

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Active
Туре	Floating Point
Interface	EBI/EMI, DAI, I ² C, SPI, SPORT, UART/USART
Clock Rate	300MHz
Non-Volatile Memory	External
On-Chip RAM	3Mbit
Voltage - I/O	3.30V
Voltage - Core	1.10V
Operating Temperature	-40°C ~ 125°C (TJ)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	100-LQFP-EP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/ad21488wbswz2a02

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE OF CONTENTS

General Description	. 3
Family Core Architecture	. 4
Family Peripheral Architecture	. 7
I/O Processor Features	10
System Design	11
Development Tools	12
Additional Information	13
Related Signal Chains	13
Pin Function Descriptions	14
Specifications	18
Operating Conditions	18
Electrical Characteristics	19
Absolute Maximum Ratings	21
ESD Sensitivity	21

REVISION HISTORY

5/2016—Rev. C to Rev. D	
Changes to AMI Read	33
Updated Outline Dimensions	64
Changes to Automotive Products	66
Changes to Ordering Guide	66

1
1
2
5
5
5
6
8
0
4
5
6
6

The diagram on Page 1 shows the two clock domains that make up the ADSP-2148x processors. The core clock domain contains the following features:

- Two processing elements (PEx, PEy), each of which comprises an ALU, multiplier, shifter, and data register file
- Data address generators (DAG1, DAG2)
- Program sequencer with instruction cache
- PM and DM buses capable of supporting 2x64-bit data transfers between memory and the core at every core processor cycle
- One periodic interval timer with pinout
- On-chip SRAM (5 Mbit) and mask-programmable ROM (4 Mbit)
- JTAG test access port for emulation and boundary scan. The JTAG provides software debug through user breakpoints which allows flexible exception handling.

The block diagram of the ADSP-2148x on Page 1 also shows the peripheral clock domain (also known as the I/O processor) which contains the following features:

- IOD0 (peripheral DMA) and IOD1 (external port DMA) buses for 32-bit data transfers
- Peripheral and external port buses for core connection
- External port with an AMI and SDRAM controller
- 4 units for PWM control
- 1 memory-to-memory (MTM) unit for internal-to-internal memory transfers
- Digital applications interface that includes four precision clock generators (PCG), an input data port (IDP/PDAP) for serial and parallel interconnects, an S/PDIF receiver/transmitter, four asynchronous sample rate converters, eight serial ports, and a flexible signal routing unit (DAI SRU).
- Digital peripheral interface that includes two timers, a 2-wire interface (TWI), one UART, two serial peripheral interfaces (SPI), 2 precision clock generators (PCG), pulse width modulation (PWM), and a flexible signal routing unit (DPI SRU2).

As shown in the SHARC core block diagram on Page 5, the processor uses two computational units to deliver a significant performance increase over the previous SHARC processors on a range of DSP algorithms. With its SIMD computational hardware, the processors can perform 2.7 GFLOPS running at 450 MHz.

FAMILY CORE ARCHITECTURE

The ADSP-2148x is code compatible at the assembly level with the ADSP-2147x, ADSP-2146x, ADSP-2137x, ADSP-2136x, ADSP-2126x, ADSP-21160, and ADSP-21161, and with the first generation ADSP-2106x SHARC processors. The ADSP-2148x shares architectural features with the ADSP-2126x, ADSP-2136x, ADSP-2137x, ADSP-2146x and ADSP-2116x SIMD SHARC processors, as shown in Figure 2 and detailed in the following sections.

SIMD Computational Engine

The ADSP-2148x contains two computational processing elements that operate as a single-instruction, multiple-data (SIMD) engine. The processing elements are referred to as PEX and PEY and each contains an ALU, multiplier, shifter, and register file. PEx is always active, and PEy may be enabled by setting the PEYEN mode bit in the MODE1 register. SIMD mode allows the processor to execute the same instruction in both processing elements, but each processing element operates on different data. This architecture is efficient at executing math intensive DSP algorithms.

SIMD mode also affects the way data is transferred between memory and the processing elements because twice the data bandwidth is required to sustain computational operation in the processing elements. Therefore, entering SIMD mode also doubles the bandwidth between memory and the processing elements. When using the DAGs to transfer data in SIMD mode, two data values are transferred with each memory or register file access.

Independent, Parallel Computation Units

Within each processing element is a set of computational units. The computational units consist of an arithmetic/logic unit (ALU), multiplier, and shifter. These units perform all operations in a single cycle and are arranged in parallel, maximizing computational throughput. Single multifunction instructions execute parallel ALU and multiplier operations. In SIMD mode, the parallel ALU and multiplier operations occur in both processing elements. These computation units support IEEE 32-bit single-precision floating-point, 40-bit extended precision floating-point, and 32-bit fixed-point data formats.

Timer

The processor contains a core timer that can generate periodic software interrupts. The core timer can be configured to use FLAG3 as a timer expired signal.

Data Register File

Each processing element contains a general-purpose data register file. The register files transfer data between the computation units and the data buses, and store intermediate results. These 10-port, 32-register (16 primary, 16 secondary) register files, combined with the processor's enhanced Harvard architecture, allow unconstrained data flow between computation units and internal memory. The registers in PEX are referred to as R0–R15 and in PEY as S0–S15.

Context Switch

Many of the processor's registers have secondary registers that can be activated during interrupt servicing for a fast context switch. The data registers in the register file, the DAG registers, and the multiplier result registers all have secondary registers. The primary registers are active at reset, while the secondary registers are activated by control bits in a mode control register.

Figure 2. SHARC Core Block Diagram

Universal Registers

These registers can be used for general-purpose tasks. The USTAT (4) registers allow easy bit manipulations (Set, Clear, Toggle, Test, XOR) for all peripheral registers (control/status).

The data bus exchange register (PX) permits data to be passed between the 64-bit PM data bus and the 64-bit DM data bus, or between the 40-bit register file and the PM/DM data bus. These registers contain hardware to handle the data width difference.

Single-Cycle Fetch of Instruction and Four Operands

The ADSP-2148x features an enhanced Harvard architecture in which the data memory (DM) bus transfers data and the program memory (PM) bus transfers both instructions and data. With the its separate program and data memory buses and onchip instruction cache, the processor can simultaneously fetch four operands (two over each data bus) and one instruction (from the cache), all in a single cycle.

Instruction Cache

The processor includes an on-chip instruction cache that enables three-bus operation for fetching an instruction and four data values. The cache is selective—only the instructions whose fetches conflict with PM bus data accesses are cached. This cache allows full speed execution of core, looped operations such as digital filter multiply-accumulates, and FFT butterfly processing.

Data Address Generators With Zero-Overhead Hardware Circular Buffer Support

The two data address generators (DAGs) are used for indirect addressing and implementing circular data buffers in hardware. Circular buffers allow efficient programming of delay lines and other data structures required in digital signal processing, and are commonly used in digital filters and Fourier transforms. The two DAGs contain sufficient registers to allow the creation of up to 32 circular buffers (16 primary register sets, 16 secondary). The DAGs automatically handle address pointer wraparound, reduce overhead, increase performance, and simplify implementation. Circular buffers can start and end at any memory location.

Flexible Instruction Set

The 48-bit instruction word accommodates a variety of parallel operations, for concise programming. For example, the processor can conditionally execute a multiply, an add, and a

• Arbitration logic to coordinate core and DMA transfers between internal and external memory over the external port.

Non-SDRAM external memory address space is shown in Table 5.

Table 5.	External Memor	y for Non-SDRAM Addresses
----------	----------------	---------------------------

Bank	Size in Words	Address Range
Bank 0	6M	0x0020 0000-0x007F FFFF
Bank 1	8M	0x0400 0000-0x047F FFFF
Bank 2	8M	0x0800 0000-0x087F FFFF
Bank 3	8M	0x0C00 0000-0x0C7F FFFF

External Port

The external port provides a high performance, glueless interface to a wide variety of industry-standard memory devices. The external port, available on the 176-lead LQFP, may be used to interface to synchronous and/or asynchronous memory devices through the use of its separate internal memory controllers. The first is an SDRAM controller for connection of industry-standard synchronous DRAM devices while the second is an asynchronous memory controller intended to interface to a variety of memory devices. Four memory select pins enable up to four separate devices to coexist, supporting any desired combination of synchronous and asynchronous device types.

Asynchronous Memory Controller

The asynchronous memory controller provides a configurable interface for up to four separate banks of memory or I/O devices. Each bank can be independently programmed with different timing parameters, enabling connection to a wide variety of memory devices including SRAM, flash, and EPROM, as well as I/O devices that interface with standard memory control lines. Bank 0 occupies a 6M word window and banks 1, 2, and 3 occupy a 8M word window in the processor's address space but, if not fully populated, these windows are not made contiguous by the memory controller logic.

SDRAM Controller

The SDRAM controller provides an interface of up to four separate banks of industry-standard SDRAM devices at speeds up to f_{SDCLK} . Fully compliant with the SDRAM standard, each bank has its own memory select line ($\overline{MS0}$ – $\overline{MS3}$), and can be configured to contain between 4M bytes and 256M bytes of memory. SDRAM external memory address space is shown in Table 6. NOTE: this feature is not available on the ADSP-21486 model.

Table 6.	External Mem	ory for SDRAM	Addresses
----------	--------------	---------------	-----------

	Size in	
Bank	Words	Address Range
Bank 0	62M	0x0020 0000-0x03FF FFFF
Bank 1	64M	0x0400 0000-0x07FF FFFF
Bank 2	64M	0x0800 0000-0x0BFF FFFF
Bank 3	64M	0x0C00 0000-0x0FFF FFFF

A set of programmable timing parameters is available to configure the SDRAM banks to support slower memory devices. Note that 32-bit wide devices are not supported on the SDRAM and AMI interfaces.

The SDRAM controller address, data, clock, and control pins can drive loads up to distributed 30 pF. For larger memory systems, the SDRAM controller external buffer timing should be selected and external buffering should be provided so that the load on the SDRAM controller pins does not exceed 30 pF.

Note that the external memory bank addresses shown are for normal-word (32-bit) accesses. If 48-bit instructions as well as 32-bit data are both placed in the same external memory bank, care must be taken while mapping them to avoid overlap.

SIMD Access to External Memory

The SDRAM controller on the processor supports SIMD access on the 64-bit EPD (external port data bus) which allows access to the complementary registers on the PEy unit in the normal word space (NW). This removes the need to explicitly access the complimentary registers when the data is in external SDRAM memory.

VISA and ISA Access to External Memory

The SDRAM controller on the ADSP-2148x processors supports VISA code operation which reduces the memory load since the VISA instructions are compressed. Moreover, bus fetching is reduced because, in the best case, one 48-bit fetch contains three valid instructions. Code execution from the traditional ISA operation is also supported. Note that code execution is only supported from bank 0 regardless of VISA/ISA. Table 7 shows the address ranges for instruction fetch in each mode.

Table 7. External Bank 0 Instruction Fetch

Access Type	Size in Words	Address Range
ISA (NW)	4M	0x0020 0000-0x005F FFFF
VISA (SW)	10M	0x0060 0000-0x00FF FFFF

Pulse-Width Modulation

The PWM module is a flexible, programmable, PWM waveform generator that can be programmed to generate the required switching patterns for various applications related to motor and engine control or audio power control. The PWM generator can generate either center-aligned or edge-aligned PWM waveforms. In addition, it can generate complementary signals on two outputs in paired mode or independent signals in nonpaired mode (applicable to a single group of four PWM waveforms).

The entire PWM module has four groups of four PWM outputs generating 16 PWM outputs in total. Each PWM group produces two pairs of PWM signals on the four PWM outputs.

The outputs of PCG A and B can be routed through the DAI pins and the outputs of PCG C and D can be driven on to the DAI as well as the DPI pins.

Digital Peripheral Interface (DPI)

The ADSP-2148x SHARC processors have a digital peripheral interface that provides connections to two serial peripheral interface ports (SPI), one universal asynchronous receiver-transmitter (UART), 12 flags, a 2-wire interface (TWI), three PWM modules (PWM3–1), and two general-purpose timers.

Serial Peripheral (Compatible) Interface (SPI)

The SPI is an industry-standard synchronous serial link, enabling the SPI-compatible port to communicate with other SPI compatible devices. The SPI consists of two data pins, one device select pin, and one clock pin. It is a full-duplex synchronous serial interface, supporting both master and slave modes. The SPI port can operate in a multimaster environment by interfacing with up to four other SPI-compatible devices, either acting as a master or slave device. The SPI-compatible peripheral implementation also features programmable baud rate and clock phase and polarities. The SPI-compatible port uses open drain drivers to support a multimaster configuration and to avoid data contention.

UART Port

The processors provide a full-duplex Universal Asynchronous Receiver/Transmitter (UART) port, which is fully compatible with PC-standard UARTs. The UART port provides a simplified UART interface to other peripherals or hosts, supporting full-duplex, DMA-supported, asynchronous transfers of serial data. The UART also has multiprocessor communication capability using 9-bit address detection. This allows it to be used in multidrop networks through the RS-485 data interface standard. The UART port also includes support for 5 to 8 data bits, 1 or 2 stop bits, and none, even, or odd parity. The UART port supports two modes of operation:

- PIO (programmed I/O)—The processor sends or receives data by writing or reading I/O-mapped UART registers. The data is double-buffered on both transmit and receive.
- DMA (direct memory access)—The DMA controller transfers both transmit and receive data. This reduces the number and frequency of interrupts required to transfer data to and from memory. The UART has two dedicated DMA channels, one for transmit and one for receive. These DMA channels have lower default priority than most DMA channels because of their relatively low service rates.

Timers

The ADSP-2148x has a total of three timers: a core timer that can generate periodic software interrupts and two generalpurpose timers that can generate periodic interrupts and be independently set to operate in one of three modes:

- Pulse waveform generation mode
- Pulse width count/capture mode
- External event watchdog mode

The core timer can be configured to use FLAG3 as a timer expired signal, and the general-purpose timers have one bidirectional pin and four registers that implement its mode of operation: a 6-bit configuration register, a 32-bit count register, a 32-bit period register, and a 32-bit pulse width register. A single control and status register enables or disables the generalpurpose timer.

2-Wire Interface Port (TWI)

The TWI is a bidirectional 2-wire, serial bus used to move 8-bit data while maintaining compliance with the I²C bus protocol. The TWI master incorporates the following features:

- 7-bit addressing
- Simultaneous master and slave operation on multiple device systems with support for multi master data arbitration
- Digital filtering and timed event processing
- 100 kbps and 400 kbps data rates
- Low interrupt rate

I/O PROCESSOR FEATURES

The I/O processors provide up to 65 channels of DMA, as well as an extensive set of peripherals.

DMA Controller

The processor's on-chip DMA controller allows data transfers without processor intervention. The DMA controller operates independently and invisibly to the processor core, allowing DMA operations to occur while the core is simultaneously executing its program instructions. DMA transfers can occur between the ADSP-2148x's internal memory and its serial ports, the SPI-compatible (serial peripheral interface) ports, the IDP (input data port), the PDAP, or the UART. The DMA channel summary is shown in Table 8.

Programs can be downloaded to the ADSP-2148x using DMA transfers. Other DMA features include interrupt generation upon completion of DMA transfers and DMA chaining for automatic linked DMA transfers.

Table 8. DMA Channels

Peripheral	DMA Channels
SPORTs	16
IDP/PDAP	8
SPI	2
UART	2
External Port	2
Accelerators	2
Memory-to-Memory	2
MLB ¹	31

¹Automotive models only.

Table 11. Pin Descriptions (Continued)

Name	Туре	State During/ After Reset	Description
MLBCLK ¹	1		Media Local Bus Clock. This clock is generated by the MLB controller that is synchro- nized to the MOST network and provides the timing for the entire MLB interface at 49.152 MHz at FS=48 kHz. When the MLB controller is not used, this pin should be grounded.
MLBDAT ¹	I/O/T in 3 pin mode. I in 5 pin mode.	High-Z	Media Local Bus Data. The MLBDAT line is driven by the transmitting MLB device and is received by all other MLB devices including the MLB controller. The MLBDAT line carries the actual data. In 5-pin MLB mode, this pin is an input only. When the MLB controller is not used, this pin should be grounded.
MLBSIG ¹	I/O/T in 3 pin mode. I in 5 pin mode	High-Z	Media Local Bus Signal. This is a multiplexed signal which carries the Channel/Address generated by the MLB Controller, as well as the Command and RxStatus bytes from MLB devices. In 5-pin mode, this pin is input only. When the MLB controller is not used, this pin should be grounded.
MLBDO ¹	O/T	High-Z	Media Local Bus Data Output (in 5 pin mode). This pin is used only in 5-pin MLB mode. This serves as the output data pin in 5-pin mode. When the MLB controller is not used, this pin should be connected to ground.
MLBSO ¹	0/Т	High-Z	Media Local Bus Signal Output (in 5 pin mode). This pin is used only in 5-pin MLB mode. This serves as the output signal pin in 5-pin mode. When the MLB controller is not used, this pin should be connected to ground.
TDI	l (ipu)		Test Data Input (JTAG). Provides serial data for the boundary scan logic.
TDO	O/T	High-Z	Test Data Output (JTAG). Serial scan output of the boundary scan path.
TMS	l (ipu)		Test Mode Select (JTAG). Used to control the test state machine.
ТСК	1		Test Clock (JTAG). Provides a clock for JTAG boundary scan. TCK must be asserted (pulsed low) after power-up or held low for proper operation of the device.
TRST	l (ipu)		Test Reset (JTAG). Resets the test state machine. TRST must be asserted (pulsed low) after power-up or held low for proper operation of the processor.
EMU	O (O/D, ipu)	High-Z	Emulation Status. Must be connected to the ADSP-2148x Analog Devices DSP Tools product line of JTAG emulators target board connector only.

The following symbols appear in the Type column of this table: $\mathbf{A} = asynchronous$, $\mathbf{I} = input$, $\mathbf{O} = output$, $\mathbf{S} = synchronous$, $\mathbf{A}/\mathbf{D} = active drive$, $\mathbf{O}/\mathbf{D} = open drain$, and $\mathbf{T} = three-state$, $\mathbf{ipd} = internal pull-down resistor$, $\mathbf{ipu} = internal pull-up resistor$.

The internal pull-up (ipu) and internal pull-down (ipd) resistors are designed to hold the internal path from the pins at the expected logic levels. To pull-up or pull-down the external pads to the expected logic levels, use external resistors. Internal pull-up/pull-down resistors cannot be enabled/disabled and the value of these resistors cannot be programmed. The range of an ipu resistor can be between $26 \text{ k}\Omega - 63 \text{ k}\Omega$. The range of an ipu resistor can be between $31 \text{ k}\Omega - 85 \text{ k}\Omega$. The three-state voltage of ipu pads will not reach to the full V_{DD_EXT} level; at typical conditions the voltage is in the range of 2.3 V to 2.7 V.

In this table, all pins are LVTTL compliant with the exception of the thermal diode pins.

f _{CCLK}	V _{DD_INT} (V	V _{DD INT} (V)									
(MHz)	0.975 V	1.0 V	1.025 V	1.05 V	1.075 V	1.10 V	1.125 V	1.15 V	1.175 V		
100	76	77	81	84	87	88	90	92	95		
150	117	119	123	126	130	133	136	139	144		
200	153	156	161	165	170	174	179	183	188		
250	190	195	201	207	212	217	223	229	235		
300	227	233	240	246	253	260	266	273	280		
350	263	272	278	286	294	302	309	318	325		
400	300	309	317	326	335	344	352	361	370		
450	339	349	356	365	374	385	394	405	415		

Table 15. Dynamic Current in CCLK Domain $-I_{DD_{INT}_{DYNAMIC}}$ (mA, with ASF = 1.0)^{1, 2}

¹The values are not guaranteed as standalone maximum specifications. They must be combined with static current per the equations of Electrical Characteristics on Page 19. ²Valid frequency and voltage ranges are model-specific. See Operating Conditions on Page 18.

ABSOLUTE MAXIMUM RATINGS

Stresses at or above those listed in Table 16 may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Table 16. Absolute Maximum Ratings

Parameter	Rating
Internal (Core) Supply Voltage (V _{DD_INT})	–0.3 V to +1.32 V
External (I/O) Supply Voltage (V _{DD_EXT})	–0.3 V to +3.6 V
Thermal Diode Supply Voltage	–0.3 V to +3.6 V
(V _{DD_THD})	
Input Voltage	–0.5 V to +3.6 V
Output Voltage Swing	–0.5 V to V _{DD_EXT} +0.5 V
Storage Temperature Range	–65°C to +150°C
Junction Temperature While Biased	125°C

ESD SENSITIVITY

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

MAXIMUM POWER DISSIPATION

See Engineer-to-Engineer Note Estimating Power for ADSP-214xx SHARC Processors (EE-348) for detailed thermal and power information regarding maximum power dissipation. For information on package thermal specifications, see Thermal Characteristics on Page 56.

PACKAGE INFORMATION

The information presented in Figure 3 provides details about the package branding for the ADSP-2148x processors. For a complete listing of product availability, see Ordering Guide on Page 66.

ANALOG DEVICES
ADSP-2148x
tppZ-cc
vvvvv.x n.n
#yyww country_of_origin
SHARC

Figure 3. Typical Package Brand

Table 17. Package Brand Information¹

Brand Key	Field Description
t	Temperature Range
рр	Package Type
Z	RoHS Compliant Option
сс	See Ordering Guide
ννννν.χ	Assembly Lot Code
n.n	Silicon Revision
#	RoHS Compliant Designation
ууww	Date Code

¹ Non automotive only. For branding information specific to automotive products, contact Analog Devices Inc.

TIMING SPECIFICATIONS

Use the exact timing information given. Do not attempt to derive parameters from the addition or subtraction of others. While addition or subtraction would yield meaningful results for an individual device, the values given in this data sheet reflect statistical variations and worst cases. Consequently, it is not meaningful to add parameters to derive longer times. See Figure 43 on Page 55 for voltage reference levels.

Switching characteristics specify how the processor changes its signals. Circuitry external to the processor must be designed for compatibility with these signal characteristics. Switching characteristics describe what the processor will do in a given circumstance. Use switching characteristics to ensure that any timing requirement of a device connected to the processor (such as memory) is satisfied. Timing requirements apply to signals that are controlled by circuitry external to the processor, such as the data input for a read operation. Timing requirements guarantee that the processor operates correctly with other devices.

Core Clock Requirements

The processor's internal clock (a multiple of CLKIN) provides the clock signal for timing internal memory, the processor core, and the serial ports. During reset, program the ratio between the processor's internal clock frequency and external (CLKIN) clock frequency with the CLK_CFG1–0 pins.

The processor's internal clock switches at higher frequencies than the system input clock (CLKIN). To generate the internal clock, the processor uses an internal phase-locked loop (PLL, see Figure 4). This PLL-based clocking minimizes the skew between the system clock (CLKIN) signal and the processor's internal clock.

Figure 4. Core Clock and System Clock Relationship to CLKIN

Voltage Controlled Oscillator (VCO)

In application designs, the PLL multiplier value should be selected in such a way that the VCO frequency never exceeds $f_{\rm VCO}$ specified in Table 20.

- The product of CLKIN and PLLM must never exceed 1/2 of f_{VCO} (max) in Table 20 if the input divider is not enabled (INDIV = 0).
- The product of CLKIN and PLLM must never exceed f_{VCO} (max) in Table 20 if the input divider is enabled (INDIV = 1).

The VCO frequency is calculated as follows:

 $\begin{aligned} f_{VCO} &= 2 \times PLLM \times f_{INPUT} \\ f_{CCLK} &= (2 \times PLLM \times f_{INPUT}) \div PLLD \end{aligned}$

where:

 f_{VCO} = VCO output

PLLM = Multiplier value programmed in the PMCTL register. During reset, the PLLM value is derived from the ratio selected using the CLK_CFG pins in hardware.

PLLD = 2, 4, 8, or 16 based on the divider value programmed on the PMCTL register. During reset this value is 2.

 f_{INPUT} = is the input frequency to the PLL.

 f_{INPUT} = CLKIN when the input divider is disabled or

 f_{INPUT} = CLKIN ÷ 2 when the input divider is enabled

AMI Read

Use these specifications for asynchronous interfacing to memories. Note that timing for AMI_ACK, ADDR, DATA, AMI_RD, AMI_WR, and strobe timing parameters only apply to asynchronous access mode.

Table 32. AMI Read

Parameter		Min	Max	Unit
Timing Requirements				
t _{DAD} ^{1, 2, 3}	Address Selects Delay to Data Valid		W + t_{SDCLK} – 5.4	ns
t _{DRLD} ^{1, 3}	AMI_RD Low to Data Valid		W – 3.2	ns
t _{SDS}	Data Setup to AMI_RD High	2.5		ns
t _{HDRH} ^{4, 5}	Data Hold from AMI_RD High	0		ns
t _{DAAK} ^{2, 6}	AMI_ACK Delay from Address, Selects		$t_{SDCLK} - 9.5 + W$	ns
t _{DSAK} 4	AMI_ACK Delay from AMI_RD Low		W – 7	ns
Switching Cha	racteristics			
t _{DRHA}	Address Selects Hold After AMI_RD High	RHC + 0.20		ns
t _{DARL} ²	Address Selects to AMI_RD Low	t _{SDCLK} – 3.8		ns
t _{RW}	AMI_RD Pulse Width	W – 1.4		ns
t _{RWR}	AMI_RD High to AMI_RD Low	HI + t _{SDCLK} – 1		ns

W = (number of wait states specified in AMICTLx register) \times t_{SDCLK}.

 $\mathsf{RHC} = (\mathsf{number of Read Hold Cycles specified in AMICTLx register}) \times t_{\mathsf{SDCLK}}$

Where PREDIS = 0

HI = RHC (if IC=0): Read to Read from same bank

 $HI = RHC + t_{SDCLK}$ (if IC>0): Read to Read from same bank

HI = RHC + IC: Read to Read from different bank

 $HI = RHC + Max (IC, (4 \times t_{SDCLK}))$: Read to Write from same or different bank

Where PREDIS = 1

 $HI = RHC + Max (IC, (4 \times t_{SDCLK}))$: Read to Write from same or different bank

 $HI = RHC + (3 \times t_{SDCLK})$: Read to Read from same bank

HI = RHC + Max (IC, (3 × t_{SDCLK}): Read to Read from different bank

 $\mathsf{IC} = (\mathsf{number of idle cycles specified in AMICTLx register}) \times \mathsf{t}_{\mathsf{SDCLK}}$

H = (number of hold cycles specified in AMICTLx register) \times tSDCLK

¹Data delay/setup: System must meet t_{DAD}, t_{DRLD}, or t_{SDS}.

² The falling edge of $\overline{\text{MS}}$ x, is referenced.

³The maximum limit of timing requirement values for t_{DAD} and t_{DRLD} parameters are applicable for the case where AMI_ACK is always high and when the ACK feature is not used.

⁴Note that timing for AMI_ACK, ADDR, DATA, AMI_RD, AMI_WR, and strobe timing parameters only apply to asynchronous access mode.

⁵ Data hold: User must meet t_{HDRH} in asynchronous access mode. See Test Conditions on Page 55 for the calculation of hold times given capacitive and dc loads.

⁶AMI_ACK delay/setup: User must meet t_{DAAK}, or t_{DSAK}, for deassertion of AMI_ACK (low).

Serial Ports

In slave transmitter mode and master receiver mode, the maximum serial port frequency is $f_{PCLK}/8$. In master transmitter mode and slave receiver mode, the maximum serial port clock frequency is $f_{PCLK}/4$. To determine whether communication is possible between two devices at clock speed n, the following

specifications must be confirmed: 1) frame sync delay and frame sync setup and hold; 2) data delay and data setup and hold; and 3) SCLK width.

Serial port signals (SCLK, frame sync, Data Channel A, Data Channel B) are routed to the DAI_P20-1 pins using the SRU. Therefore, the timing specifications provided below are valid at the DAI_P20-1 pins.

Parameter		Min	Max	Unit
Timing Requi	rements			
t _{SFSE} ¹	Frame Sync Setup Before SCLK (Externally Generated Frame Sync in either Transmit or Receive Mode)	2.5		ns
t _{HFSE} 1	Frame Sync Hold After SCLK (Externally Generated Frame Sync in either Transmit or Receive Mode)	2.5		ns
t _{SDRE} ¹	Receive Data Setup Before Receive SCLK	1.9		ns
t _{HDRE} 1	Receive Data Hold After SCLK	2.5		ns
t _{SCLKW}	SCLK Width	(t _{PCLK} × 4) ÷ 2 – 1.5		ns
t _{SCLK}	SCLK Period	$t_{PCLK} \times 4$		ns
Switching Ch	aracteristics			
t _{DFSE} ²	Frame Sync Delay After SCLK (Internally Generated Frame Sync in either Transmit or Receive Mode)		10.25	ns
t _{HOFSE} ²	Frame Sync Hold After SCLK (Internally Generated Frame Sync in either Transmit or Receive Mode)	2		ns
t _{DDTE} ²	Transmit Data Delay After Transmit SCLK		9	ns
t _{HDTE} ²	Transmit Data Hold After Transmit SCLK	2		ns

Table 34. Serial Ports—External Clock

¹Referenced to sample edge.

²Referenced to drive edge.

Table 35. Serial Ports—Internal Clock

Paramete	r	Min	Max	Unit
Timing Rea	quirements			
t _{SFSI} 1	Frame Sync Setup Before SCLK (Externally Generated Frame Sync in either Transmit or Receive Mode)	7		ns
t _{HFSI} 1	Frame Sync Hold After SCLK (Externally Generated Frame Sync in either Transmit or Receive Mode)	2.5		ns
t _{SDRI} 1	Receive Data Setup Before SCLK	7		ns
t _{HDRI} 1	Receive Data Hold After SCLK	2.5		ns
Switching	Characteristics			
t _{DFSI} ²	Frame Sync Delay After SCLK (Internally Generated Frame Sync in Transmit Mode)		4	ns
t _{HOFSI} 2	Frame Sync Hold After SCLK (Internally Generated Frame Sync in Transmit Mode)	-1		ns
t _{DFSIR} ²	Frame Sync Delay After SCLK (Internally Generated Frame Sync in Receive Mode)		9.75	ns
t _{HOFSIR} ²	Frame Sync Hold After SCLK (Internally Generated Frame Sync in Receive Mode)	-1		ns
t _{DDTI} ²	Transmit Data Delay After SCLK		3.25	ns
t _{HDTI} ²	Transmit Data Hold After SCLK	-2		ns
t _{SCKLIW}	Transmit or Receive SCLK Width	$2 \times t_{PCLK} - 1.5$	$2 \times t_{PCLK} + 1.5$	ns

¹Referenced to the sample edge.

²Referenced to drive edge.

Table 37. Serial Ports—Enable and Three-State

Parameter		Min	Max	Unit
Switching C	haracteristics			
t _{DDTEN} 1	Data Enable from External Transmit SCLK	2		ns
t _{DDTTE} 1	Data Disable from External Transmit SCLK		11.5	ns
t _{DDTIN} 1	Data Enable from Internal Transmit SCLK	-1.5		ns

¹Referenced to drive edge.

Figure 23. Serial Ports—Enable and Three-State

Input Data Port (IDP)

The timing requirements for the IDP are given in Table 39. IDP signals are routed to the DAI_P20-1 pins using the SRU. Therefore, the timing specifications provided below are valid at the DAI_P20-1 pins.

Table 39. Input Data Port (IDP)

Parameter		Min	Мах	Unit
Timing Requ	irements			
t _{SISFS} 1	Frame Sync Setup Before Serial Clock Rising Edge	3.8		ns
t _{SIHFS} ¹	Frame Sync Hold After Serial Clock Rising Edge	2.5		ns
t _{SISD} ¹	Data Setup Before Serial Clock Rising Edge	2.5		ns
t _{SIHD} 1	Data Hold After Serial Clock Rising Edge	2.5		ns
t _{IDPCLKW}	Clock Width	$(t_{PCLK} \times 4) \div 2 - 1$		ns
t _{IDPCLK}	Clock Period	$t_{PCLK} \times 4$		ns

¹ The serial clock, data, and frame sync signals can come from any of the DAI pins. The serial clock and frame sync signals can also come via PCG or SPORTs. PCG's input can be either CLKIN or any of the DAI pins.

Figure 25. IDP Master Timing

Figure 37. MLB Timing (3-Pin Interface)

Table 53. MLB Interface, 5-Pin Specifications

Parameter		Min	Тур	Max	Unit
5-Pin Chard	acteristics				
t _{MLBCLK}	MLB Clock Period				
	512 FS		40		ns
	256 FS		81		ns
t _{MCKL}	MLBCLK Low Time				
	512 FS	15			ns
	256 FS	30			ns
t _{MCKH}	MLBCLK High Time				
	512 FS	15			ns
	256 FS	30			ns
t _{MCKR}	MLBCLK Rise Time (V_{IL} to V_{IH})			6	ns
t _{MCKF}	MLBCLK Fall Time (V_{H} to V_{IL})			6	ns
t _{MPWV} 1	MLBCLK Pulse Width Variation			2	nspp
t _{DSMCF} ²	DAT/SIG Input Setup Time	3			ns
t _{DHMCF}	DAT/SIG Input Hold Time	5			ns
t _{MCDRV}	DS/DO Output Data Delay From MLBCLK Rising Edge			8	ns
t _{MCRDL} ³	DO/SO Low From MLBCLK High				
	512 FS			10	ns
	256 FS			20	ns
C _{MLB}	DS/DO Pin Load			40	pf

¹Pulse width variation is measured at 1.25 V by triggering on one edge of MLBCLK and measuring the spread on the other edge, measured in ns peak-to-peak (pp). ²Gate Delays due to OR'ing logic on the pins must be accounted for.

³When a node is not driving valid data onto the bus, the MLBSO and MLBDO output lines shall remain low. If the output lines can float at anytime, including while in reset, external pull-down resistors are required to keep the outputs from corrupting the MediaLB signal lines when not being driven.

OUTPUT DRIVE CURRENTS

Figure 41 shows typical I-V characteristics for the output drivers of the ADSP-2148x, and Table 55 shows the pins associated with each driver. The curves represent the current drive capability of the output drivers as a function of output voltage.

Table 55. Driver Types

Driver Type	Associated Pins
A	FLAG[0–3], AMI_ADDR[0–23], DATA[0–15], <u>AMI_RD</u> , <u>AMI_WR</u> , AMI_ACK, <u>MS[1-0]</u> , <u>SDRAS</u> , <u>SDCAS</u> , <u>SDWE</u> , SDDQM, SDCKE, SDA10, <u>EMU</u> , TDO, <u>RESETOUT</u> , DPI[1–14], DAI[1–20], <u>WDTRSTO</u> , MLBDAT, MLBSIG, MLBSO, MLBDO, MLBCLK
В	SDCLK

Figure 41. Typical Drive at Junction Temperature

TEST CONDITIONS

The ac signal specifications (timing parameters) appear in Table 21 on Page 26 through Table 54 on Page 54. These include output disable time, output enable time, and capacitive loading. The timing specifications for the SHARC apply for the voltage reference levels in Figure 42.

Timing is measured on signals when they cross the 1.5 V level as described in Figure 43. All delays (in nanoseconds) are measured between the point that the first signal reaches 1.5 $\rm V$ and the point that the second signal reaches 1.5 V.

Figure 43. Voltage Reference Levels for AC Measurements

NOTES

THE WORST CASE TRANSMISSION LINE DELAY IS SHOWN AND CAN BE USED FOR THE OUTPUT TIMING ANALYSIS TO REFLECT THE TRANSMISSION LINE EFFECT AND MUST BE CONSIDERED. THE TRANSMISSION LINE (TD) IS FOR LOAD ONLY AND DOES NOT AFFECT THE DATA SHEET TIMING SPECIFICATIONS.

ANALOG DEVICES RECOMMENDS USING THE IBIS MODEL TIMING FOR A GIVEN SYSTEM REQUIREMENT. IF NECESSARY, A SYSTEM MAY INCORPORATE EXTERNAL DRIVERS TO COMPENSATE FOR ANY TIMING DIFFERENCES.

Figure 42. Equivalent Device Loading for AC Measurements (Includes All Fixtures)

CAPACITIVE LOADING

Output delays and holds are based on standard capacitive loads: 30 pF on all pins (see Figure 42). Figure 46 and Figure 47 show graphically how output delays and holds vary with load capacitance. The graphs of Figure 44 through Figure 47 may not be linear outside the ranges shown for Typical Output Delay vs. Load Capacitance and Typical Output Rise Time (20% to 80%, V = Min) vs. Load Capacitance.

Figure 44. Typical Output Rise/Fall Time $(20\% to 80\%, V_{DD EXT} = Max)$

Figure 45. Typical Output Rise/Fall Time (20% to 80%, V_{DD EXT} = Min)

Figure 46. Typical Output Rise/Fall Delay $(V_{DD_EXT} = Max)$

Figure 47. Typical Output Rise/Fall Delay $(V_{DD_EXT} = Min)$

THERMAL CHARACTERISTICS

The ADSP-2148x processor is rated for performance over the temperature range specified in Operating Conditions on Page 18.

Table 57 airflow measurements comply with JEDEC standards JESD51-2 and JESD51-6, and the junction-to-board measurement complies with JEDEC standards JESD51-8. Test board design complies with JEDEC standards JESD51-7 (LQFP_EP). The junction-to-case measurement complies with MIL- STD-883. All measurements use a 2S2P JEDEC test board.

To determine the junction temperature of the device while on the application PCB, use:

$$T_J = T_{CASE} + (\Psi_{JT} \times P_D)$$

where:

T_I = junction temperature °C

 T_{CASE} = case temperature (°C) measured at the top center of the package

 Ψ_{JT} = junction-to-top (of package) characterization parameter is the Typical value from Table 57.

P_D = power dissipation

Values of θ_{JA} are provided for package comparison and PCB design considerations. θ_{JA} can be used for a first order approximation of T_J by the equation:

$$T_J = T_A + (\theta_{JA} \times P_D)$$

where:

 T_A = ambient temperature °C

Values of θ_{JC} are provided for package comparison and PCB design considerations when an external heatsink is required.

100-LQFP_EP LEAD ASSIGNMENT

Lead Name	Lead No.						
V _{DD_INT}	1	V _{DD_EXT}	26	DAI_P10	51	V _{DD_INT}	76
CLK_CFG1	2	DPI_P08	27	V _{DD_INT}	52	FLAG0	77
BOOT_CFG0	3	DPI_P07	28	V _{DD_EXT}	53	V _{DD_INT}	78
V _{DD_EXT}	4	V _{DD_INT}	29	DAI_P20	54	V _{DD_INT}	79
V _{DD_INT}	5	DPI_P09	30	V _{DD_INT}	55	FLAG1	80
BOOT_CFG1	6	DPI_P10	31	DAI_P08	56	FLAG2	81
GND	7	DPI_P11	32	DAI_P04	57	FLAG3	82
NC	8	DPI_P12	33	DAI_P14	58	MLBCLK	83
NC	9	DPI_P13	34	DAI_P18	59	MLBDAT	84
CLK_CFG0	10	DAI_P03	35	DAI_P17	60	MLBDO	85
V _{DD_INT}	11	DPI_P14	36	DAI_P16	61	V _{DD_EXT}	86
CLKIN	12	V _{DD_INT}	37	DAI_P15	62	MLBSIG	87
XTAL	13	V _{DD_INT}	38	DAI_P12	63	V _{DD_INT}	88
V _{DD_EXT}	14	V _{DD_INT}	39	V _{DD_INT}	64	MLBSO	89
V _{DD_INT}	15	DAI_P13	40	DAI_P11	65	TRST	90
V _{DD_INT}	16	DAI_P07	41	V _{DD_INT}	66	EMU	91
RESETOUT/RUNRSTIN	17	DAI_P19	42	V _{DD_INT}	67	TDO	92
V _{DD_INT}	18	DAI_P01	43	GND	68	V _{DD_EXT}	93
DPI_P01	19	DAI_P02	44	THD_M	69	V _{DD_INT}	94
DPI_P02	20	V _{DD_INT}	45	THD_P	70	TDI	95
DPI_P03	21	V _{DD_EXT}	46	V _{DD_THD}	71	ТСК	96
V _{DD_INT}	22	V _{DD_INT}	47	V _{DD_INT}	72	V _{DD_INT}	97
DPI_P05	23	DAI_P06	48	V _{DD_INT}	73	RESET	98
DPI_P04	24	DAI_P05	49	V _{DD_INT}	74	TMS	99
DPI_P06	25	DAI_P09	50	V _{DD_INT}	75	V _{DD_INT}	100
						GND	101*

Table 59. 100-Lead LQFP_EP Lead Assignments (Numerical by Lead Number)

MLB pins (pins 83, 84, 85, 87, and 89) are available for automotive models only. For non-automotive models, these pins should be connected to ground (GND).

* Pin no. 101 (exposed pad) is the GND supply (see Figure 48 and Figure 49) for the processor; this pad must be **robustly** connected to GND.

Table 61. ADSP-21483, ADSP-21487, ADSP-21488, and ADSP-21489 176-Lead LQFP_EP Lead Assignment (Numerical by Lead Number)

SDDQM 1 Vop_Exr 45 DAL_P10 89 Vop_M1 133 SDCKE 3 DPLP07 47 Vop_Exr 91 FLAG1 134 SDCKE 3 DPLP07 47 Vop_M1 93 GND 137 Vop_M1 4 Vop_M1 48 DALP20 92 FLAG2 136 CLK_CFG1 5 DPLP09 49 Vop_M1 93 GND 137 ADDR0 6 DPLP12 52 DALP04 96 GND 140 ADDR1 9 DPLP13 53 DALP17 98 GND 142 ADDR3 11 DALP03 55 DALP12 100 TST 144 ADDR3 13 Vop_Exr 57 DALP13 101 GND 145 BOOT_CFG1 14 NC 58 Vop_M11 102 ENU 146 ADDR4 16 NC 62 BOCT_CFG	Lead Name	Lead No.						
MKS 2 DPLP08 46 V b0_MT 90 FLAG0 134 SDCKE 3 DPLP07 47 V b0_MT 91 FLAG2 135 SDCKE 3 DPLP09 49 V b0_MT 93 GND 137 ADDR0 6 DPLP10 50 DALP08 94 FLAG2 136 BOOT_CFG0 7 DPLP11 51 DALP08 94 FLAG3 138 BOOT_CFG0 7 DPLP11 51 DALP04 96 GND 140 ADDR1 9 DPLP13 53 DALP16 99 Vp0_MT 143 ADDR3 13 VD_LKT 57 DALP15 101 GND 144 ADDR4 12 NC 59 DALP11 103 DATA0 147 ADDR6 16 NC 60 MD_MT 107 TOO 151 ADDR5 12 NC 61 VD_MT	SDDQM	1	V _{DD_EXT}	45	DAI_P10	89	V _{DD_INT}	133
SDCKE 3 DPLP07 47 VDD_LNT 91 FLAG1 135 VDD_NT 4 VDD_NT 48 DALP20 92 FLAG2 136 CLK_CFG1 5 DPLP09 49 VD_NT 93 GND 137 ADDR0 6 DPLP10 50 DALP08 94 FLAG3 138 SOCT_CFG0 7 DPLP12 52 DALP18 97 VD_D_DT 141 ADDR1 9 DPLP14 53 DALP18 97 VD_D_DTT 143 ADDR3 11 DALP03 55 DALP12 100 TRT 144 ADDR4 12 NC 58 DALP11 102 EMU 146 ADDR4 13 NC 58 DALP11 103 DATA0 147 ADDR5 13 NC 61 VD_D_NT 105 DATA1 148 ADDR6 16 NC 62 GNDT_C	MS0	2	DPI_P08	46	V _{DD_INT}	90	FLAG0	134
VpD_INT 4 VpD_INT 48 DALP20 92 FLAG2 136 CLK CFG1 5 DPLP09 49 VpD_INT 93 GND 137 ADDR0 6 DPLP11 51 DALP08 94 FLAG3 138 BOOT_CFG0 7 DPLP11 51 DALP04 95 GND 140 ADDR1 9 DPLP13 53 DALP16 99 VpD_BT 141 ADDR3 10 DPLP13 55 DALP16 99 VpD_BT 143 ADDR4 12 NC 56 DALP15 101 GND 145 BOOT_CFG1 14 NC 58 VpD_INT 102 EMU 146 ADDR5 15 NC 59 DALP11 103 DATA1 148 ADDR6 16 NC 61 VpD_INT 105 DATA1 150 NC 19 NC 63 VpD_INT </td <td>SDCKE</td> <td>3</td> <td>DPI_P07</td> <td>47</td> <td>V_{DD_EXT}</td> <td>91</td> <td>FLAG1</td> <td>135</td>	SDCKE	3	DPI_P07	47	V _{DD_EXT}	91	FLAG1	135
CLK_CFG1SDPLP0949VDD_DNT93GND137ADDR06DPLP1050DALP0894FLAG3138BODT_CFG07DPLP1151DALP1495GND140ADDR19DPLP1352DALP1495GND141ADDR210DPLP1454DALP1897VD_DRT141ADDR311DALP0355DALP1699VDD_INT143ADDR412NC56DALP12100FIRST144ADDR513VD_DRT57DALP15101GND145BOOT_CFG114NC58VD_D,NT102EMU146ADDR616NC60VD_DRT103DATA0147ADDR616NC61VD_D,NT104DATA1148ADDR717NC61VD_D,NT105DATA3150NC19NC63VDO_NT107TDO151ADDR921VD_D,NT65GND109VD_D,NT156CLKN24VD_D,NT68VD_D,NT111DATA6155CLKN24VD_D,NT68VD_D,NT110DATA6155CLKN24VD_D,NT68VD_D,NT111DATA6156CLKN25NC69VD_D,NT113DATA7157ADDR921VD	V _{DD_INT}	4	V _{DD_INT}	48	DAI_P20	92	FLAG2	136
ADDR0 6 DPI_P10 50 DAI_P08 94 FLAG3 138 BOOT_CFG0 7 DPI_P11 51 DAI_P14 95 GND 139 ADDR1 9 DPI_P13 53 DAI_P16 97 Vop_Ext 141 ADDR3 11 DAI_P03 55 DAI_P16 99 Vop_INT 143 ADDR3 12 NC 56 DAI_P15 101 GND 145 BOOT_CFG1 14 NC 57 DAI_P15 101 GND 145 BOOT_CFG1 14 NC 58 Vop_INT 102 EMU 146 ADDR6 16 NC 60 Vop_Ext 104 DATA1 148 ADDR6 16 NC 61 Vop_INT 105 DATA2 149 ADDR6 17 NC 61 Vop_INT 107 TDO 151 ADDR6 17 NC 61 M	CLK_CFG1	5	DPI_P09	49	V _{DD_INT}	93	GND	137
BODC_CFG0 7 DPL_P11 51 DAL_P14 95 GND 139 VD0_EXT 8 DPL_P13 52 DAL_P04 96 GND 140 ADDR1 9 DPL_P14 54 DAL_P18 97 VD0_EXT 141 ADDR3 10 DPL_P14 54 DAL_P12 98 GND 142 ADDR4 12 NC 56 DAL_P12 100 TRST 144 ADDR5 13 VD0_EXT 57 DAL_P11 103 DATA0 147 ADDR6 16 NC 60 VD0_EXT 104 DATA1 148 ADDR7 17 NC 61 VD0_EXT 105 DATA2 149 NC 18 VD_D_INT 62 BOT_CFG2 106 DATA3 150 NC 63 MD_D_NT 105 DATA3 152 ADDR8 20 NC 64 THD_M 110	ADDR0	6	DPI_P10	50	DAI_P08	94	FLAG3	138
VpD_EDT8DPL_P1252DAL_P0496GND140ADDR19DPL_P1453DAL_P1897VpD_EXT141ADDR210DPL_P1454DAL_P1798GND142ADDR311DAL_P0355DAL_P1699VpD_ENT143ADDR412NC56DAL_P15101GND145ADDR513VpD_ERT57DAL_P15101GND145BOOT_CFG114NC58VpD_ENT102EMU146GND15NC59DAL_P11103DATA0147ADDR616NC60VpD_ENT105DATA2149ADDR717NC61VpD_ENT105DATA3150NC18VpD_ENT62800T_CFG2106DATA3152ADDR820NC64AMLACK108DATA4152ADDR821VpD_ENT65GND109VpD_ENT153CLK_CFG022NC67THD_P111DATA6155CLK_INN24VpD_ENT72VpD_ENT116VpD_ENT156SDA1026WDTRSTO70VpD_ENT113DATA7157ADDR1026WDTRSTO72VpD_ENT116VpD_ENT162ADDR1732DAL_P0277ADDR23120DATA1162 <td< td=""><td>BOOT_CFG0</td><td>7</td><td>DPI_P11</td><td>51</td><td>DAI_P14</td><td>95</td><td>GND</td><td>139</td></td<>	BOOT_CFG0	7	DPI_P11	51	DAI_P14	95	GND	139
ADDR19DPLP1353DALP1897VDD_ENT141ADDR210DPLP1454DALP1798GND142ADDR311DALP0355DALP1699VDD_INT143ADDR412NC56DALP12100TRST144ADDR513VDD_EXT57DALP15101GND145BOOT_CFG114NC58VDD_INT102EMU146GND15NC59DALP11103DATA0147ADDR616NC60VDD_EXT104DATA2149ADDR717NC61VDD_INT105DATA3150NC18VDD_INT62BOOT_CFG2106DATA3150NC18VDD_INT63GVD_INT107TDO151ADDR820NC64AMLACK108DATA4152ADDR921VDD_INT66THD_M110DATA5154VDL,INT23NC67THD_P111DATA6155CLK_CFG222NC69VDD_INT113DATA6155CLK_TG224VDD_INT68VDD_INT114TDI158SDA1027NC72VDD_INT114DATA6158SDA1027NC72VDD_INT116VDD_EXT160VDD_INT28V	V _{DD_EXT}	8	DPI_P12	52	DAI_P04	96	GND	140
ADDR2 10 DPLP14 54 DALP17 98 GND 142 ADDR3 11 DALP03 55 DALP16 99 VDD_NT 143 ADDR4 12 NCC 56 DALP15 101 GND 144 ADDR5 13 VDD_EXT 57 DALP15 101 GND 145 BOOT_CFG1 14 NC 59 DALP11 103 DATA0 147 ADDR6 16 NC 61 VDD_DT 104 DATA1 148 ADDR7 17 NC 61 VDD_DT 107 DATA2 149 NC 18 VDD_NT 62 BOOT_CFG2 106 DATA3 150 ADDR8 20 NC 64 AMLACK 108 DATA4 152 ADDR3 17 VDD_NT 65 GND 109 VDD_CT 153 CLK_CFG0 22 NC 67 THD_P	ADDR1	9	DPI_P13	53	DAI_P18	97	V _{DD_EXT}	141
ADDR3 11 DALP03 55 DALP16 99 MD_DNT 143 ADDR4 12 NC 56 DALP12 101 TRST 144 ADDR5 13 VD_D_EXT 57 DALP15 101 GND 145 BOOT_CFG1 14 NC 58 VD_JNT 102 EMU 146 GND 15 NC 59 DALP11 103 DATA0 147 ADDR6 16 NC 60 VD_D_NT 104 DATA1 148 ADDR7 17 NC 61 VD_D_NT 105 DATA2 149 NC 18 VD_D_NT 62 BOD_CFG2 106 DATA3 150 ADDR8 20 NC 64 AMLACK 108 DATA4 152 ADDR9 21 VD_D_NT 65 GND 109 VD_D_NT 154 ADDR4 24 VD_D_NT 68 VD_D_INT 114 DATA5 154 ADDR4 25 NC 67 THD_P 111 DATA7 157 ADDR4 26 NC 70 VD_D_INT 114 TD4 158	ADDR2	10	DPI_P14	54	DAI_P17	98	GND	142
ADDR4 12 NC S6 DALP12 100 TRST 144 ADDR5 13 VDD_ENT 57 DALP15 101 GND 145 BODT_CFG1 14 NC 58 VDD_INT 102 EMU 146 GND 15 NC 59 DALP11 103 DATA0 147 ADDR6 16 NC 60 VDD_ENT 105 DATA1 148 ADDR7 17 NC 61 VDD_INT 105 DATA2 149 NC 18 VDD_INT 62 BOOT_CFG2 106 DATA3 150 NC 63 VDD_INT 107 TDO 151 ADDR8 20 NC 64 AMLACK 108 DATA4 152 ADDR1 21 VDD_INT 65 GND 109 VDD_EXT 153 CLK/EG0 22 NC 67 THD_M 110 DATA6	ADDR3	11	DAI_P03	55	DAI_P16	99	V _{DD_INT}	143
ADDR5 13 VDD_ENT 57 DAL_P15 101 GND 145 BOOT_CFG1 14 NC 58 VDD_INT 102 EMU 147 ADDR6 15 NC 59 DAL_P11 103 DATA1 148 ADDR6 16 NC 60 VDD_EXT 104 DATA1 148 ADDR7 17 NC 61 VDD_INT 105 DATA2 149 NC 19 NC 63 VDD_INT 107 DD 151 ADDR8 20 NC 64 AMLACK 108 DATA4 152 ADDR9 21 VDD_INT 65C GND 109 VDD_EXT 153 CLK_CFC0 22 NC 66 THD_P 111 DATA6 155 CLK_TC0 24 VDD_INT 68C VDD_INT 113 DATA7 157 ADDR10 26 WDTRSTO 70 VDD_INT 113 DATA6 159 VDD_EXT 29 DALP07 73 WDT_CLKO 116 VDD_EXT 160 VDD_INT 30 DALP13 74 WDT_CLKIN 118 DATA10 <t< td=""><td>ADDR4</td><td>12</td><td>NC</td><td>56</td><td>DAI_P12</td><td>100</td><td>TRST</td><td>144</td></t<>	ADDR4	12	NC	56	DAI_P12	100	TRST	144
BOOT_CFG1 14 NC 58 VDD_INT 102 EMU 146 GND 15 NC 59 DALP11 103 DATA0 147 ADDR6 16 NC 60 VDD_EXT 104 DATA0 148 ADDR7 17 NC 61 VDD_INT 105 DATA2 149 NC 18 VDD_INT 62 BODT_CFG2 106 DATA3 150 NC 19 NC 63 VDD_INT 107 TDO 151 ADDR8 20 NC 64 AMLACK 108 DATA4 152 ADDR9 21 VDD_INT 65 GND 109 VD_D_EXT 153 CLK/FG0 22 NC 67 THD_P 111 DATA5 154 VD_D_INT 23 NC 69 VD_D_INT 113 DATA7 157 ADDR10 26 WDD_INT 73 WDD_INT </td <td>ADDR5</td> <td>13</td> <td>V_{DD_EXT}</td> <td>57</td> <td>DAI_P15</td> <td>101</td> <td>GND</td> <td>145</td>	ADDR5	13	V _{DD_EXT}	57	DAI_P15	101	GND	145
GND15NC59DAL_P11103DATA0147ADDR616NC60VpD_EKT104DATA1148ADDR717NC61VpD_INT104DATA2149NC18VpD_INT62BOOT_CFG2106DATA2149NC19NC63VpD_INT107TDO151ADDR820NC64AML_ACK108DATA4152ADDR921VpD_INT65GND109VpD_EKT153CLK_CFG022NC66THD_M110DATA5154VpD_INT23NC67THD_P111DATA7157ADDR1024VpD_INT68VpD_INT113DATA7157ADDR1026WDTRSTO70VpD_INT114TDI158SDA1027NC71MST115SDCLK159VpD_INT28VpD_EKT72VpD_INT116VpD_EKT160VpD_INT29DALP0773WDT_CLKO117DATA8161ADDR1333DA_P0277ADDR22121DATA11165ADDR1435NC79VpD_INT123DATA14167RESETOUT/RUNRSTIN36NC79VpD_INT123DATA14167RESETOUT/RUNRSTIN36NC80ADDR22121DATA13168 <tr< td=""><td>BOOT_CFG1</td><td>14</td><td>NC</td><td>58</td><td>V_{DD_INT}</td><td>102</td><td>EMU</td><td>146</td></tr<>	BOOT_CFG1	14	NC	58	V _{DD_INT}	102	EMU	146
ADDR616NC60VDD_EXT104DATA1148ADDR717NC61VDD_INT105DATA2149NC18VDD_INT62BOOT_CFG2106DATA3150NC19NC63VDD_INT107TDO151ADDR820NC64AMI_ACK108DATA4152ADDR921VDD_INT65GND109VDD_EXT153CLK_CFG022NC66THD_P111DATA5154VDD_INT23NC67THD_P111DATA6155CLKIN24VDD_INT68VDD_THD112VDD_INT156XTAL25NC69VDD_INT114DI158SDA1027NC71MST115SDCLK159VDD_EXT28VDD_EXT72VDD_INT114DATA9162ADDR1027NC71MST116VDD_EXT160ADDR1130DALP0773WDT_CLKIN118DATA9162ADDR1231DALP1374WDT_CLKIN118DATA11165ADDR1333DALP0176ADDR23120TCK164ADDR1333DALP0178ADDR21123DATA11165ADDR1334DALP0178ADDR21124DATA13168ADDR13	GND	15	NC	59	DAI_P11	103	DATA0	147
ADDR7 17 NC 61 VDD_INT 105 DATA2 149 NC 18 VDD_INT 62 BOCT_CFG2 106 DATA3 150 NC 19 NC 63 VDD_INT 107 TDO 151 ADDR8 20 NC 64 AMI_ACK 108 DATA4 152 ADDR9 21 VD_INT 65 GND 109 VD_EXT 153 CLK_CFGO 22 NC 66 THD_P 111 DATA5 154 VDD_INT 23 NC 67 THD_P 111 DATA5 154 VDL_INT 24 VD_D_INT 68 VD_INT 113 DATA7 157 ADDR10 26 WDTRSTO 70 VD_INT 114 TDI 158 SDA10 27 NC 71 MST 116 VD_D_EXT 160 VDD_INT 28 VD_DLYT 73 WDT_CLKO 117 DATA8 161 ADDR11 30 DAI_P13 74 WDT_CLKO 117 DATA9 162 ADDR11 30 DAI_P01 76 ADDR23 120 TCK 164 </td <td>ADDR6</td> <td>16</td> <td>NC</td> <td>60</td> <td>V_{DD_EXT}</td> <td>104</td> <td>DATA1</td> <td>148</td>	ADDR6	16	NC	60	V _{DD_EXT}	104	DATA1	148
NC 18 $V_{DD_{,INT}$ 62 BOOT_CFG2 106 DATA3 150 NC 19 NC 63 $V_{DD_{,INT}$ 107 TDO 151 ADDR8 20 NC 64 AMI_ACK 108 DATA4 152 ADDR9 21 $V_{DD_{,INT}$ 65 GND 109 $V_{DD_{,INT}$ 153 CLK_CFG0 22 NC 66 THD_M 110 DATA6 155 CLKIN 24 $V_{DD_{,INT}$ 68 $V_{DD_{,INT}$ 112 $V_{DD_{,INT}$ 156 XTAL 25 NC 69 $V_{DD_{,INT}$ 114 DATA6 157 ADDR10 26 WDTRSTO 70 $V_{DD_{,INT}$ 114 TDI 158 SDA10 27 NC 71 MST 115 DALK 160 V_D_D_RT 28 DAL_P07 73 WDT_CLKIN 118 DATA10 163 ADDR11	ADDR7	17	NC	61	V _{DD_INT}	105	DATA2	149
NC 19 NC 63 $V_{DD_{,INT}$ 107 TDD 151 ADDR8 20 NC 64 AMI_ACK 108 DATA4 152 ADDR9 21 $V_{DD_{,INT}$ 65 GND 109 $V_{DD_{,EXT}$ 153 CLK_CFG0 22 NC 67 THD_P 111 DATA5 154 V_{DD_,INT 23 NC 67 THD_P 111 DATA6 155 CLKIN 24 V_DD_,INT 68 V_DD_,INT 113 DATA7 157 ADDR10 26 WDTRSTO 70 WD_D_,INT 114 TDI 158 SDA10 27 NC 71 MST 115 SOCLK 159 V_D_D_,INT 28 V_D_E,ET 72 V_D_D_,INT 116 V_D_ATA8 161 ADDR11 30 DAL_P07 73 WDT_CLKO 117 DATA9 163 ADDR11 30	NC	18	V _{DD_INT}	62	BOOT_CFG2	106	DATA3	150
ADDR8 20 NC 64 AM_ACK 108 DATA4 152 ADDR9 21 V_{DD_INT} 65 GND 109 V_{DD_EXT} 153 CLK_CFGO 22 NC 66 THD_M 110 DATA5 154 V_{DD_INT} 23 NC 67 THD_P 111 DATA6 155 CLKIN 24 V_{DD_INT} 68 V_{DD_INT} 113 DATA7 157 ADDR10 26 WDTRSTO 70 V_{DD_INT} 114 TDI 158 SDA10 27 NC 71 MST 116 V_{D_EXT} 160 V_{DD_EXT} 28 $V_{DL}EXT$ 72 V_{D_INT} 116 $V_{DL}EXT$ 161 $ADDR11$ 30 DALP07 73 WDT_CLKIN 118 DATA9 162 $ADDR12$ 31 DALP01 76 ADDR23 120 TCK 164 $ADDR13$ <	NC	19	NC	63	V _{DD_INT}	107	TDO	151
ADDR921VDD_INT65GND109VDD_EXT153CLK_CFG022NC66THD_M110DATA5154VDD_INT23NC67THD_P111DATA6155CLKIN24VDD_INT68VDD_IHD112VDD_INT156XTAL25NC69VDD_INT113DATA7157ADDR1026WDTRSTO70VDD_INT114TDI158SDA1027NC71MST115SDCLK159VD_LST28VD_EXT72VD_INT116VD_EXT160VD_LNT29DALPD773WDT_CLKIN118DATA9162ADDR1130DALP1374WDT_CLKIN118DATA9162ADDR1231DALP0176ADDR23120TCK164ADDR1333DALP0277ADDR22121DATA11165VD_LNT34VD_UNT78ADDR12122DATA11167RESETOUT/RUNRSTIN36NC39ADDR12124DATA13168VD_LNT37NC81ADDR19125VD_UNT169DPLP0340VD_LKT84ADDR15128SDRA5172VD_LNT41VD_UNT85VD_UNT129RESET173DPLP0443DALP0587AMI_WR131SDCA5174 </td <td>ADDR8</td> <td>20</td> <td>NC</td> <td>64</td> <td>AMI_ACK</td> <td>108</td> <td>DATA4</td> <td>152</td>	ADDR8	20	NC	64	AMI_ACK	108	DATA4	152
CLK_CFG0 22 NC 66 THD_M 110 DATA5 154 VDD_INT 23 NC 67 THD_P 111 DATA6 155 CLKIN 24 VDD_INT 68 VDD_INT 112 VDD_INT 156 XTAL 25 NC 69 VDD_INT 113 DATA7 157 ADDR10 26 WDTRSTO 70 VDD_INT 114 TDI 158 SDA10 27 NC 71 MST 115 SDCLK 159 VDD_EKT 28 VDD_EKT 72 VD_INT 116 VD_EKT 160 ADDR11 30 DALP07 73 WDT_CLKIN 118 DATA9 162 ADDR12 31 DALP19 75 VD_EKT 119 DATA10 163 ADDR13 32 DALP02 77 ADDR23 120 TK 164 ADDR13 33 DAL_P02 <	ADDR9	21	V _{DD_INT}	65	GND	109	V _{DD_EXT}	153
$V_{DD_{I}NT$ 23 NC 67 THD_P 111 DATA6 155 CLKIN 24 $V_{DD_{I}NT$ 68 $V_{DD_{I}NT$ 112 $V_{DD_{I}NT$ 156 XTAL 25 NC 69 $V_{DD_{I}NT$ 113 DATA7 157 ADDR10 26 WDTRSTO 70 $V_{DD_{I}NT$ 114 DI 158 SDA10 27 NC 71 MS1 156 SDCLK 159 V_D_EKT 28 V_D_EXT 72 V_D_INT 116 $V_{DL_{E}XT$ 160 ADDR11 30 DALP07 73 WDT_CLKN 118 DATA9 162 ADDR12 31 DALP07 75 V_D_EKT 199 DATA10 163 ADDR13 33 DALP02 77 ADDR23 120 DATA11 165 V_D_INT 34 V_D_INT 78 ADDR12 124 DATA13 168 V_D_D_INT	CLK_CFG0	22	NC	66	THD_M	110	DATA5	154
CLKIN 24 VDD_INT 68 VDD_THD 112 VDD_INT 156 XTAL 25 NC 69 VDD_INT 113 DATA7 157 ADDR10 26 WDTRSTO 70 VDD_INT 114 TDI 158 SDA10 27 NC 71 MST 116 VD_EXT 160 VDD_EXT 28 VD_EXT 72 VD_INT 116 VD_EXT 160 VDD_INT 30 DAI_P07 73 WDT_CLKON 117 DATA8 161 ADDR11 30 DAI_P13 74 WDT_CLKIN 118 DATA9 162 ADDR12 31 DAI_P01 76 ADDR23 120 TCK 164 ADDR13 33 DAI_P02 77 ADDR22 121 DATA11 165 VD_D_INT 34 VD_D_INT 78 ADDR11 122 DATA11 166 ADDR18 35 N	V _{DD_INT}	23	NC	67	THD_P	111	DATA6	155
XTAL 25 NC 69 V_{DD_INT} 113 DATA7 157 ADDR10 26 WDTRSTO 70 V_{DD_INT} 114 TDI 158 SDA10 27 NC 71 MS1 115 SDCLK 159 VoD_ExT 28 VD_EXT 72 VD_INT 116 VD_EXT 160 VDD_INT 29 DAI_P07 73 WDT_CLKO 117 DATA8 161 ADDR11 30 DAI_P13 74 WDT_CLKIN 118 DATA9 162 ADDR12 31 DAI_P01 76 ADDR23 120 TCK 164 ADDR13 33 DAI_P02 77 ADDR22 121 DATA11 165 VD_D_INT 34 VD_D_INT 78 ADDR12 122 DATA11 167 ADDR13 35 NC 81 ADDR19 123 DATA11 167 VDD_INT 36 <	CLKIN	24	V _{DD_INT}	68	V _{DD_THD}	112	V _{DD_INT}	156
ADDR10 26 WDTRSTO 70 $V_{DD_{INT}}$ 114 TDI 158 SDA10 27 NC 71 MST 115 SDCLK 159 V_DD_EXT 28 $V_{DL_{EXT}}$ 72 V_{DL_{INT} 116 V_{DD_{EXT} 160 VDD_INT 29 DAL_P07 73 WDT_CLK0 117 DATA8 161 ADDR11 30 DAL_P19 74 WDT_CLKIN 118 DATA9 162 ADDR12 31 DAL_P01 76 ADDR23 120 TCK 163 ADDR13 33 DAL_P02 77 ADDR21 122 DATA11 165 V_D_JINT 34 V_D_JINT 78 ADDR21 122 DATA12 166 ADDR18 35 NC 79 V_D_JINT 123 DATA14 167 RESETOUT/RUNRSTIN 36 NC 82 V_D_LEXT 124 DATA13 168 V_D_J	XTAL	25	NC	69	V _{DD_INT}	113	DATA7	157
SDA10 27 NC 71 MST 115 SDCLK 159 VDD_EXT 28 VDD_EXT 72 VDD_INT 116 VDD_EXT 160 VDD_INT 29 DALP07 73 WDT_CLKO 117 DATA8 161 ADDR11 30 DALP13 74 WDT_CLKN 118 DATA9 162 ADDR12 31 DALP19 75 VDD_EXT 119 DATA10 163 ADDR13 32 DALP01 76 ADDR22 121 DATA11 165 VDD_INT 34 VDD_INT 78 ADDR21 122 DATA12 166 ADDR13 35 NC 79 VDD_INT 123 DATA12 166 ADDR18 35 NC 80 ADDR20 124 DATA13 168 VDD_INT 37 NC 81 ADDR19 125 VDD_INT 169 DPLP01 38 NC	ADDR10	26	WDTRSTO	70	V _{DD_INT}	114	TDI	158
VDD_EXT 28 VDD_EXT 72 VDD_INT 116 VDD_EXT 160 VDD_INT 29 DAI_P07 73 WDT_CLKO 117 DATA8 161 ADDR11 30 DAI_P13 74 WDT_CLKIN 118 DATA9 162 ADDR12 31 DAI_P19 75 VDD_EXT 119 DATA10 163 ADDR13 32 DAI_P01 76 ADDR23 120 TCK 164 ADDR13 33 DAI_P02 77 ADDR22 121 DATA11 165 VDD_INT 34 VDD_INT 78 ADDR21 122 DATA12 166 ADDR18 35 NC 79 VD_INT 123 DATA14 167 RESETOUT/RUNRSTIN 36 NC 80 ADDR19 125 VD_D_INT 169 DPI_P01 38 NC 82 VDD_EXT 126 DATA15 170 DPI_P02 39	SDA10	27	NC	71	MS1	115	SDCLK	159
VDD_INT 29 DAI_P07 73 WDT_CLKO 117 DATA8 161 ADDR11 30 DAI_P13 74 WDT_CLKIN 118 DATA9 162 ADDR12 31 DAI_P19 75 VDD_EXT 119 DATA10 163 ADDR17 32 DAI_P01 76 ADDR23 120 TCK 164 ADDR13 33 DAI_P02 77 ADDR22 121 DATA11 165 VDD_INT 34 VDD_INT 78 ADDR21 122 DATA12 166 ADDR18 35 NC 79 VDD_INT 123 DATA13 168 VDD_INT 36 NC 80 ADDR19 125 VDD_INT 169 DPI_P01 38 NC 82 VDD_EXT 126 DATA15 170 DPI_P02 39 NC 83 ADDR16 127 SDWE 171 DPI_P03 40 VDD_INT <td>V_{DD_EXT}</td> <td>28</td> <td>V_{DD_EXT}</td> <td>72</td> <td>V_{DD_INT}</td> <td>116</td> <td>V_{DD_EXT}</td> <td>160</td>	V _{DD_EXT}	28	V _{DD_EXT}	72	V _{DD_INT}	116	V _{DD_EXT}	160
ADDR11 30 DAI_P13 74 WDT_CLKIN 118 DATA9 162 ADDR12 31 DAI_P19 75 V_DD_EXT 119 DATA10 163 ADDR17 32 DAI_P01 76 ADDR23 120 TCK 164 ADDR13 33 DAI_P02 77 ADDR22 121 DATA11 165 V_DD_INT 34 V_DD_INT 78 ADDR21 122 DATA12 166 ADDR18 35 NC 79 V_DD_INT 123 DATA14 167 RESETOUT/RUNRSTIN 36 NC 80 ADDR19 124 DATA13 168 V_DD_INT 37 NC 81 ADDR19 125 V_D_INT 169 DPI_P01 38 NC 82 V_D_EXT 126 DATA15 170 DPI_P03 40 V_D_EXT 84 ADDR15 128 SDRA5 172 VDD_INT 41 <td>V_{DD_INT}</td> <td>29</td> <td>DAI_P07</td> <td>73</td> <td>WDT_CLKO</td> <td>117</td> <td>DATA8</td> <td>161</td>	V _{DD_INT}	29	DAI_P07	73	WDT_CLKO	117	DATA8	161
ADDR12 31 DAI_P19 75 VDD_EXT 119 DATA10 163 ADDR17 32 DAI_P01 76 ADDR23 120 TCK 164 ADDR13 33 DAI_P02 77 ADDR22 121 DATA11 165 VDD_INT 34 VDD_INT 78 ADDR21 122 DATA12 166 ADDR18 35 NC 79 VDD_INT 123 DATA13 168 VDD_INT 36 NC 80 ADDR20 124 DATA13 168 VDD_INT 37 NC 81 ADDR19 125 VDD_INT 169 DPI_P01 38 NC 82 VD_EXT 126 DATA15 170 DPI_P02 39 NC 83 ADDR16 127 5DWE 171 DPI_P03 40 VDD_EXT 84 ADDR15 128 5DRAS 172 VDD_INT 41 VDD_INT <td>ADDR11</td> <td>30</td> <td>DAI_P13</td> <td>74</td> <td>WDT_CLKIN</td> <td>118</td> <td>DATA9</td> <td>162</td>	ADDR11	30	DAI_P13	74	WDT_CLKIN	118	DATA9	162
ADDR17 32 DAI_P01 76 ADDR23 120 TCK 164 ADDR13 33 DAI_P02 77 ADDR22 121 DATA11 165 V_DD_INT 34 V_DD_INT 78 ADDR21 122 DATA12 166 ADDR18 35 NC 79 V_DD_INT 123 DATA13 167 RESETOUT/RUNRSTIN 36 NC 80 ADDR20 124 DATA13 168 V_DD_INT 37 NC 81 ADDR19 125 V_D_INT 169 DPI_P01 38 NC 82 V_D_EXT 126 DATA15 170 DPI_P02 39 NC 83 ADDR16 127 5DWE 171 DPI_P03 40 V_D_INT 85 V_D_INT 129 RESET 173 DPI_P05 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P06 44 <	ADDR12	31	DAI_P19	75	V _{DD_EXT}	119	DATA10	163
ADDR13 33 DAI_P02 77 ADDR22 121 DATA11 165 V_DD_INT 34 V_DD_INT 78 ADDR21 122 DATA12 166 ADDR18 35 NC 79 V_DD_INT 123 DATA14 167 RESETOUT/RUNRSTIN 36 NC 80 ADDR20 124 DATA13 168 V_DD_INT 37 NC 81 ADDR19 125 V_DD_INT 169 DPI_P01 38 NC 82 V_DD_EXT 126 DATA15 170 DPI_P02 39 NC 83 ADDR16 127 SDWE 171 DPI_P03 40 V_D_INT 85 V_D_INT 128 SDRAS 172 VDD_INT 41 V_D_INT 85 V_D_INT 129 RESET 173 DPI_P05 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P06 44 DAI_P09 88 AMI_RDD 132 V_D_INT 176	ADDR17	32	DAI_P01	76	ADDR23	120	ТСК	164
VDD_INT 34 VDD_INT 78 ADDR21 122 DATA12 166 ADDR18 35 NC 79 VDD_INT 123 DATA14 167 RESETOUT/RUNRSTIN 36 NC 80 ADDR20 124 DATA13 168 VDD_INT 37 NC 81 ADDR19 125 VDD_INT 169 DPI_P01 38 NC 82 VDD_EXT 126 DATA15 170 DPI_P02 39 NC 83 ADDR16 127 SDWE 171 DPI_P03 40 VDD_EXT 84 ADDR15 128 SDRAS 172 VDD_INT 41 VDD_INT 85 VDD_INT 129 RESET 173 DPI_P05 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P04 43 DAI_P09 88 AMI_RD 132 VDD_INT 176 GND 177* MI_RD <td>ADDR13</td> <td>33</td> <td>DAI_P02</td> <td>77</td> <td>ADDR22</td> <td>121</td> <td>DATA11</td> <td>165</td>	ADDR13	33	DAI_P02	77	ADDR22	121	DATA11	165
ADDR18 35 NC 79 VDD_INT 123 DATA14 167 RESETOUT/RUNRSTIN 36 NC 80 ADDR20 124 DATA13 168 VDD_INT 37 NC 81 ADDR19 125 VDD_INT 169 DPI_P01 38 NC 82 VDD_EXT 126 DATA15 170 DPI_P02 39 NC 83 ADDR16 127 SDWE 171 DPI_P03 40 VDD_EXT 84 ADDR15 128 SDRAS 172 VDD_INT 41 VDD_INT 85 VDD_INT 129 RESET 173 DPI_P05 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P04 43 DAI_P05 87 AMI_RD 131 SDCAS 175 DPI_P06 44 DAI_P09 88 AMI_RD 132 VDD_INT 176	V _{DD_INT}	34	V _{DD_INT}	78	ADDR21	122	DATA12	166
RESETOUT/RUNRSTIN 36 NC 80 ADDR20 124 DATA13 168 V_DD_INT 37 NC 81 ADDR19 125 V_DD_INT 169 DPI_P01 38 NC 82 V_DD_EXT 126 DATA15 170 DPI_P02 39 NC 83 ADDR16 127 SDWE 171 DPI_P03 40 V_DD_EXT 84 ADDR15 128 SDRAS 172 VDD_INT 41 V_DD_INT 85 V_DD_INT 129 RESET 173 DPI_P05 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P04 43 DAI_P05 87 AMI_WR 131 SDCAS 175 DPI_P06 44 DAI_P09 88 AMI_RD 132 V_DD_INT 176	ADDR18	35	NC	79	V _{DD_INT}	123	DATA14	167
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RESETOUT/RUNRSTIN	36	NC	80	ADDR20	124	DATA13	168
DPI_P01 38 NC 82 V _{DD_EXT} 126 DATA15 170 DPI_P02 39 NC 83 ADDR16 127 SDWE 171 DPI_P03 40 V _{DD_EXT} 84 ADDR15 128 SDRAS 172 V _{DD_INT} 41 V _{DD_INT} 85 V _{DD_INT} 129 RESET 173 DPI_P05 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P04 43 DAI_P05 87 AMI_WR 131 SDCAS 175 DPI_P06 44 DAI_P09 88 AMI_RD 132 V _{DD_INT} 176	V _{DD_INT}	37	NC	81	ADDR19	125	V _{DD_INT}	169
DPI_P02 39 NC 83 ADDR16 127 SDWE 171 DPI_P03 40 V_DD_EXT 84 ADDR15 128 SDRAS 172 V_DD_INT 41 V_DD_INT 85 V_DD_INT 129 RESET 173 DPI_P05 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P04 43 DAI_P05 87 AMI_WR 131 SDCAS 175 DPI_P06 44 DAI_P09 88 AMI_RD 132 V_DD_INT 176 GND 177* AMI_RD 132 MDD 177*	DPI_P01	38	NC	82	V _{DD_EXT}	126	DATA15	170
DPI_P03 40 V _{DD_EXT} 84 ADDR15 128 SDRAS 172 V _{DD_INT} 41 V _{DD_INT} 85 V _{DD_INT} 129 RESET 173 DPI_P05 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P04 43 DAI_P05 87 AMI_WR 131 SDCAS 175 DPI_P06 44 DAI_P09 88 AMI_RD 132 V _{DD_INT} 176 GND 177*	DPI_P02	39	NC	83	ADDR16	127	SDWE	171
V _{DD_INT} 41 V _{DD_INT} 85 V _{DD_INT} 129 RESET 173 DPI_P05 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P04 43 DAI_P05 87 AMI_WR 131 SDCAS 175 DPI_P06 44 DAI_P09 88 AMI_RD 132 V _{DD_INT} 176 GND 177*	DPI_P03	40	V _{DD_EXT}	84	ADDR15	128	SDRAS	172
DPI_P05 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P04 43 DAI_P05 87 AMI_WR 131 SDCAS 175 DPI_P06 44 DAI_P09 88 AMI_RD 132 V_DD_INT 176 GND 177*	V _{DD_INT}	41	V _{DD_INT}	85	V _{DD_INT}	129	RESET	173
DPI_P04 43 DAI_P05 87 AMI_WR 131 SDCAS 175 DPI_P06 44 DAI_P09 88 AMI_RD 132 VDD_INT 176 GND 177*	DPI_P05	42	DAI_P06	86	ADDR14	130	TMS	174
DPI_P06 44 DAI_P09 88 AMI_RD 132 V_DD_INT 176 GND 177*	DPI_P04	43	DAI_P05	87	AMI_WR	131	SDCAS	175
GND 177*	DPI_P06	44	DAI_P09	88	AMI_RD	132	V _{DD_INT}	176
							GND	177*

* Lead no. 177 (exposed pad) is the GND supply (see Figure 50 and Figure 51) for the processor; this pad must be **robustly** connected to GND.

Figure 50 shows the top view of the 176-lead LQFP_EP lead configuration. Figure 51 shows the bottom view of the 176-lead LQFP_EP lead configuration.

Figure 50. 176-Lead LQFP_EP Lead Configuration (Top View)

Figure 51. 176-Lead LQFP_EP Lead Configuration (Bottom View)

Figure 53. 176-Lead Low Profile Quad Flat Package, Exposed Pad [LQFP_EP]¹ (SW-176-2) Dimensions shown in millimeters

¹For information relating to the exposed pad on the SW-176-2 package, see the table endnote on Page 60.

SURFACE-MOUNT DESIGN

The exposed pad is required to be electrically and thermally connected to GND. Implement this by soldering the exposed pad to a GND PCB land that is the same size as the exposed pad. The GND PCB land should be robustly connected to the GND plane in the PCB for best electrical and thermal performance. No separate GND pins are provided in the package.

www.analog.com

©2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D09018-0-5/16(D)

Rev. D | Page 68 of 68 | May 2016