and Timing Specifications

Parameter		Min	Max	Unit
Timing Requirer	ments			
t _{SSPIDM}	Data Input Valid to SPICLK Edge (Data Input Setup Time)	8.2		ns
t _{HSPIDM}	SPICLK Last Sampling Edge to Data Input Not Valid	2		ns
Switching Chard	acteristics			
t _{SPICLKM}	Serial Clock Cycle	$8 \times t_{PCLK} - 2$		ns
t _{SPICHM}	Serial Clock High Period	$4 \times t_{PCLK} - 2$		ns
t _{SPICLM}	Serial Clock Low Period	$4 \times t_{PCLK} - 2$		ns
t _{DDSPIDM}	SPICLK Edge to Data Out Valid (Data Out Delay Time)		2.5	ns
t _{HDSPIDM}	SPICLK Edge to Data Out Not Valid (Data Out Hold Time)	$4 \times t_{PCLK} - 2$		ns
t _{SDSCIM}	DPI Pin (SPI Device Select) Low to First SPICLK Edge	$4 \times t_{PCLK} - 2$		ns
t _{HDSM}	Last SPICLK Edge to DPI Pin (SPI Device Select) High	$4 \times t_{PCLK} - 2$		ns
t _{SPITDM}	Sequential Transfer Delay	$4 \times t_{PCLK} - 1.2$		ns

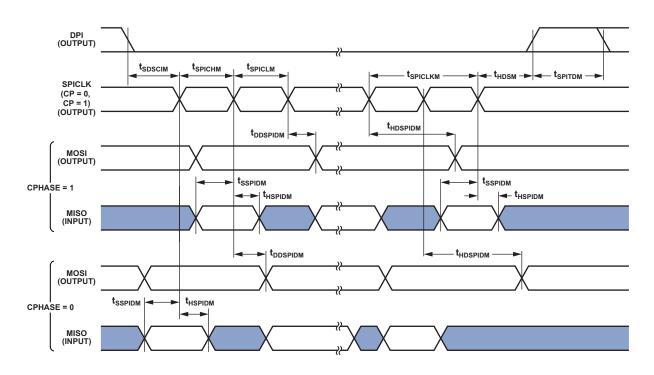


Figure 35. SPI Master Timing

JTAG Test Access Port and Emulation

Table 54. JTAG Test Access Port and Emulation

Parameter		Min	Max	Unit
Timing Requ	irements			
t _{TCK}	TCK Period	20		ns
t _{STAP}	TDI, TMS Setup Before TCK High	5		ns
t _{HTAP}	TDI, TMS Hold After TCK High	6		ns
t _{SSYS} ¹	System Inputs Setup Before TCK High	7		ns
t _{HSYS} ¹	System Inputs Hold After TCK High	18		ns
t _{TRSTW}	TRST Pulse Width	4t _{CK}		ns
Switching C	haracteristics			
t _{DTDO}	TDO Delay from TCK Low		10	ns
t _{DSYS} ²	System Outputs Delay After TCK Low		t _{TCK} ÷ 2 + 7	ns

¹ System Inputs = DATA15-0, CLK_CFG1-0, RESET, BOOT_CFG2-0, DAI_Px, DPI_Px, and FLAG3-0. ² System Outputs = DAI_Px, DPI_Px ADDR23-0, AMI_RD, AMI_WR, FLAG3-0, SDCAS, SDCAS, SDCKE, SDA10, SDDQM, SDCLK and EMU.

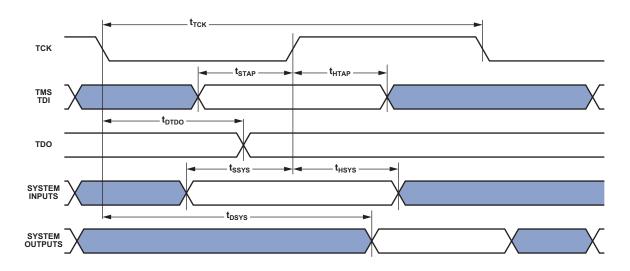


Figure 40. IEEE 1149.1 JTAG Test Access Port

100-LQFP_EP LEAD ASSIGNMENT

Lead Name	Lead No.						
V _{DD_INT}	1	V _{DD_EXT}	26	DAI_P10	51	V _{DD_INT}	76
CLK_CFG1	2	DPI_P08	27	V _{DD_INT}	52	FLAG0	77
BOOT_CFG0	3	DPI_P07	28	V _{DD_EXT}	53	V _{DD_INT}	78
V _{DD_EXT}	4	V _{DD_INT}	29	DAI_P20	54	V _{DD_INT}	79
V _{DD_INT}	5	DPI_P09	30	V _{DD_INT}	55	FLAG1	80
BOOT_CFG1	6	DPI_P10	31	DAI_P08	56	FLAG2	81
GND	7	DPI_P11	32	DAI_P04	57	FLAG3	82
NC	8	DPI_P12	33	DAI_P14	58	MLBCLK	83
NC	9	DPI_P13	34	DAI_P18	59	MLBDAT	84
CLK_CFG0	10	DAI_P03	35	DAI_P17	60	MLBDO	85
V _{DD_INT}	11	DPI_P14	36	DAI_P16	61	V _{DD_EXT}	86
CLKIN	12	V _{DD_INT}	37	DAI_P15	62	MLBSIG	87
XTAL	13	V _{DD_INT}	38	DAI_P12	63	V _{DD_INT}	88
V _{DD_EXT}	14	V _{DD_INT}	39	V _{DD_INT}	64	MLBSO	89
V _{DD_INT}	15	DAI_P13	40	DAI_P11	65	TRST	90
V _{DD_INT}	16	DAI_P07	41	V _{DD_INT}	66	EMU	91
RESETOUT/RUNRSTIN	17	DAI_P19	42	V _{DD_INT}	67	TDO	92
V _{DD_INT}	18	DAI_P01	43	GND	68	V _{DD_EXT}	93
DPI_P01	19	DAI_P02	44	THD_M	69	V _{DD_INT}	94
DPI_P02	20	V _{DD_INT}	45	THD_P	70	TDI	95
DPI_P03	21	V _{DD_EXT}	46	V _{DD_THD}	71	ТСК	96
V _{DD_INT}	22	V _{DD_INT}	47	V _{DD_INT}	72	V _{DD_INT}	97
DPI_P05	23	DAI_P06	48	V _{DD_INT}	73	RESET	98
DPI_P04	24	DAI_P05	49	V _{DD_INT}	74	TMS	99
DPI_P06	25	DAI_P09	50	V _{DD_INT}	75	V _{DD_INT}	100
						GND	101*

Table 59. 100-Lead LQFP_EP Lead Assignments (Numerical by Lead Number)

MLB pins (pins 83, 84, 85, 87, and 89) are available for automotive models only. For non-automotive models, these pins should be connected to ground (GND).

* Pin no. 101 (exposed pad) is the GND supply (see Figure 48 and Figure 49) for the processor; this pad must be **robustly** connected to GND.

176-LEAD LQFP_EP LEAD ASSIGNMENT

NC 1 Vop_trt 45 DALP10 89 Vop_NT 133 MSO 2 PPLP08 46 Vop_NT 90 FLAG0 134 NC 3 DPLP07 47 Vop_ET 91 FLAG1 135 Vop_INT 4 Vop_NT 48 DALP20 92 FLAG2 136 CLK_CFG1 5 DPLP10 50 DALP08 94 FLAG3 138 BOOT_CFG0 7 DPLP11 51 DALP04 96 GND 140 ADDR1 9 DPLP13 53 DALP17 98 GND 142 ADDR3 11 DALP03 55 DALP17 98 GND 143 ADDR4 12 NC 56 DALP11 103 DATA0 147 ADDR5 13 Vop_DINT 62 BOOT_CFG2 106 DATA1 148 ADDR6 16 NC 63 Vop_IN	Lead Name	Lead No.	Lead Name	Lead No.	Lead Name	Lead No.	Lead Name	Lead No.
NC 3 DPL P07 47 VDD_DRT 91 FLAG1 135 VDD_JNT 48 DALP20 92 FLAG2 136 CLK_CFG1 5 DPLP09 49 VDD_NT 93 GND 137 ADDR0 6 DPLP10 50 DALP08 94 FLAG3 138 SOOT_CFG0 7 DPLP13 53 DALP14 95 GND 141 ADDR1 9 DPLP13 53 DALP16 94 VD_D_NT 143 ADDR3 11 DALP03 55 DALP12 100 GND 142 ADDR4 12 NC 56 DALP15 101 GND 145 BOOT_CFG1 14 NC 58 VD_D_INT 102 EMT 146 ADDR4 16 NC 60 VD_D_DT 103 DATA1 148 ADDR5 16 NC 61 VD_D_DT 105 DATA	NC	1	V _{DD_EXT}	45	DAI_P10	89	V _{DD_INT}	133
VDD_INT 4 VDD_INT 48 DAL_P20 92 FLAG2 136 CLK_CFG1 5 DPL_P09 49 VDD_INT 93 GND 137 ADDR0 6 DPL_P10 50 DAL_P08 94 ELAG3 138 BODT_CFG0 7 DPL_P13 53 DAL_P14 95 GND 140 ADDR1 9 DPL_P13 53 DAL_P15 99 YDD_DKT 141 ADDR3 11 DAL_P03 55 DAL_P15 99 YDD_DKT 143 ADDR4 12 NC 56 DAL_P15 101 GND 145 ADDR3 13 YDD_ERT 57 DAL_P15 102 EMU 146 GND 15 NC 59 DAL_P11 103 DATA1 148 ADDR6 16 NC 61 YDD_INT 105 DATA2 150 ADDR4 16 NC 63	MSO	2	DPI_P08	46	V _{DD_INT}	90	FLAG0	134
CLK_CFG1 5 DPLP09 49 VDD_INT 93 GND 137 ADDR0 6 DPLP10 50 DAL_P08 94 PLAG3 138 SODT_CFG0 7 DPLP11 51 DAL_P14 95 GND 139 VDD_EXT 8 DPLP12 52 DAL_P14 96 GND 141 ADDR1 9 DPLP13 53 DAL_P17 98 GND 142 ADDR3 11 DALP03 55 DAL_P15 99 VDD_MT 143 ADDR4 12 NC 56 DALP12 100 TRST 144 ADDR5 13 VD_LEXT 57 DALP11 103 DATA0 147 ADDR6 16 NC 58 VD_LNT 105 DATA2 149 ADDR6 16 NC 60 VDD_LNT 105 DATA3 150 NC 18 VD_LINT 62 BO	NC	3	DPI_P07	47	V _{DD_EXT}	91	FLAG1	135
ADDR0 6 DPLP10 50 DALP08 94 FLAG3 138 BOOT_CFG0 7 DPLP11 51 DALP14 95 GND 139 ADDR1 9 DPLP12 52 DALP18 97 VDD_DRT 141 ADDR3 10 DPLP13 53 DALP16 99 VDD_DRT 142 ADDR3 11 DALP03 55 DALP16 99 VDD_NT 143 ADDR4 12 NC 56 DALP15 101 GND 145 BOOT_CFG1 14 NC 58 VDD_INT 102 EMU 146 ADDR4 12 NC 59 DALP11 103 DATA1 148 ADDR5 13 VDD_INT 62 BOOT_CFG2 106 DATA2 149 NC 18 VDD_INT 62 BOOT_CFG2 106 DATA3 150 NC 18 VDD_INT 62	V _{DD_INT}	4	V _{DD_INT}	48	DAI_P20	92	FLAG2	136
ADDR0 6 DPL P10 50 DAL P08 94 FLAGS 139 BOOT_CFG0 7 DPLP11 51 DALP14 95 GND 139 VDD_DCT 8 DPLP12 52 DALP14 96 GND 140 ADDR1 9 DPLP13 53 DALP16 99 YDD_DKT 141 ADDR3 11 DALP03 55 DALP12 100 GND 142 ADDR4 12 NC 56 DALP12 101 GND 143 ADDR5 13 VD_DETT 57 DALP11 103 DATA1 144 ADDR6 16 NC 59 DALP11 103 DATA1 148 ADDR6 16 NC 60 YD_DENT 105 DATA1 148 ADDR6 17 NC 61 YD_DENT 105 DATA1 150 NC 18 YD_DINT 62 BOOT_CF	CLK_CFG1	5	DPI_P09	49	V _{DD INT}	93	GND	137
VDD_ENT 8 DPI_P12 52 DAI_P04 96 GND 140 ADDR1 9 DPI_P13 53 DAI_P18 97 VD_DENT 141 ADDR3 11 DAI_P03 55 DAI_P16 98 GND 142 ADDR4 12 NC 56 DAI_P12 101 GND 143 ADDR4 12 NC 58 DAI_P13 101 GND 145 BOOT_CFG1 14 NC 58 DAI_P11 102 EMU 146 ADDR4 15 NC 60 VD_D_INT 104 DATA1 148 ADDR4 18 VDD_INT 62 BOT_CFG2 106 DATA3 150 NC 18 VDD_INT 63 OD_INT 107 DO_D 151 ADDR4 20 NC 64 AMI_ACK 108 DATA4 152 ADDR4 21 VD_INT 65 G	ADDR0	6	DPI_P10	50	_	94	FLAG3	138
ADDR1 9 DPLP13 53 DALP18 97 VDD_EXT 141 ADDR2 10 DPLP14 54 DALP17 98 GND 142 ADDR3 11 DALP03 55 DALP16 99 VDD_INT 143 ADDR4 12 NC 56 DALP15 101 GND 145 BOOT_CFG1 14 NC 58 VDD_INT 102 EMU 146 GND 15 NC 59 DALP11 103 DATA1 148 ADDR6 16 NC 61 VDD_INT 107 DATA1 148 ADDR7 17 NC 61 VD_INT 107 DATA1 150 NC 19 NC 63 ROD_INT 107 DATA1 151 ADDR9 21 VDD_INT 65 GND 109 VDD_ETAT 153 CLK_CFG0 22 NC 61 THD_P	BOOT_CFG0	7	DPI_P11	51	DAI_P14	95	GND	139
ADDR1 9 DPLP13 53 DALP18 97 VDD_ENT 141 ADDR2 10 DPLP14 54 DALP16 99 VDD_ENT 142 ADDR3 11 DALP03 55 DALP16 99 VDD_INT 143 ADDR4 12 NC 56 DALP11 100 TRST 144 ADDR3 13 VDD_ENT 57 DALP11 103 DATA0 147 ADDR3 16 NC 58 VDD_INT 102 EMU 148 ADDR4 16 NC 61 VDD_INT 105 DATA3 150 NC 18 VDD_INT 62 BOOT_CFG2 106 DATA3 153 ADDR4 20 NC 63 VDD_INT 107 DOD 151 ADDR4 20 NC 64 AMLACK 168 DATA4 152 ADDR4 21 VDD_INT 65 GND	V _{DD EXT}	8	DPI_P12	52	DAI_P04	96	GND	140
ADDR2 10 DPLP14 54 DALP17 98 GND 142 ADDR3 11 DALP03 55 DALP16 99 VDD_INT 143 ADDR4 12 NC 56 DALP15 101 GND 145 ADDR5 13 VDD_ENT 57 DALP15 101 GND 145 BOOT_CFG1 14 NC 58 VDD_INT 102 EMU 147 ADDR6 16 NC 60 VDD_ENT 104 DATA2 149 ADDR7 17 NC 61 VDD_INT 107 DATA2 150 NC 18 VDD_INT 62 BOOT_CFG2 106 DATA4 152 ADDR8 20 NC 63 MD_LACK 108 DATA4 152 ADDR9 21 VD_INT 65 GND 109 VD_LACK 153 CLK_CFG0 22 NC 67 THD_P<		9	DPI_P13	53	DAI_P18	97	V _{DD EXT}	141
ADDR4 12 NC 56 DAI_P12 100 TRAT 144 ADDR5 13 VDD_EXT 57 DAL_P15 101 GND 145 BOOT_CFG1 14 NC 58 VDL_NT 102 EMU 146 GND 15 NC 59 DAL_P11 103 DATA0 147 ADDR6 16 NC 60 VDD_NT 104 DATA1 148 ADDR7 17 NC 61 VDD_INT 107 DOT DATA2 149 NC 18 VDD_INT 62 BOOT_CFG2 106 DATA4 152 ADDR8 20 NC 63 VDD_INT 107 DOT 151 ADDR9 21 VD_INT 65 GND 100 DATA5 154 VDD_INT 23 NC 67 THD_P 111 DATA6 155 CLK_CFG0 22 NC 64	ADDR2	10	DPI_P14	54	DAI_P17	98		142
ADDR4 12 NC 56 DAL_P12 100 TRST 144 ADDR5 13 VD_D_EXT 57 DAL_P15 101 GND 145 BOOT_CFG1 14 NC 58 VD_D.NT 102 EMU 146 GND 15 NC 59 DAL_P11 103 DATA0 147 ADDR6 16 NC 60 VD_D_EXT 104 DATA1 148 ADDR7 17 NC 61 VD_D_INT 107 DO DATA2 150 NC 18 VD_D_INT 62 BOOT_CFG2 106 DATA3 152 ADDR8 20 NC 63 VD_D_INT 107 DO 151 ADDR4 21 VD_D_INT 65 GND 109 VD_D_EXT 153 CLK_CFG0 22 NC 66 THD_M 110 DATA5 154 CLM_CTG0 71 MC MST	ADDR3	11	DAI_P03	55	DAI_P16	99	V _{DD INT}	143
BOOT_CFG1 14 NC 58 VDD_INT 102 EMU 146 GND 15 NC 59 DALP11 103 DATA0 147 ADDR6 16 NC 60 VDD_EXT 104 DATA1 148 ADDR7 17 NC 61 VDD_INT 105 DATA2 149 NC 18 VDD_INT 62 BOOT_CFG2 106 DATA3 150 NC 19 NC 63 VDD_INT 107 TDO 151 ADDR8 20 NC 64 AMLACK 108 DATA4 152 ADDR9 1 VDD_INT 65 GND 109 VD_DEXT 153 CLK_CFG0 22 NC 67 THD_P 111 DATA5 154 VDD_INT 23 NC 69 VD_INT 113 DATA7 157 ADDR10 26 WDTRSTO 70 VD_DINT	ADDR4	12	NC	56		100		144
BOOT_CFG1 14 NC 58 VDD_INT 102 EMU 146 GND 15 NC 59 DALP11 103 DATA0 147 ADDR6 16 NC 60 VDD_EXT 104 DATA1 148 ADDR7 17 NC 61 VDD_INT 105 DATA2 149 NC 18 VDD_INT 62 BOOT_CFG2 106 DATA3 150 NC 19 NC 63 VDD_INT 107 TDO 151 ADDR8 20 NC 64 AMLACK 108 DATA4 152 ADDR9 21 VDD_INT 65 GND 109 VDD_EXT 153 CLK_CFG0 22 NC 66 THD_M 110 DATA7 157 ADDR10 26 WDTRSTO 70 VD_INT 113 DATA7 157 ADDR10 28 VD_DEXT 72 VD_OINT<	ADDR5	13	V _{DD EXT}	57	DAI_P15	101	GND	145
GND 15 NC 59 DALP11 103 DATA0 147 ADDR6 16 NC 60 VDD_EXT 104 DATA1 148 ADDR7 17 NC 61 VDD_INT 105 DATA2 149 NC 18 VDD_INT 62 BOOT_CF62 DO DATA3 150 NC 19 NC 63 VDD_INT 107 DO 151 ADDR8 20 NC 64 AMI_ACK 108 DATA4 152 ADDR8 21 VDD_INT 65 GND 109 VD_D_EXT 153 CLK_CFG0 22 NC 66 THD_M 110 DATA6 155 CLKIN 24 VD_D_INT 68 VD_D_INT 114 DATA6 155 CLKIN 24 VD_D_INT 68 VD_D_INT 114 DATA6 155 VDL <xt< td=""> 73 NC 71 MST<td>BOOT_CFG1</td><td>14</td><td></td><td>58</td><td></td><td>102</td><td>EMU</td><td>146</td></xt<>	BOOT_CFG1	14		58		102	EMU	146
ADDR6 16 NC 60 VDD_ENT 104 DATA1 148 ADDR7 17 NC 61 VDD_INT 105 DATA2 149 NC 18 VDD_INT 62 BOOT_CFG2 106 DATA3 150 NC 18 VDD_INT 62 BOOT_CFG2 106 DATA4 152 ADDR8 20 NC 64 AMI_ACK 108 DATA4 152 ADDR9 21 VDD_INT 65 GND 109 VD_EXT 153 CLK_CFG0 22 NC 66 THD_P 110 DATA6 155 CLKIN 24 VDD_INT 68 VDD_INT 113 DATA7 157 ADDR10 26 WDTRSTO 70 VDD_INT 114 TDI 158 NC 27 NC 71 MST 115 NC 159* VDD_EXT 28 DALP17 73 WDT					_			
ADDR7 17 NC 61 VDD_INT 105 DATA2 149 NC 18 VDD_INT 62 BOOT_CFG2 106 DATA3 150 NC 19 NC 63 VDD_INT 107 TDO 151 ADDR8 20 NC 64 AMLACK 108 DATA4 152 ADDR9 21 VDD_INT 65 GND 109 VDD_EXT 153 CLK_CFG0 22 NC 66 THD_M 110 DATA5 154 VDD_INT 23 NC 67 THD_P 111 DATA6 155 CLK_CFG0 22 NC 69 VDD_INT 113 DATA7 157 ADDR10 26 WDTRSTO 70 VDD_INT 114 TDI 158 NC 27 NC 71 MST 116 VDD_EXT 160 VDD_INT 28 DALP07 73 WDT_CLKN </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
NC 18 V _{DD_INT} 62 BOOT_CFG2 106 DATA3 150 NC 19 NC 63 V _{DD_INT} 107 TDO 151 ADDR8 20 NC 64 AMI_ACK 108 DATA4 152 ADDR9 21 V _{DD_INT} 65 GND 109 V _{DD_ETT} 153 CLK_CFG0 22 NC 66 THD_M 110 DATA5 154 V _{DD_INT} 23 NC 67 THD_P 111 DATA6 155 CLKIN 24 V _{DD_INT} 68 V _{DD_INT} 113 DATA7 157 ADDR10 26 WDTRSTO 70 V _{DD_INT} 114 TDI 158 NC 27 NC 71 MST 115 NC 159* V _{DD_ENT} 28 V _{D_ENT} 72 V _{DD_INT} 116 V _{D_ENT} 160 ADDR11 30 DALP07 7	ADDR7							
NC 19 NC 63 VDD_INT 107 TDO 151 ADDR8 20 NC 64 AMI_ACK 108 DATA4 152 ADDR9 21 VDD_INT 65 GND 109 VDD_EXT 153 CLK_CFGO 22 NC 66 THD_P 111 DATA6 155 CLKIN 24 VD_INT 68 VDD_THD 112 VD_INT 156 XTAL 25 NC 69 VDD_INT 113 DATA7 157 ADDR10 26 WDTSTO 70 VDD_INT 114 TDI 158 NC 27 NC 71 MST 115 NC 159* VDD_EXT 28 VD_EXT 72 VDD_INT 116 VD_DEXT 160 ADDR11 30 DALP13 74 WDT_CLKO 117 DATA10 163 ADDR12 31 DALP07 77 ADD								
ADDR8 20 NC 64 AMI_ACK 108 DATA4 152 ADDR9 21 V _{DD_INT} 65 GND 109 V _{DD_EXT} 153 CLK_CF60 22 NC 66 THD_M 110 DATA5 154 V _{DD_INT} 23 NC 67 THD_P 111 DATA6 155 CLKIN 24 V _{DD_INT} 68 V _{DD_INT} 113 DATA7 157 ADDR10 26 WDTRSTO 70 V _{DD_INT} 114 TDI 158 NC 27 NC 71 MST 116 V _{DD_EXT} 160 V _{DD_INT} 28 V _{DD_EXT} 72 V _{DD_INT} 116 V _{DD_EXT} 160 ADDR11 30 DALP07 73 WDT_CLKIN 118 DATA9 161 ADDR12 31 DALP19 75 V _{DD_EXT} 119 DATA10 163 ADDR13 33 DAL_P								
ADDR9 21 VDD_INT 65 GND 109 VDD_ENT 153 CLK_CFG0 22 NC 66 THD_M 110 DATA5 154 VDD_INT 23 NC 67 THD_P 111 DATA6 155 CLKIN 24 VDD_INT 68 VDD_INT 112 VDD_INT 156 XTAL 25 NC 69 VDD_INT 113 DATA7 157 ADDR10 26 WDTRSTO 70 VDD_INT 114 TDI 158 NC 27 NC 71 MST 116 VDD_EXT 160 VDD_LNT 28 VDD_EXT 72 VD_LINT 116 VDL_EXT 160 ADDR11 30 DALP07 73 WDT_CLKO 117 DATA8 161 ADDR12 31 DALP01 76 ADDR23 120 TCK 164 ADDR13 33 DALP02 77					_			
CLK_CFG0 22 NC 66 THD_M 110 DATAS 154 VDD_INT 23 NC 67 THD_P 111 DATAG 155 CLKIN 24 VDD_INT 68 VDD_THD 112 VDD_INT 156 XTAL 25 NC 69 VDD_INT 113 DATA7 157 ADDR10 26 WDTRSTO 70 VD_INT 114 TDI 158 NC 27 NC 71 MST 115 NC 159* VDD_EXT 28 VDD_EXT 72 VDD_INT 116 VDD_EXT 160 VDD_INT 29 DALP07 73 WDT_CLKO 117 DATA8 161 ADDR11 30 DALP13 74 WDT_CLKIN 118 DATA9 162 ADDR13 33 DALP01 76 ADDR23 120 TCK 164 ADDR13 34 VDD_INT 78								
VDD_INT 23 NC 67 THD_P 111 DATA6 155 CLKIN 24 VDD_INT 68 VDD_THD 112 VDD_INT 156 XTAL 25 NC 69 VDD_INT 113 DATA7 157 ADDR10 26 WDTRSTO 70 VDD_INT 114 TDI 158 NC 27 NC 71 MS1 115 NC 159* VDD_EXT 28 VD_DEXT 72 VD_INT 116 VD_DEXT 160 VDD_INT 29 DALP07 73 WDT_CLKIN 118 DATA9 162 ADDR11 30 DALP13 74 WDT_CLKIN 118 DATA10 163 ADDR12 31 DALP01 76 ADDR23 120 TCK 164 ADDR13 32 DALP01 76 ADDR21 123 DATA11 165 VDD_INT 34 DA_DONT 7								
CLKIN 24 VDD_INT 68 VDD_THD 112 VDD_INT 156 XTAL 25 NC 69 VDD_INT 113 DATA7 157 ADDR10 26 WDTRSTO 70 VDD_INT 114 TDI 158 NC 27 NC 71 MS1 115 NC 159* VDD_EXT 28 VDD_EXT 72 VDD_INT 116 VDD_EXT 160 VDD_INT 29 DAI_P07 73 WDT_CLKO 117 DATA8 161 ADDR11 30 DAI_P13 74 WDT_CLKIN 118 DATA9 162 ADDR12 31 DAI_P01 76 ADDR23 120 TCK 164 ADDR13 33 DAI_P02 77 ADDR22 121 DATA11 165 VDD_INT 34 VDD_INT 78 ADDR12 122 DATA12 166 ADDR13 35 NC <								
XTAL 25 NC 69 VDD_INT 113 DATA7 157 ADDR10 26 WDTRSTO 70 VDD_INT 114 TDI 158 NC 27 NC 71 MS1 115 NC 159* VDD_EXT 28 VDD_EXT 72 VDD_INT 116 VDD_EXT 160 VDD_INT 29 DAI_P07 73 WDT_CLKO 117 DATA8 161 ADDR11 30 DAI_P13 74 WDT_CLKO 117 DATA8 162 ADDR12 31 DAI_P19 75 VDD_EXT 119 DATA10 163 ADDR13 33 DAI_P02 77 ADDR22 121 DATA11 165 VDD_INT 34 VDD_INT 78 ADDR21 122 DATA12 166 ADDR18 35 NC 79 VDD_INT 123 DATA13 168 VDD_INT 36 NC <t< td=""><td>—</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	—							
ADDR10 26 WDTRSTO 70 VDD_INT 114 TDI 158 NC 27 NC 71 MS1 115 NC 159* VDD_EXT 28 VDD_EXT 72 VDD_INT 116 VDD_EXT 160 VDD_INT 29 DAI_P07 73 WDT_CLKO 117 DATA8 161 ADDR11 30 DAI_P13 74 WDT_CLKIN 118 DATA9 162 ADDR12 31 DAI_P19 75 VDD_EXT 119 DATA10 163 ADDR13 32 DAI_P02 77 ADDR23 120 TCK 164 ADDR13 33 DAI_P02 77 ADDR22 121 DATA11 165 VDD_INT 34 VDD_INT 78 ADDR21 122 DATA14 167 RESETOUT/RUNRSTIN 36 NC 80 ADDR20 124 DATA13 168 VDD_INT 37 NC<					_			
NC 27 NC 71 MST 115 NC 159* VDD_EXT 28 VDD_EXT 72 VDD_INT 116 VDD_EXT 160 VDD_INT 29 DAL_P07 73 WDT_CLKO 117 DATA8 161 ADDR11 30 DAL_P13 74 WDT_CLKIN 118 DATA9 162 ADDR12 31 DAL_P19 75 VDD_EXT 119 DATA10 163 ADDR17 32 DAL_P01 76 ADDR23 120 TCK 164 ADDR13 33 DAL_P02 77 ADDR22 121 DATA11 165 VDD_INT 34 VDD_INT 78 ADDR21 122 DATA12 166 ADDR18 35 NC 79 VDD_INT 123 DATA13 168 VDD_INT 36 NC 80 ADDR19 125 VDD_INT 169 DPLP01 38 NC								
VDD_EXT 28 VDD_EXT 72 VDD_INT 116 VDD_EXT 160 VDD_INT 29 DALP07 73 WDT_CLKO 117 DATA8 161 ADDR11 30 DALP13 74 WDT_CLKIN 118 DATA9 162 ADDR12 31 DALP19 75 VDD_EXT 119 DATA10 163 ADDR17 32 DALP01 76 ADDR23 120 TCK 164 ADDR13 33 DALP02 77 ADDR22 121 DATA11 165 VDD_INT 34 VDD_INT 78 ADDR21 122 DATA12 166 ADDR18 35 NC 79 VDD_INT 123 DATA14 167 RESETOUT/RUNRSTIN 36 NC 80 ADDR19 125 VDD_INT 169 DPLP01 38 NC 82 VDD_EXT 126 DATA15 170 DPLP03 40 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
VDD_INT 29 DAI_P07 73 WDT_CLKO 117 DATA8 161 ADDR11 30 DAI_P13 74 WDT_CLKIN 118 DATA9 162 ADDR12 31 DAI_P19 75 VDD_EXT 119 DATA10 163 ADDR17 32 DAI_P01 76 ADDR23 120 TCK 164 ADDR13 33 DAI_P02 77 ADDR23 120 DATA11 165 VDD_INT 34 VDD_INT 78 ADDR21 122 DATA12 166 ADDR18 35 NC 79 VD_INT 123 DATA14 167 RESETOUT/RUNRSTIN 36 NC 80 ADDR19 125 VD_INT 169 DPI_P01 38 NC 82 VD_EXT 126 DATA13 168 VDD_INT 37 NC 83 ADDR19 125 VD_INT 169 DPI_P01 38 NC								
ADDR11 30 DAI_P13 74 WDT_CLKIN 118 DATA9 162 ADDR12 31 DAI_P19 75 V_DD_EXT 119 DATA10 163 ADDR17 32 DAI_P01 76 ADDR23 120 TCK 164 ADDR13 33 DAI_P02 77 ADDR22 121 DATA11 165 VDD_INT 34 V_DD_INT 78 ADDR21 122 DATA12 166 ADDR18 35 NC 79 V_D_INT 123 DATA14 167 RESETOUT/RUNRSTIN 36 NC 80 ADDR20 124 DATA13 168 V_DD_INT 37 NC 81 ADDR19 125 V_DD_INT 169 DPI_P01 38 NC 82 V_DD_EXT 126 DATA15 170 DPI_P02 39 NC 83 ADDR16 127 NC 171 DPI_P03 40 V_D_LINT 85 V_D_INT 129 RESET 172 VDD_INT			_		_			
ADDR12 31 DAI_P19 75 V_DD_EXT 119 DATA10 163 ADDR17 32 DAI_P01 76 ADDR23 120 TCK 164 ADDR13 33 DAI_P02 77 ADDR22 121 DATA11 165 VDD_INT 34 V_DD_INT 78 ADDR21 122 DATA12 166 ADDR18 35 NC 79 V_DD_INT 123 DATA13 168 VDD_INT 36 NC 80 ADDR20 124 DATA13 168 VDD_INT 37 NC 81 ADDR19 125 V_D_INT 169 DPI_P01 38 NC 82 V_D_EXT 126 DATA15 170 DPI_P02 39 NC 83 ADDR16 127 NC 171 DPI_P03 40 V_D_EXT 84 ADDR15 128 NC 172 V_DD_INT 41 V_D_D_INT 85 V_D_INT 129 RESET 173 DPI_P05 42								
ADDR1732DAI_P0176ADDR23120TCK164ADDR1333DAI_P0277ADDR22121DATA11165VDD_INT34VDD_INT78ADDR21122DATA12166ADDR1835NC79VDD_INT123DATA14167RESETOUT/RUNRSTIN36NC80ADDR20124DATA13168VDD_INT37NC81ADDR19125VDD_INT169DPI_P0138NC82VDD_EXT126DATA15170DPI_P0239NC83ADDR16127NC171DPI_P0340VDD_EXT84ADDR15128NC172VDD_INT41VDD_INT85VDD_INT129RESET173DPI_P0542DAI_P0686ADDR14130TMS174DPI_P0644DAI_P0988AMI_RD132VDD_INT176								
ADDR13 33 DAI_P02 77 ADDR22 121 DATA11 165 V_DD_INT 34 V_DD_INT 78 ADDR21 122 DATA12 166 ADDR18 35 NC 79 V_DD_INT 123 DATA14 167 RESETOUT/RUNRSTIN 36 NC 80 ADDR20 124 DATA13 168 V_DD_INT 37 NC 81 ADDR19 125 V_DD_INT 169 DPI_P01 38 NC 82 V_DD_EXT 126 DATA15 170 DPI_P02 39 NC 83 ADDR16 127 NC 171 DPI_P03 40 V_D_INT 85 V_D_INT 129 RESET 173 DPI_P05 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P06 44 DAL_P09 88 AMI_RD 132 V_DINT 176								
VDD_INT 34 VDD_INT 78 ADDR21 122 DATA12 166 ADDR18 35 NC 79 VDD_INT 123 DATA14 167 RESETOUT/RUNRSTIN 36 NC 80 ADDR20 124 DATA13 168 VDD_INT 37 NC 81 ADDR19 125 VDD_INT 169 DPI_P01 38 NC 82 VDD_EXT 126 DATA15 170 DPI_P02 39 NC 83 ADDR16 127 NC 171 DPI_P03 40 VDD_EXT 84 ADDR15 128 NC 172 VDD_INT 41 VDD_INT 85 VDD_INT 129 RESET 173 DPI_P03 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P04 43 DAI_P05 87 AMI_WR 131 NC 175 DPI_P06 44 DAI_P09								
ADDR18 35 NC 79 V _{DD_INT} 123 DATA14 167 RESETOUT/RUNRSTIN 36 NC 80 ADDR20 124 DATA13 168 V _{DD_INT} 37 NC 81 ADDR19 125 V _{DD_INT} 169 DPI_P01 38 NC 82 V _{DD_EXT} 126 DATA15 170 DPI_P02 39 NC 83 ADDR16 127 NC 171 DPI_P03 40 V _{DD_EXT} 84 ADDR15 128 NC 172 V _{DD_INT} 41 V _{DD_INT} 85 V _{DD_INT} 129 RESET 173 DPI_P05 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P04 43 DAI_P05 87 AMI_WR 131 NC 175 DPI_P06 44 DAI_P09 88 AMI_RD 132 V _{DD_INT} 176								
RESETOUT/RUNRSTIN 36 NC 80 ADDR20 124 DATA13 168 V _{DD_INT} 37 NC 81 ADDR19 125 V _{DD_INT} 169 DPI_P01 38 NC 82 V _{DD_EXT} 126 DATA15 170 DPI_P02 39 NC 83 ADDR16 127 NC 171 DPI_P03 40 V _{DD_EXT} 84 ADDR15 128 NC 172 V _{DD_INT} 41 V _{DD_INT} 85 V _{DD_INT} 129 RESET 173 DPI_P05 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P04 43 DAI_P05 87 AMI_WR 131 NC 175 DPI_P06 44 DAI_P09 88 AMI_RD 132 V _{DD_INT} 176	—							
V _{DD_INT} 37 NC 81 ADDR19 125 V _{DD_INT} 169 DPI_P01 38 NC 82 V _{DD_EXT} 126 DATA15 170 DPI_P02 39 NC 83 ADDR16 127 NC 171 DPI_P03 40 V _{DD_EXT} 84 ADDR15 128 NC 172 V _{DD_INT} 41 V _{DD_INT} 85 V _{DD_INT} 129 RESET 173 DPI_P05 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P04 43 DAI_P05 87 AMI_WR 131 NC 175 DPI_P06 44 DAI_P09 88 AMI_RD 132 V _{DD_INT} 176					_			
DPI_P01 38 NC 82 V _{DD_EXT} 126 DATA15 170 DPI_P02 39 NC 83 ADDR16 127 NC 171 DPI_P03 40 V _{DD_EXT} 84 ADDR15 128 NC 172 V _{DD_INT} 41 V _{DD_INT} 85 V _{DD_INT} 129 RESET 173 DPI_P05 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P04 43 DAI_P05 87 AMI_WR 131 NC 175 DPI_P06 44 DAI_P09 88 AMI_RD 132 V _{DD_INT} 176								
DPI_P02 39 NC 83 ADDR16 127 NC 171 DPI_P03 40 V _{DD_EXT} 84 ADDR15 128 NC 172 V _{DD_INT} 41 V _{DD_INT} 85 V _{DD_INT} 129 RESET 173 DPI_P05 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P04 43 DAI_P05 87 AMI_WR 131 NC 175 DPI_P06 44 DAI_P09 88 AMI_RD 132 V _{DD_INT} 176								
DPI_P03 40 V _{DD_EXT} 84 ADDR15 128 NC 172 V _{DD_INT} 41 V _{DD_INT} 85 V _{DD_INT} 129 RESET 173 DPI_P05 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P04 43 DAI_P05 87 AMI_WR 131 NC 175 DPI_P06 44 DAI_P09 88 AMI_RD 132 V _{DD_INT} 176								
V _{DD_INT} 41 V _{DD_INT} 85 V _{DD_INT} 129 RESET 173 DPI_P05 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P04 43 DAI_P05 87 AMI_WR 131 NC 175 DPI_P06 44 DAI_P09 88 AMI_RD 132 V _{DD_INT} 176	—							
DPI_P05 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P04 43 DAI_P05 87 AMI_WR 131 NC 175 DPI_P06 44 DAI_P09 88 AMI_RD 132 V_DD_INT 176								
DPI_P04 43 DAI_P05 87 AMI_WR 131 NC 175 DPI_P06 44 DAI_P09 88 AMI_RD 132 V_DD_INT 176								
DPI_P06 44 DAI_P09 88 AMI_RD 132 V_DD_INT 176								
(NIC 177**	DF1_F00	44	DAI_PU9	00		152	V _{DD_INT} GND	176

Table 60. ADSP-21486 176-Lead LQFP_EP Lead Assignment (Numerical by Lead Number)

*No external connection should be made to this pin. Use as NC only.

** Lead no. 177 (exposed pad) is the GND supply (see Figure 50 and Figure 51) for the processor; this pad must be **robustly** connected to GND.

Table 61. ADSP-21483, ADSP-21487, ADSP-21488, and ADSP-21489 176-Lead LQFP_EP Lead Assignment (Numerical by Lead Number)

Lead Name	Lead No.	Lead Name	Lead No.	Lead Name	Lead No.	Lead Name	Lead No.
SDDQM	1	V _{DD_EXT}	45	DAI_P10	89	V _{DD_INT}	133
MSO	2	DPI_P08	46	V _{DD_INT}	90	FLAG0	134
SDCKE	3	DPI_P07	47	V _{DD_EXT}	91	FLAG1	135
V _{DD_INT}	4	V _{DD_INT}	48	DAI_P20	92	FLAG2	136
CLK_CFG1	5	DPI_P09	49	V _{DD_INT}	93	GND	137
ADDR0	6	DPI_P10	50	DAI_P08	94	FLAG3	138
BOOT_CFG0	7	DPI_P11	51	DAI_P14	95	GND	139
V _{DD_EXT}	8	DPI_P12	52	DAI_P04	96	GND	140
ADDR1	9	DPI_P13	53	DAI_P18	97	V _{DD_EXT}	141
ADDR2	10	DPI_P14	54	DAI_P17	98	GND	142
ADDR3	11	DAI_P03	55	DAI_P16	99	V _{DD_INT}	143
ADDR4	12	NC	56	DAI_P12	100	TRST	144
ADDR5	13	V _{DD_EXT}	57	DAI_P15	101	GND	145
BOOT_CFG1	14	NC	58	V _{DD INT}	102	EMU	146
GND	15	NC	59	DAI_P11	103	DATAO	147
ADDR6	16	NC	60	V _{DD_EXT}	104	DATA1	148
ADDR7	17	NC	61	V _{DD_INT}	105	DATA2	149
NC	18	V _{DD_INT}	62	BOOT_CFG2	106	DATA3	150
NC	19	NC	63	V _{DD_INT}	107	TDO	151
ADDR8	20	NC	64	AMI_ACK	108	DATA4	152
ADDR9	20	V _{DD_INT}	65	GND	109	V _{DD_EXT}	153
CLK_CFG0	22	NC	66	THD_M	110	DATA5	154
V _{DD_INT}	23	NC	67	THD_P	111	DATA6	155
	24	V _{DD_INT}	68	V _{DD_THD}	112	V _{DD_INT}	156
XTAL	25	NC	69	VDD_INT	112	DATA7	150
ADDR10	26	WDTRSTO	70	VDD_INT	114	TDI	158
SDA10	20 27	NC	70	MS1	114	SDCLK	158
	27		72		116		160
V _{DD_EXT}	28 29	V _{DD_EXT}	72		117	V _{DD_EXT} DATA8	161
	29 30	DAI_P07	73 74	WDT_CLKO		DATA8 DATA9	162
ADDR11		DAI_P13		WDT_CLKIN	118		
ADDR12	31	DAI_P19	75	V _{DD_EXT}	119	DATA10	163
ADDR17	32	DAI_P01	76	ADDR23	120	TCK	164
ADDR13	33	DAI_P02	77	ADDR22	121	DATA11	165
V _{DD_INT}	34	V _{DD_INT}	78	ADDR21	122	DATA12	166
ADDR18	35	NC	79	V _{DD_INT}	123	DATA14	167
RESETOUT/RUNRSTIN	36	NC	80	ADDR20	124	DATA13	168
V _{DD_INT}	37	NC	81	ADDR19	125	V _{DD_INT}	169
DPI_P01	38	NC	82	V _{DD_EXT}	126	DATA15	170
DPI_P02	39	NC	83	ADDR16	127	SDWE	171
DPI_P03	40	V _{DD_EXT}	84	ADDR15	128	SDRAS	172
V _{DD_INT}	41	V _{DD_INT}	85	V _{DD_INT}	129	RESET	173
DPI_P05	42	DAI_P06	86	ADDR14	130	TMS	174
DPI_P04	43	DAI_P05	87	AMI_WR	131	SDCAS	175
DPI_P06	44	DAI_P09	88	AMI_RD	132	V _{DD_INT}	176
						GND	177*

* Lead no. 177 (exposed pad) is the GND supply (see Figure 50 and Figure 51) for the processor; this pad must be **robustly** connected to GND.

AUTOMOTIVE PRODUCTS

The following models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models and designers should review the product Specifications on Page 18 section of this data sheet carefully. Only the automotive grade products shown in Table 63 are available for use in automotive applications. Contact your local ADI account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

Table 63. Automotive Products

	Notes			Processor Instruction		
Model ^{1, 2, 3, 4}		Temperature Range⁵	RAM	Rate (Max)	Package Description	Package Option
AD21486WBSWZ4Axx	6	-40°C to +85°C	5 Mbit	400 MHz	100-Lead LQFP_EP	SW-100-2
AD21487WBSWZ4Axx	6	-40°C to +85°C	5 Mbit	400 MHz	100-Lead LQFP_EP	SW-100-2
AD21487WBSWZ4Bxx	6	–40°C to +85°C	5 Mbit	400 MHz	176-Lead LQFP_EP	SW-176-2
AD21488WBSWZ1Axx		-40°C to +85°C	3 Mbit	266 MHz	100-Lead LQFP_EP	SW-100-2
AD21488WBSWZ2Axx		–40°C to +85°C	3 Mbit	300 MHz	100-Lead LQFP_EP	SW-100-2
AD21488WBSWZ1Bxx		–40°C to +85°C	2 Mbit	266 MHz	176-Lead LQFP_EP	SW-176-2
AD21488WBSWZ2Bxx		–40°C to +85°C	3 Mbit	266 MHz	176-Lead LQFP_EP	SW-176-2
AD21488WBSWZ4Bxx		–40°C to +85°C	3 Mbit	400 MHz	176-Lead LQFP_EP	SW-176-2
AD21489WBSWZ4xx		-40°C to +85°C	5 Mbit	400 MHz	100-Lead LQFP_EP	SW-100-2
AD21489WBSWZ4xxRL		–40°C to +85°C	5 Mbit	400 MHz	100-Lead LQFP_EP	SW-100-2
AD21489WBSWZ4Bxx		–40°C to +85°C	5 Mbit	400 MHz	176-Lead LQFP_EP	SW-176-2

¹Z =RoHS Compliant Part.

 ^{2}W = automotive applications.

³xx denotes the current die revision.

 4 RL = Tape and Reel.

⁵Referenced temperature is ambient temperature. The ambient temperature is not a specification. Please see Operating Conditions on Page 18 for junction temperature (T_j) specification which is the only temperature specification.

⁶This product contains IP from Dolby, DTS and DTLA. Proper software licenses required. Contact Analog Devices, Inc. for information.

ORDERING GUIDE

Model ¹	Notes	Temperature Range ²	RAM	Processor Instruction Rate (Max)	Package Description	Package Option
ADSP-21483KSWZ-2B	3	0°C to +70°C	3 Mbit	300 MHz	176-Lead LQFP_EP	SW-176-2
ADSP-21483KSWZ-3B	3	0°C to +70°C	3 Mbit	350 MHz	176-Lead LQFP_EP	SW-176-2
ADSP-21483KSWZ-3AB	3	0°C to +70°C	3 Mbit	350 MHz	100-Lead LQFP_EP	SW-100-2
ADSP-21483KSWZ-4B	3	0°C to +70°C	3 Mbit	400 MHz	176-Lead LQFP_EP	SW-176-2
ADSP-21486KSWZ-2A	3	0°C to +70°C	5 Mbit	300 MHz	100-Lead LQFP_EP	SW-100-2
ADSP-21486KSWZ-2B	3	0°C to +70°C	5 Mbit	300 MHz	176-Lead LQFP_EP	SW-176-2
ADSP-21486KSWZ-2AB	3	0°C to +70°C	5 Mbit	300 MHz	100-Lead LQFP_EP	SW-100-2
ADSP-21486KSWZ-2BB	3	0°C to +70°C	5 Mbit	300 MHz	176-Lead LQFP_EP	SW-176-2
ADSP-21486KSWZ-3A	3	0°C to +70°C	5 Mbit	350 MHz	100-Lead LQFP_EP	SW-100-2
ADSP-21486KSWZ-3B	3	0°C to +70°C	5 Mbit	350 MHz	176-Lead LQFP_EP	SW-176-2
ADSP-21486KSWZ-3AB	3	0°C to +70°C	5 Mbit	350 MHz	100-Lead LQFP_EP	SW-100-2
ADSP-21486KSWZ-3BB	3	0°C to +70°C	5 Mbit	350 MHz	176-Lead LQFP_EP	SW-176-2
ADSP-21486KSWZ-4A	3	0°C to +70°C	5 Mbit	400 MHz	100-Lead LQFP_EP	SW-100-2
ADSP-21486KSWZ-4AB	3	0°C to +70°C	5 Mbit	400 MHz	100-Lead LQFP_EP	SW-100-2

		Temperature		Processor Instruction		Package
Model ¹	Notes	Range ²	RAM	Rate (Max)	Package Description	Option
ADSP-21487KSWZ-2B	3	0°C to +70°C	5 Mbit	300 MHz	176-Lead LQFP_EP	SW-176-2
ADSP-21487KSWZ-2BB	3	0°C to +70°C	5 Mbit	300 MHz	176-Lead LQFP_EP	SW-176-2
ADSP-21487KSWZ-3B	3	0°C to +70°C	5 Mbit	350 MHz	176-Lead LQFP_EP	SW-176-2
ADSP-21487KSWZ-3BB	3	0°C to +70°C	5 Mbit	350 MHz	176-Lead LQFP_EP	SW-176-2
ADSP-21487KSWZ-4B	3	0°C to +70°C	5 Mbit	400 MHz	176-Lead LQFP_EP	SW-176-2
ADSP-21487KSWZ-4BB	3	0°C to +70°C	5 Mbit	400 MHz	176-Lead LQFP_EP	SW-176-2
ADSP-21487KSWZ-5B	3, 4	0°C to +70°C	5 Mbit	450 MHz	176-Lead LQFP_EP	SW-176-2
ADSP-21487KSWZ-5BB	3, 4	0°C to +70°C	5 Mbit	450 MHz	176-Lead LQFP_EP	SW-176-2
ADSP21487KSWZ5BBRL	5	0°C to +70°C	5 Mbit	450 MHz	176-Lead LQFP_EP	SW-176-2
ADSP-21488BSWZ-3A		-40°C to +85°C	3 Mbit	350 MHz	100-Lead LQFP_EP	SW-100-2
ADSP-21488KSWZ-3A		0°C to +70°C	3 Mbit	350 MHz	100-Lead LQFP_EP	SW-100-2
ADSP-21488KSWZ-3A1	6	0°C to +70°C	3 Mbit	350 MHz	100-Lead LQFP_EP	SW-100-2
ADSP-21488KSWZ-3B		0°C to +70°C	3 Mbit	350 MHz	176-Lead LQFP_EP	SW-176-2
ADSP-21488BSWZ-3B		–40°C to +85°C	3 Mbit	350 MHz	176-Lead LQFP_EP	SW-176-2
ADSP-21488KSWZ-4A		0°C to +70°C	3 Mbit	400 MHz	100-Lead LQFP_EP	SW-100-2
ADSP-21488BSWZ-4A		–40°C to +85°C	3 Mbit	400 MHz	100-Lead LQFP_EP	SW-100-2
ADSP-21488KSWZ-4B		0°C to +70°C	3 Mbit	400 MHz	176-Lead LQFP_EP	SW-176-2
ADSP-21488BSWZ-4B		–40°C to +85°C	3 Mbit	400 MHz	176-Lead LQFP_EP	SW-176-2
ADSP-21488KSWZ-4B1	6	0°C to +70°C	3 Mbit	400 MHz	176-Lead LQFP_EP	SW-176-2
ADSP-21489KSWZ-3A		0°C to +70°C	5 Mbit	350 MHz	100-Lead LQFP_EP	SW-100-2
ADSP-21489BSWZ-3A		–40°C to +85°C	5 Mbit	350 MHz	100-Lead LQFP_EP	SW-100-2
ADSP-21489KSWZ-3B		0°C to +70°C	5 Mbit	350 MHz	176-Lead LQFP_EP	SW-176-2
ADSP-21489BSWZ-3B		–40°C to +85°C	5 Mbit	350 MHz	176-Lead LQFP_EP	SW-176-2
ADSP-21489KSWZ-4A		0°C to +70°C	5 Mbit	400 MHz	100-Lead LQFP_EP	SW-100-2
ADSP-21489BSWZ-4A		–40°C to +85°C	5 Mbit	400 MHz	100-Lead LQFP_EP	SW-100-2
ADSP-21489KSWZ-4B		0°C to +70°C	5 Mbit	400 MHz	176-Lead LQFP_EP	SW-176-2
ADSP-21489BSWZ-4B		–40°C to +85°C	5 Mbit	400 MHz	176-Lead LQFP_EP	SW-176-2
ADSP-21489KSWZ-5B	4	0°C to +70°C	5 Mbit	450 MHz	176-Lead LQFP_EP	SW-176-2

 1 Z = RoHS compliant part.

² Referenced temperature is ambient temperature. The ambient temperature is not a specification. Please see Operating Conditions on Page 18 for junction temperature (T_j) specification, which is the only temperature specification.

³ The ADSP-21483, ADSP-21486, and ADSP-21487 models are available with factory programmed ROM including the latest multichannel audio decoding and post-processing algorithms from Dolby Labs and DTS. ROM contents may vary depending on chip version and silicon revision. Please visit www.analog.com for complete information.
⁴ See Engineer-to-Engineer Note Static Voltage Scaling for ADSP-2148x SHARC Processors (EE-357) for operating ADSP-2148x processors at 450 MHz.

 5 RL = Tape and Reel.

⁶This product contains a –140 dB sample rate converter.