

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

2 0 0 0 0 0	
Product Status	Active
Туре	Floating Point
Interface	EBI/EMI, DAI, I ² C, SPI, SPORT, UART/USART
Clock Rate	400MHz
Non-Volatile Memory	External
On-Chip RAM	5Mbit
Voltage - I/O	3.30V
Voltage - Core	1.10V
Operating Temperature	-40°C ~ 125°C (TJ)
Mounting Type	Surface Mount
Package / Case	176-LQFP Exposed Pad
Supplier Device Package	176-LQFP-EP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/ad21489wbswz402rl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

GENERAL DESCRIPTION

The ADSP-2148x SHARC[®] processors are members of the SIMD SHARC family of DSPs that feature Analog Devices' Super Harvard Architecture. The processors are source code compatible with the ADSP-2126x, ADSP-2136x, ADSP-2137x, ADSP-2146x, ADSP-2147x and ADSP-2116x DSPs, as well as with first generation ADSP-2106x SHARC processors in SISD (single-instruction, single-data) mode. The ADSP-2148x processors are 32-bit/40-bit floating point processors optimized for high performance audio applications with large on-chip SRAM, multiple internal buses to eliminate I/O bottlenecks, and an innovative digital applications interface (DAI).

Table 1 shows performance benchmarks for the ADSP-2148x processors. Table 2 shows the features of the individual product offerings.

Table 1. Processor Benchmarks

Benchmark Algorithm	Speed (at 400 MHz)	Speed (at 450 MHz)
1024 Point Complex FFT (Radix 4, with Reversal)	23 µs	20.44 µs
FIR Filter (per Tap) ¹	1.25 ns	1.1 ns
llR Filter (per Biquad) ¹	5 ns	4.43 ns
Matrix Multiply (Pipelined)		
$[3 \times 3] \times [3 \times 1]$	11.25 ns	10.0 ns
$[4 \times 4] \times [4 \times 1]$	20 ns	17.78 ns
Divide (y/×)	7.5 ns	6.67 ns
Inverse Square Root	11.25 ns	10.0 ns

¹Assumes two files in multichannel SIMD mode

Feature	ADSP-21483	ADSP-21486	ADSP-21487	ADSP-21488	ADSP-21489	
Maximum Instruction Rate	400 MHz	400 MHz	450 MHz	400 MHz	450 MHz	
RAM	3 Mbits	5	2/3 Mbits ¹	5 Mbits		
ROM		4 Mbits			No	
Audio Decoders in ROM ²		Yes			No	
Pulse-Width Modulation		4 Units (3 Units on 100-Leac	l Packages)		
DTCP Hardware Accelerator		(Contact Analog Dev	ices		
External Port Interface (SDRAM, AMI) ³	Yes (16-bit)	AMI Only		Yes (16-bit)		
Serial Ports			8			
Direct DMA from SPORTs to External Port (External Memory)			Yes			
FIR, IIR, FFT Accelerator			Yes			
Watchdog Timer	Yes (176-Lead Package Only)					
MediaLB Interface		A	utomotive Models (Only		
IDP/PDAP			Yes			
UART			1			
DAI (SRU)/DPI (SRU2)			Yes			
S/PDIF Transceiver			Yes			
SPI			Yes			
TWI			1			
SRC Performance ⁴	–128 dB					
Thermal Diode			Yes			
VISA Support			Yes			
Package ³		LQFP EPAD LQFP EPAD	176-Lead LQFP EPAD		d LQFP EPAD I LQFP EPAD⁵	

Table 2. ADSP-2148x Family Features

¹See Ordering Guide on Page 66.

⁴Some models have –140 dB performance. For more information, see Ordering Guide on page 66.

⁵Only available up to 400 MHz. See Ordering Guide on Page 66 for details.

² ROM is factory programmed with latest multichannel audio decoding and post-processing algorithms from Dolby[®] Labs and DTS[®]. Decoder/post-processor algorithm combination support varies depending upon the chip version and the system configurations. Please visit www.analog.com for complete information.

³ The 100-lead packages do not contain an external port. The SDRAM controller pins must be disabled when using this package. For more information, see Pin Function Descriptions on Page 14. The ADSP-21486 processor in the 176-lead package also does not contain a SDRAM controller. For more information, see 176-Lead LQFP_EP Lead Assignment on page 60.

The diagram on Page 1 shows the two clock domains that make up the ADSP-2148x processors. The core clock domain contains the following features:

- Two processing elements (PEx, PEy), each of which comprises an ALU, multiplier, shifter, and data register file
- Data address generators (DAG1, DAG2)
- Program sequencer with instruction cache
- PM and DM buses capable of supporting 2x64-bit data transfers between memory and the core at every core processor cycle
- One periodic interval timer with pinout
- On-chip SRAM (5 Mbit) and mask-programmable ROM (4 Mbit)
- JTAG test access port for emulation and boundary scan. The JTAG provides software debug through user breakpoints which allows flexible exception handling.

The block diagram of the ADSP-2148x on Page 1 also shows the peripheral clock domain (also known as the I/O processor) which contains the following features:

- IOD0 (peripheral DMA) and IOD1 (external port DMA) buses for 32-bit data transfers
- Peripheral and external port buses for core connection
- External port with an AMI and SDRAM controller
- 4 units for PWM control
- 1 memory-to-memory (MTM) unit for internal-to-internal memory transfers
- Digital applications interface that includes four precision clock generators (PCG), an input data port (IDP/PDAP) for serial and parallel interconnects, an S/PDIF receiver/transmitter, four asynchronous sample rate converters, eight serial ports, and a flexible signal routing unit (DAI SRU).
- Digital peripheral interface that includes two timers, a 2-wire interface (TWI), one UART, two serial peripheral interfaces (SPI), 2 precision clock generators (PCG), pulse width modulation (PWM), and a flexible signal routing unit (DPI SRU2).

As shown in the SHARC core block diagram on Page 5, the processor uses two computational units to deliver a significant performance increase over the previous SHARC processors on a range of DSP algorithms. With its SIMD computational hardware, the processors can perform 2.7 GFLOPS running at 450 MHz.

FAMILY CORE ARCHITECTURE

The ADSP-2148x is code compatible at the assembly level with the ADSP-2147x, ADSP-2146x, ADSP-2137x, ADSP-2136x, ADSP-2126x, ADSP-21160, and ADSP-21161, and with the first generation ADSP-2106x SHARC processors. The ADSP-2148x shares architectural features with the ADSP-2126x, ADSP-2136x, ADSP-2137x, ADSP-2146x and ADSP-2116x SIMD SHARC processors, as shown in Figure 2 and detailed in the following sections.

SIMD Computational Engine

The ADSP-2148x contains two computational processing elements that operate as a single-instruction, multiple-data (SIMD) engine. The processing elements are referred to as PEX and PEY and each contains an ALU, multiplier, shifter, and register file. PEx is always active, and PEy may be enabled by setting the PEYEN mode bit in the MODE1 register. SIMD mode allows the processor to execute the same instruction in both processing elements, but each processing element operates on different data. This architecture is efficient at executing math intensive DSP algorithms.

SIMD mode also affects the way data is transferred between memory and the processing elements because twice the data bandwidth is required to sustain computational operation in the processing elements. Therefore, entering SIMD mode also doubles the bandwidth between memory and the processing elements. When using the DAGs to transfer data in SIMD mode, two data values are transferred with each memory or register file access.

Independent, Parallel Computation Units

Within each processing element is a set of computational units. The computational units consist of an arithmetic/logic unit (ALU), multiplier, and shifter. These units perform all operations in a single cycle and are arranged in parallel, maximizing computational throughput. Single multifunction instructions execute parallel ALU and multiplier operations. In SIMD mode, the parallel ALU and multiplier operations occur in both processing elements. These computation units support IEEE 32-bit single-precision floating-point, 40-bit extended precision floating-point, and 32-bit fixed-point data formats.

Timer

The processor contains a core timer that can generate periodic software interrupts. The core timer can be configured to use FLAG3 as a timer expired signal.

Data Register File

Each processing element contains a general-purpose data register file. The register files transfer data between the computation units and the data buses, and store intermediate results. These 10-port, 32-register (16 primary, 16 secondary) register files, combined with the processor's enhanced Harvard architecture, allow unconstrained data flow between computation units and internal memory. The registers in PEX are referred to as R0–R15 and in PEY as S0–S15.

Context Switch

Many of the processor's registers have secondary registers that can be activated during interrupt servicing for a fast context switch. The data registers in the register file, the DAG registers, and the multiplier result registers all have secondary registers. The primary registers are active at reset, while the secondary registers are activated by control bits in a mode control register.

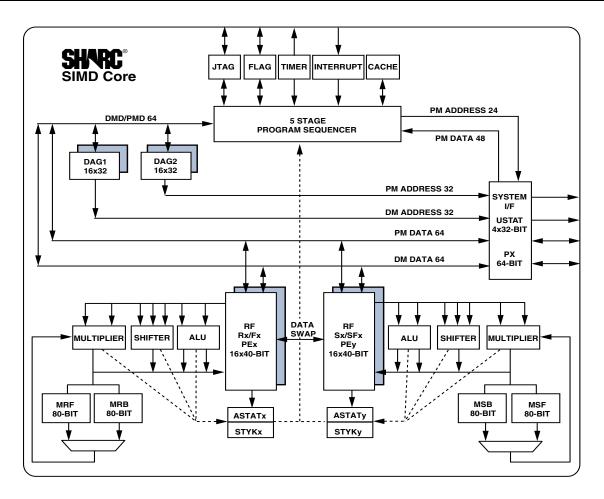


Figure 2. SHARC Core Block Diagram

Universal Registers

These registers can be used for general-purpose tasks. The USTAT (4) registers allow easy bit manipulations (Set, Clear, Toggle, Test, XOR) for all peripheral registers (control/status).

The data bus exchange register (PX) permits data to be passed between the 64-bit PM data bus and the 64-bit DM data bus, or between the 40-bit register file and the PM/DM data bus. These registers contain hardware to handle the data width difference.

Single-Cycle Fetch of Instruction and Four Operands

The ADSP-2148x features an enhanced Harvard architecture in which the data memory (DM) bus transfers data and the program memory (PM) bus transfers both instructions and data. With the its separate program and data memory buses and onchip instruction cache, the processor can simultaneously fetch four operands (two over each data bus) and one instruction (from the cache), all in a single cycle.

Instruction Cache

The processor includes an on-chip instruction cache that enables three-bus operation for fetching an instruction and four data values. The cache is selective—only the instructions whose fetches conflict with PM bus data accesses are cached. This cache allows full speed execution of core, looped operations such as digital filter multiply-accumulates, and FFT butterfly processing.

Data Address Generators With Zero-Overhead Hardware Circular Buffer Support

The two data address generators (DAGs) are used for indirect addressing and implementing circular data buffers in hardware. Circular buffers allow efficient programming of delay lines and other data structures required in digital signal processing, and are commonly used in digital filters and Fourier transforms. The two DAGs contain sufficient registers to allow the creation of up to 32 circular buffers (16 primary register sets, 16 secondary). The DAGs automatically handle address pointer wraparound, reduce overhead, increase performance, and simplify implementation. Circular buffers can start and end at any memory location.

Flexible Instruction Set

The 48-bit instruction word accommodates a variety of parallel operations, for concise programming. For example, the processor can conditionally execute a multiply, an add, and a

The outputs of PCG A and B can be routed through the DAI pins and the outputs of PCG C and D can be driven on to the DAI as well as the DPI pins.

Digital Peripheral Interface (DPI)

The ADSP-2148x SHARC processors have a digital peripheral interface that provides connections to two serial peripheral interface ports (SPI), one universal asynchronous receiver-transmitter (UART), 12 flags, a 2-wire interface (TWI), three PWM modules (PWM3–1), and two general-purpose timers.

Serial Peripheral (Compatible) Interface (SPI)

The SPI is an industry-standard synchronous serial link, enabling the SPI-compatible port to communicate with other SPI compatible devices. The SPI consists of two data pins, one device select pin, and one clock pin. It is a full-duplex synchronous serial interface, supporting both master and slave modes. The SPI port can operate in a multimaster environment by interfacing with up to four other SPI-compatible devices, either acting as a master or slave device. The SPI-compatible peripheral implementation also features programmable baud rate and clock phase and polarities. The SPI-compatible port uses open drain drivers to support a multimaster configuration and to avoid data contention.

UART Port

The processors provide a full-duplex Universal Asynchronous Receiver/Transmitter (UART) port, which is fully compatible with PC-standard UARTs. The UART port provides a simplified UART interface to other peripherals or hosts, supporting full-duplex, DMA-supported, asynchronous transfers of serial data. The UART also has multiprocessor communication capability using 9-bit address detection. This allows it to be used in multidrop networks through the RS-485 data interface standard. The UART port also includes support for 5 to 8 data bits, 1 or 2 stop bits, and none, even, or odd parity. The UART port supports two modes of operation:

- PIO (programmed I/O)—The processor sends or receives data by writing or reading I/O-mapped UART registers. The data is double-buffered on both transmit and receive.
- DMA (direct memory access)—The DMA controller transfers both transmit and receive data. This reduces the number and frequency of interrupts required to transfer data to and from memory. The UART has two dedicated DMA channels, one for transmit and one for receive. These DMA channels have lower default priority than most DMA channels because of their relatively low service rates.

Timers

The ADSP-2148x has a total of three timers: a core timer that can generate periodic software interrupts and two generalpurpose timers that can generate periodic interrupts and be independently set to operate in one of three modes:

- Pulse waveform generation mode
- Pulse width count/capture mode
- External event watchdog mode

The core timer can be configured to use FLAG3 as a timer expired signal, and the general-purpose timers have one bidirectional pin and four registers that implement its mode of operation: a 6-bit configuration register, a 32-bit count register, a 32-bit period register, and a 32-bit pulse width register. A single control and status register enables or disables the generalpurpose timer.

2-Wire Interface Port (TWI)

The TWI is a bidirectional 2-wire, serial bus used to move 8-bit data while maintaining compliance with the I²C bus protocol. The TWI master incorporates the following features:

- 7-bit addressing
- Simultaneous master and slave operation on multiple device systems with support for multi master data arbitration
- · Digital filtering and timed event processing
- 100 kbps and 400 kbps data rates
- Low interrupt rate

I/O PROCESSOR FEATURES

The I/O processors provide up to 65 channels of DMA, as well as an extensive set of peripherals.

DMA Controller

The processor's on-chip DMA controller allows data transfers without processor intervention. The DMA controller operates independently and invisibly to the processor core, allowing DMA operations to occur while the core is simultaneously executing its program instructions. DMA transfers can occur between the ADSP-2148x's internal memory and its serial ports, the SPI-compatible (serial peripheral interface) ports, the IDP (input data port), the PDAP, or the UART. The DMA channel summary is shown in Table 8.

Programs can be downloaded to the ADSP-2148x using DMA transfers. Other DMA features include interrupt generation upon completion of DMA transfers and DMA chaining for automatic linked DMA transfers.

Table 8. DMA Channels

Peripheral	DMA Channels
SPORTs	16
IDP/PDAP	8
SPI	2
UART	2
External Port	2
Accelerators	2
Memory-to-Memory	2
MLB ¹	31

¹Automotive models only.

Details on power consumption and Static and Dynamic current consumption can be found at Total Power Dissipation on Page 20. Also see Operating Conditions on Page 18 for more information.

The following are SVS features.

- SVS is applicable only to 450 MHz models (not applicable to 400 MHz or lower frequency models).
- Each individual SVS device includes a register (SVS_DAT) containing the unique SVS voltage set at the factory, known as $\rm SVS_{NOM}$.
- The ${\rm SVS}_{\rm NOM}$ value is the intended set voltage for the $V_{\rm DD\ INT}$ voltage regulator.
- No dedicated pins are required for SVS. The TWI serial bus is used to communicate SVS_{NOM} to the voltage regulator.
- Analog Devices recommends a specific voltage regulator design and initialization code sequence that optimizes the power-up sequence.

The Engineer-to-Engineer Note Static Voltage Scaling for ADSP-2148x SHARC Processors (EE-357) contains the details of the regulator design and the initialization requirements.

• Any differences from the Analog Devices recommended programmable regulator design must be reviewed by Analog Devices to ensure that it meets the voltage accuracy and range requirements.

Target Board JTAG Emulator Connector

Analog Devices DSP Tools product line of JTAG emulators uses the IEEE 1149.1 JTAG test access port of the ADSP-2148x processors to monitor and control the target board processor during emulation. Analog Devices DSP Tools product line of JTAG emulators provides emulation at full processor speed, allowing inspection and modification of memory, registers, and processor stacks. The processor's JTAG interface ensures that the emulator will not affect target system loading or timing.

For complete information on Analog Devices' SHARC DSP Tools product line of JTAG emulator operation, see the appropriate emulator hardware user's guide.

DEVELOPMENT TOOLS

Analog Devices supports its processors with a complete line of software and hardware development tools, including integrated development environments (which include CrossCore[®] Embedded Studio and/or VisualDSP++[®]), evaluation products, emulators, and a wide variety of software add-ins.

Integrated Development Environments (IDEs)

For C/C++ software writing and editing, code generation, and debug support, Analog Devices offers two IDEs.

CrossCore Embedded Studio is based on the Eclipse[™] framework. Supporting most Analog Devices processor families, it is the IDE of choice for future processors, including multicore devices. CrossCore Embedded Studio seamlessly integrates available software add-ins to support real time operating systems, file systems, TCP/IP stacks, USB stacks, algorithmic software modules, and evaluation hardware board support packages. For more information visit www.analog.com/cces.

The other Analog Devices IDE, VisualDSP++, supports processor families introduced prior to the release of CrossCore Embedded Studio. This IDE includes the Analog Devices VDK real time operating system and an open source TCP/IP stack. For more information visit www.analog.com/visualdsp. Note that VisualDSP++ will not support future Analog Devices processors.

EZ-KIT Lite Evaluation Board

For processor evaluation, Analog Devices provides wide range of EZ-KIT Lite[®] evaluation boards. Including the processor and key peripherals, the evaluation board also supports on-chip emulation capabilities and other evaluation and development features. Also available are various EZ-Extenders[®], which are daughter cards delivering additional specialized functionality, including audio and video processing. For more information visit www.analog.com and search on "ezkit" or "ezextender".

EZ-KIT Lite Evaluation Kits

For a cost-effective way to learn more about developing with Analog Devices processors, Analog Devices offer a range of EZ-KIT Lite evaluation kits. Each evaluation kit includes an EZ-KIT Lite evaluation board, directions for downloading an evaluation version of the available IDE(s), a USB cable, and a power supply. The USB controller on the EZ-KIT Lite board connects to the USB port of the user's PC, enabling the chosen IDE evaluation suite to emulate the on-board processor in-circuit. This permits the customer to download, execute, and debug programs for the EZ-KIT Lite system. It also supports in-circuit programming of the on-board Flash device to store user-specific boot code, enabling standalone operation. With the full version of Cross-Core Embedded Studio or VisualDSP++ installed (sold separately), engineers can develop software for supported EZ-KITs or any custom system utilizing supported Analog Devices processors.

Software Add-Ins for CrossCore Embedded Studio

Analog Devices offers software add-ins which seamlessly integrate with CrossCore Embedded Studio to extend its capabilities and reduce development time. Add-ins include board support packages for evaluation hardware, various middleware packages, and algorithmic modules. Documentation, help, configuration dialogs, and coding examples present in these add-ins are viewable through the CrossCore Embedded Studio IDE once the add-in is installed.

Board Support Packages for Evaluation Hardware

Software support for the EZ-KIT Lite evaluation boards and EZ-Extender daughter cards is provided by software add-ins called Board Support Packages (BSPs). The BSPs contain the required drivers, pertinent release notes, and select example code for the given evaluation hardware. A download link for a specific BSP is located on the web page for the associated EZ-KIT or EZ-Extender product. The link is found in the Product Download area of the product web page.

Table 11. Pin Descriptions (Continued)

		State During/	
Name	Туре	After Reset	Description
SDRAS	O/T (ipu)	High-Z/ driven high	SDRAM Row Address Strobe. Connect to SDRAM's RAS pin. In conjunction with other SDRAM command pins, defines the operation for the SDRAM to perform.
SDCAS	O/T (ipu)	High-Z/ driven high	SDRAM Column Address Select. Connect to SDRAM's CAS pin. In conjunction with other SDRAM command pins, defines the operation for the SDRAM to perform.
SDWE	O/T (ipu)	High-Z/ driven high	SDRAM Write Enable. Connect to SDRAM's WE or W buffer pin. In conjunction with other SDRAM command pins, defines the operation for the SDRAM to perform.
SDCKE	O/T (ipu)	High-Z/ driven high	SDRAM Clock Enable. Connect to SDRAM's CKE pin. Enables and disables the CLK signal. For details, see the data sheet supplied with the SDRAM device.
SDA10	O/T (ipu)	High-Z/ driven high	SDRAM A10 Pin. Enables applications to refresh an SDRAM in parallel with non-SDRAM accesses. This pin replaces the DSP's ADDR10 pin only during SDRAM accesses.
SDDQM	O/T (ipu)	High-Z/ driven high	DQM Data Mask. SDRAM Input mask signal for write accesses and output mask signal for read accesses. Input data is masked when DQM is sampled high during a write cycle. The SDRAM output buffers are placed in a High-Z state when DQM is sampled high during a read cycle. SDDQM is driven high from reset de-assertion until SDRAM initialization completes. Afterwards it is driven low irrespective of whether any SDRAM accesses occur or not.
SDCLK	O/T (ipd)	High-Z/ driving	SDRAM Clock Output. Clock driver for this pin differs from all other clock drivers. See Figure 41 on Page 55. For models in the 100-lead package, the SDRAM interface should be disabled to avoid unnecessary power switching by setting the DSDCTL bit in SDCTL register. For more information, see the hardware reference.
DAI_P ₂₀₋₁	l/O/T (ipu)	High-Z	Digital Applications Interface . These pins provide the physical interface to the DAI SRU. The DAI SRU configuration registers define the combination of on-chip audio- centric peripheral inputs or outputs connected to the pin and to the pin's output enable. The configuration registers of these peripherals then determines the exact behavior of the pin. Any input or output signal present in the DAI SRU may be routed to any of these pins.
DPI _P ₁₄₋₁	l/O/T (ipu)	High-Z	Digital Peripheral Interface. These pins provide the physical interface to the DPI SRU. The DPI SRU configuration registers define the combination of on-chip peripheral inputs or outputs connected to the pin and to the pin's output enable. The configu- ration registers of these peripherals then determines the exact behavior of the pin. Any input or output signal present in the DPI SRU may be routed to any of these pins.
WDT_CLKIN	1		Watchdog Timer Clock Input. This pin should be pulled low when not used.
WDT_CLKO	0		Watchdog Resonator Pad Output.
WDTRSTO	O (ipu)		Watchdog Timer Reset Out.
THD_P	I		Thermal Diode Anode. When not used, this pin can be left floating.
THD_M	0		Thermal Diode Cathode. When not used, this pin can be left floating.

The following symbols appear in the Type column of this table: **A** = asynchronous, **I** = input, **O** = output, **S** = synchronous, **A/D** = active drive, **O/D** = open drain, and **T** = three-state, **ipd** = internal pull-down resistor, **ipu** = internal pull-up resistor.

The internal pull-up (ipu) and internal pull-down (ipd) resistors are designed to hold the internal path from the pins at the expected logic levels. To pull-up or pull-down the external pads to the expected logic levels, use external resistors. Internal pull-up/pull-down resistors cannot be enabled/disabled and the value of these resistors cannot be programmed. The range of an ipu resistor can be between $26 \text{ k}\Omega-63 \text{ k}\Omega$. The range of an ipd resistor can be between $31 \text{ k}\Omega-85 \text{ k}\Omega$. The three-state voltage of ipu pads will not reach to the full V_{DD_EXT} level; at typical conditions the voltage is in the range of 2.3 V to 2.7 V.

In this table, all pins are LVTTL compliant with the exception of the thermal diode pins.

Table 11. Pin Descriptions (Continued)

Name	Туре	State During/ After Reset	Description
CLK_CFG ₁₋₀	1		Core to CLKIN Ratio Control. These pins set the start up clock frequency. Note that the operating frequency can be changed by programming the PLL multiplier and divider in the PMCTL register at any time after the core comes out of reset. The allowed values are: 00 = 8:1 01 = 32:1 10 = 16:1 11 = reserved
CLKIN	1		Local Clock In. Used in conjunction with XTAL. CLKIN is the clock input. It configures the processors to use either its internal clock generator or an external clock source. Connecting the necessary components to CLKIN and XTAL enables the internal clock generator. Connecting the external clock to CLKIN while leaving XTAL unconnected configures the processors to use the external clock source such as an external clock oscillator. CLKIN may not be halted, changed, or operated below the specified frequency.
XTAL	0		Crystal Oscillator Terminal. Used in conjunction with CLKIN to drive an external crystal.
RESET	1		Processor Reset. Resets the processor to a known state. Upon deassertion, there is a 4096 CLKIN cycle latency for the PLL to lock. After this time, the core begins program execution from the hardware reset vector address. The RESET input must be asserted (low) at power-up.
RESETOUT/ RUNRSTIN	l/O (ipu)		Reset Out/Running Reset In. The default setting on this pin is reset out. This pin also has a second function as RUNRSTIN which is enabled by setting bit 0 of the RUNRSTCTL register. For more information, see the hardware reference.
BOOT_CFG ₂₋₀	I		Boot Configuration Select. These pins select the boot mode for the processor (see Table 9). The BOOT_CFG pins must be valid before RESET (hardware and software) is asserted.

The following symbols appear in the Type column of this table: **A** = asynchronous, **I** = input, **O** = output, **S** = synchronous, **A/D** = active drive, **O/D** = open drain, and **T** = three-state, **ipd** = internal pull-down resistor, **ipu** = internal pull-up resistor.

The internal pull-up (ipu) and internal pull-down (ipd) resistors are designed to hold the internal path from the pins at the expected logic levels. To pull-up or pull-down the external pads to the expected logic levels, use external resistors. Internal pull-up/pull-down resistors cannot be enabled/disabled and the value of these resistors cannot be programmed. The range of an ipu resistor can be between $26 \text{ k}\Omega-63 \text{ k}\Omega$. The range of an ipd resistor can be between $31 \text{ k}\Omega-85 \text{ k}\Omega$. The three-state voltage of ipu pads will not reach to the full V_{DD_EXT} level; at typical conditions the voltage is in the range of 2.3 V to 2.7 V.

In this table, all pins are LVTTL compliant with the exception of the thermal diode pins.

¹ The MLB pins are only available on the automotive models.

Table 12. Pin List, Power and Ground

Name	Туре	Description
V _{DD_INT}	Р	Internal Power Supply
V _{DD_EXT}	Р	I/O Power Supply
GND ¹	G	Ground
V _{DD_THD}	Р	Thermal Diode Power Supply. When not used, this pin can be left floating.

¹ The exposed pad is required to be electrically and thermally connected to GND. Implement this by soldering the exposed pad to a GND PCB land that is the same size as the exposed pad. The GND PCB land should be robustly connected to the GND plane in the PCB for best electrical and thermal performance. No separate GND pins are provided in the package.

TIMING SPECIFICATIONS

Use the exact timing information given. Do not attempt to derive parameters from the addition or subtraction of others. While addition or subtraction would yield meaningful results for an individual device, the values given in this data sheet reflect statistical variations and worst cases. Consequently, it is not meaningful to add parameters to derive longer times. See Figure 43 on Page 55 for voltage reference levels.

Switching characteristics specify how the processor changes its signals. Circuitry external to the processor must be designed for compatibility with these signal characteristics. Switching characteristics describe what the processor will do in a given circumstance. Use switching characteristics to ensure that any timing requirement of a device connected to the processor (such as memory) is satisfied. Timing requirements apply to signals that are controlled by circuitry external to the processor, such as the data input for a read operation. Timing requirements guarantee that the processor operates correctly with other devices.

Core Clock Requirements

The processor's internal clock (a multiple of CLKIN) provides the clock signal for timing internal memory, the processor core, and the serial ports. During reset, program the ratio between the processor's internal clock frequency and external (CLKIN) clock frequency with the CLK_CFG1–0 pins.

The processor's internal clock switches at higher frequencies than the system input clock (CLKIN). To generate the internal clock, the processor uses an internal phase-locked loop (PLL, see Figure 4). This PLL-based clocking minimizes the skew between the system clock (CLKIN) signal and the processor's internal clock.

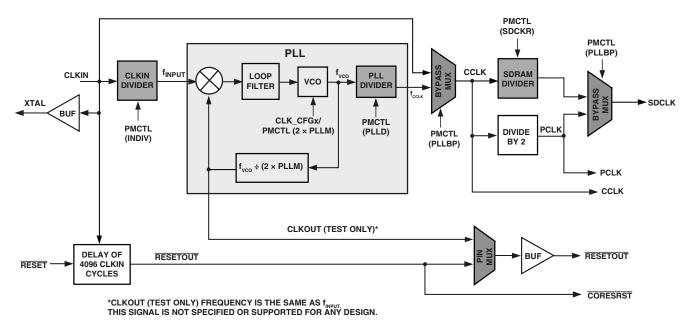


Figure 4. Core Clock and System Clock Relationship to CLKIN

Voltage Controlled Oscillator (VCO)

In application designs, the PLL multiplier value should be selected in such a way that the VCO frequency never exceeds $f_{\rm VCO}$ specified in Table 20.

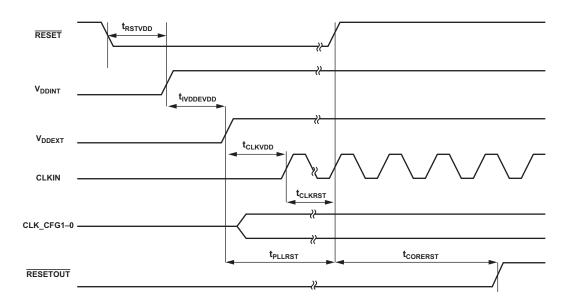
- The product of CLKIN and PLLM must never exceed 1/2 of f_{VCO} (max) in Table 20 if the input divider is not enabled (INDIV = 0).
- The product of CLKIN and PLLM must never exceed f_{VCO} (max) in Table 20 if the input divider is enabled (INDIV = 1).

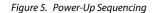
The VCO frequency is calculated as follows:

 $\begin{aligned} f_{VCO} &= 2 \times PLLM \times f_{INPUT} \\ f_{CCLK} &= (2 \times PLLM \times f_{INPUT}) \div PLLD \end{aligned}$

where:

 f_{VCO} = VCO output


PLLM = Multiplier value programmed in the PMCTL register. During reset, the PLLM value is derived from the ratio selected using the CLK_CFG pins in hardware.


PLLD = 2, 4, 8, or 16 based on the divider value programmed on the PMCTL register. During reset this value is 2.

 f_{INPUT} = is the input frequency to the PLL.

 f_{INPUT} = CLKIN when the input divider is disabled or

 f_{INPUT} = CLKIN ÷ 2 when the input divider is enabled

Clock Input

Table 20. Clock Input

		30	0 MHz	35	0 MHz	40	00 MHz	45	0 MHz	
Param	eter	Min	Мах	Min	Max	Min	Мах	Min	Max	Unit
Timing	Requirements									
t _{CK}	CLKIN Period	26.66 ¹	100 ²	22.8 ¹	100 ²	20 ¹	100 ²	17.75 ¹	100 ²	ns
t _{CKL}	CLKIN Width Low	13	45	11	45	10	45	8.875	45	ns
t _{CKH}	CLKIN Width High	13	45	11	45	10	45	8.875	45	ns
t _{CKRF} ³	CLKIN Rise/Fall (0.4 V to 2.0 V)		3		3		3		3	ns
t _{CCLK} 4	CCLK Period	3.33	10	2.85	10	2.5	10	2.22	10	ns
f _{VCO} ⁵	VCO Frequency	200	800	200	800	200	800	200	900	MHz
t _{CKJ} ^{6, 7}	CLKIN Jitter Tolerance	-250	+250	-250	+250	-250	+250	-250	+250	ps

¹Applies only for CLK_CFG1–0 = 00 and default values for PLL control bits in PMCTL.

² Applies only for CLK_CFG1-0 = 01 and default values for PLL control bits in PMCTL.

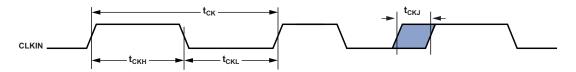
³Guaranteed by simulation but not tested on silicon.

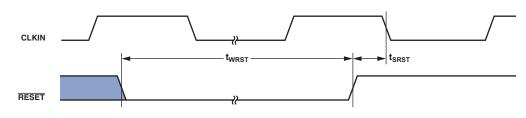
 4 Any changes to PLL control bits in the PMCTL register must meet core clock timing specification t_{CCLK}.

⁵See Figure 4 on Page 22 for VCO diagram.

⁶Actual input jitter should be combined with ac specifications for accurate timing analysis.

⁷ Jitter specification is maximum peak-to-peak time interval error (TIE) jitter.




Figure 6. Clock Input

Reset

Table 21. Reset

Paramete	r	Min	Max	Unit
Timing Requirements				
t _{WRST} 1	RESET Pulse Width Low	$4 \times t_{CK}$		ns
t _{SRST}	RESET Setup Before CLKIN Low	8		ns

¹ Applies after the power-up sequence is complete. At power-up, the processor's internal phase-locked loop requires no more than 100 $\mu\sigma$ while $\overline{\text{RESET}}$ is low, assuming stable V_{DD} and CLKIN (not including start-up time of external clock oscillator).

Running Reset

The following timing specification applies to <u>RESETOUT/RUNRSTIN</u> pin when it is configured as <u>RUNRSTIN</u>.

Table 22. Running Reset

Parameter		Min	Max	Unit
Timing Requirements				
t _{WRUNRST}	Running RESET Pulse Width Low	$4 \times t_{CK}$		ns
t _{SRUNRST}	Running RESET Setup Before CLKIN High	8		ns

Figure 9. Running Reset

Timer PWM_OUT Cycle Timing

The following timing specification applies to timer0 and timer1 in PWM_OUT (pulse-width modulation) mode. Timer signals are routed to the DPI_P14-1 pins through the DPI SRU. Therefore, the timing specifications provided below are valid at the DPI_P14-1 pins.

Table 25. Timer PWM_OUT Timing

Parameter		Min	Мах	Unit
Switching Characteristic				
t _{PWMO}	Timer Pulse Width Output	$2 \times t_{PCLK} - 1.2$	$2 \times (2^{31} - 1) \times t_{PCLK}$	ns

Figure 12. Timer PWM_OUT Timing

Timer WDTH_CAP Timing

The following timing specification applies to timer0 and timer1, and in WDTH_CAP (pulse-width count and capture) mode. Timer signals are routed to the DPI_P14-1 pins through the SRU. Therefore, the timing specification provided below is valid at the DPI_P14-1 pins.

Table 26. Timer Width Capture Timing

Parameter		Min	Мах	Unit
Timing Re	equirement			
t _{PWI}	Timer Pulse Width	$2 \times t_{PCLK}$	$2 \times (2^{31} - 1) \times t_{PCLK}$	ns

Figure 13. Timer Width Capture Timing

SDRAM Interface Timing (166 MHz SDCLK)

The maximum frequency for SDRAM is 166 MHz. For information on SDRAM frequency and programming, see the hardware reference, Engineer-to-Engineer Note Interfacing SDRAM Memories to SHARC Processors (EE-286), and the SDRAM vendor data sheet.

Table 31. SDRAM Interface Timing

Parameter		Min	Max	Unit
Timing Req	uirements			
t _{SSDAT}	DATA Setup Before SDCLK	0.7		ns
t _{HSDAT}	DATA Hold After SDCLK	1.23		ns
Switching (haracteristics			
t _{SDCLK} 1	SDCLK Period	6		ns
t _{SDCLKH}	SDCLK Width High	2.2		ns
t _{SDCLKL}	SDCLK Width Low	2.2		ns
t _{DCAD} ²	Command, ADDR, Data Delay After SDCLK		4	ns
t _{HCAD} ²	Command, ADDR, Data Hold After SDCLK	1		ns
t _{DSDAT}	Data Disable After SDCLK		5.3	ns
t _{ENSDAT}	Data Enable After SDCLK	0.3		ns

¹Systems should use the SDRAM model with a speed grade higher than the desired SDRAM controller speed. For example, to run the SDRAM controller at 166 MHz the SDRAM model with a speed grade of 183 MHz or above should be used. See Engineer-to-Engineer Note Interfacing SDRAM Memories to SHARC Processors (EE-286) for more information on hardware design guidelines for the SDRAM interface.

²Command pins include: SDCAS, SDRAS, SDWE, MSx, SDA10, SDCKE.

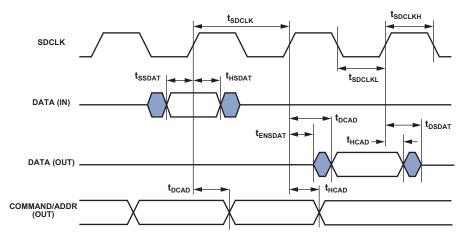
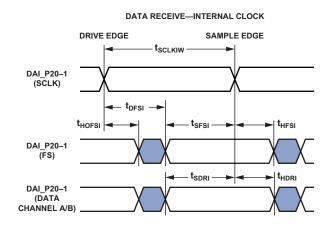



Figure 18. SDRAM Interface Timing

DATA TRANSMIT-INTERNAL CLOCK

t_{SFSI}

t_{DDTI}

t_{SCLKIW}

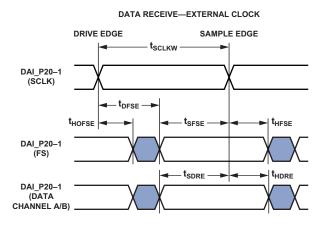
— t_{DFSI} —►

SAMPLE EDGE

t_{HFSI}

DRIVE EDGE

t_{HOFSI}


t_{HDTI}

DAI_P20-1 (SCLK)

DAI_P20-1

(FS)

DAI_P20-1 (DATA CHANNEL A/B)

DATA TRANSMIT—EXTERNAL CLOCK

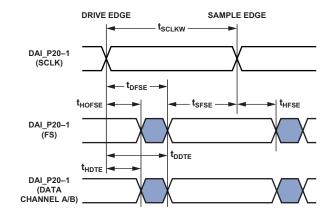


Figure 21. Serial Ports

Input Data Port (IDP)

The timing requirements for the IDP are given in Table 39. IDP signals are routed to the DAI_P20-1 pins using the SRU. Therefore, the timing specifications provided below are valid at the DAI_P20-1 pins.

Table 39. Input Data Port (IDP)

Parameter		Min	Max	Unit
Timing Requ	uirements			
t _{SISFS} 1	Frame Sync Setup Before Serial Clock Rising Edge	3.8		ns
t _{SIHFS} 1	Frame Sync Hold After Serial Clock Rising Edge	2.5		ns
t _{SISD} 1	Data Setup Before Serial Clock Rising Edge	2.5		ns
t _{SIHD} 1	Data Hold After Serial Clock Rising Edge	2.5		ns
	Clock Width	$(t_{PCLK} \times 4) \div 2 -$	· 1	ns
t _{IDPCLK}	Clock Period	(t _{PCLK} × 4) ÷ 2 – t _{PCLK} × 4		ns

¹ The serial clock, data, and frame sync signals can come from any of the DAI pins. The serial clock and frame sync signals can also come via PCG or SPORTs. PCG's input can be either CLKIN or any of the DAI pins.

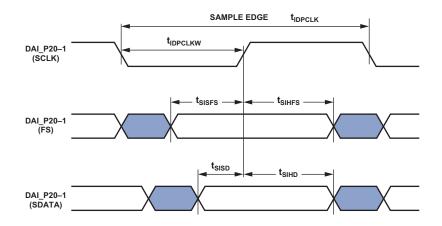


Figure 25. IDP Master Timing

S/PDIF Transmitter Input Data Timing

The timing requirements for the S/PDIF transmitter are given in Table 47. Input signals are routed to the DAI_P20-1 pins using the SRU. Therefore, the timing specifications provided below are valid at the DAI_P20-1 pins.

Table 47. S/PDIF Transmitter Input Data Timing

Parameter		Min	Мах	Unit
Timing Requi	irements			
t _{SISFS} ¹	Frame Sync Setup Before Serial Clock Rising Edge	3		ns
t _{SIHFS} 1	Frame Sync Hold After Serial Clock Rising Edge	3		ns
t _{SISD} 1	Data Setup Before Serial Clock Rising Edge	3		ns
t _{SIHD} 1	Data Hold After Serial Clock Rising Edge	3		ns
t _{SITXCLKW}	Transmit Clock Width	9		ns
t _{SITXCLK}	Transmit Clock Period	20		ns
t _{SISCLKW}	Clock Width	36		ns
t _{SISCLK}	Clock Period	80		ns

¹The serial clock, data, and frame sync signals can come from any of the DAI pins. The serial clock and frame sync signals can also come via PCG or SPORTs. PCG's input can be either CLKIN or any of the DAI pins.

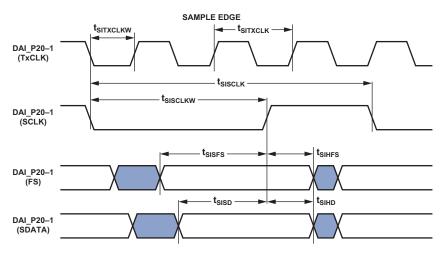


Figure 33. S/PDIF Transmitter Input Timing

Oversampling Clock (TxCLK) Switching Characteristics

The S/PDIF transmitter requires an oversampling clock input. This high frequency clock (TxCLK) input is divided down to generate the internal biphase clock.

Table 48.	Oversampling Clock (TxCLK) Switching Characteristics
-----------	---

Parameter	Мах	Unit
Frequency for TxCLK = $384 \times$ Frame Sync	Oversampling Ratio × Frame Sync <= 1/t _{SITXCLK}	MHz
Frequency for TxCLK = $256 \times$ Frame Sync	49.2	MHz
Frame Rate (FS)	192.0	kHz

S/PDIF Receiver

The following section describes timing as it relates to the S/PDIF receiver.

Internal Digital PLL Mode

In the internal digital phase-locked loop mode the internal PLL (digital PLL) generates the $512 \times FS$ clock.

Table 49. S/PDIF Receiver Internal Digital PLL Mode Timing

Parameter		Min	Max	Unit
Switching Charact	teristics			
t _{DFSI}	Frame Sync Delay After Serial Clock		5	ns
t _{HOFSI}	Frame Sync Hold After Serial Clock	-2		ns
t _{DDTI}	Transmit Data Delay After Serial Clock		5	ns
t _{HDTI}	Transmit Data Hold After Serial Clock	-2		ns
t _{SCLKIW} ¹	Transmit Serial Clock Width	$8 \times t_{PCLK} - 2$	2	ns

¹SCLK frequency is $64 \times FS$ where FS = the frequency of frame sync.

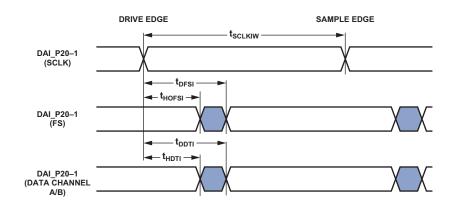


Figure 34. S/PDIF Receiver Internal Digital PLL Mode Timing

Media Local Bus

All the numbers given are applicable for all speed modes (1024 FS, 512 FS and 256 FS for 3-pin; 512 FS and 256 FS for 5-pin), unless otherwise specified. Please refer to the MediaLB specification document revision 3.0 for more details.

Table 52. MLB Interface, 3-Pin Specifications

Paramete	r	Min	Тур	Max	Unit
3-Pin Chard	acteristics				
t _{MLBCLK}	MLB Clock Period 1024 FS		20.3		ns
	512 FS 256 FS		40 81		ns ns
t _{MCKL}	MLBCLK Low Time 1024 FS	6.1			ns
	512 FS 256 FS	14 30			ns ns
t _{MCKH}	MLBCLK High Time 1024 FS	9.3			ns
	512 FS 256 FS	14 30			ns ns
t _{MCKR}	MLBCLK Rise Time (V _{IL} to V _{IH}) 1024 FS 512 FS/256 FS			1 3	ns ns
t _{MCKF}	MLBCLK Fall Time (V _{IH} to V _{IL}) 1024 FS 512 FS/256 FS			1 3	ns ns
t _{MPWV} 1	MLBCLK Pulse Width Variation 1024 FS 512 FS/256			0.7 2.0	nspp nspp
t _{DSMCF}	DAT/SIG Input Setup Time	1			ns
t _{DHMCF}	DAT/SIG Input Hold Time	2			ns
t _{MCFDZ}	DAT/SIG Output Time to Three-state	0		15	ns
t _{MCDRV}	DAT/SIG Output Data Delay From MLBCLK Rising Edge			8	ns
t _{MDZH} ²	Bus Hold Time 1024 FS	2			ns
	512 FS/256	4			ns
C _{MLB}	DAT/SIG Pin Load 1024 FS 512 FS/256			40 60	pf pf

¹Pulse width variation is measured at 1.25 V by triggering on one edge of MLBCLK and measuring the spread on the other edge, measured in ns peak-to-peak (pp).
²The board must be designed to ensure that the high-impedance bus does not leave the logic state of the final driven bit for this time period. Therefore, coupling must be minimized while meeting the maximum capacitive load listed.

OUTPUT DRIVE CURRENTS

Figure 41 shows typical I-V characteristics for the output drivers of the ADSP-2148x, and Table 55 shows the pins associated with each driver. The curves represent the current drive capability of the output drivers as a function of output voltage.

Table 55. Driver Types

Driver Type	Associated Pins
А	FLAG[0–3], AMI_ADDR[0–23], DATA[0–15],
	AMI_RD, AMI_WR, AMI_ACK, MS[1-0], SDRAS,
	SDCAS, SDWE, SDDQM, SDCKE, SDA10, EMU, TDO,
	RESETOUT, DPI[1–14], DAI[1–20], WDTRSTO,
	MLBDAT, MLBSIG, MLBSO, MLBDO, MLBCLK
В	SDCLK

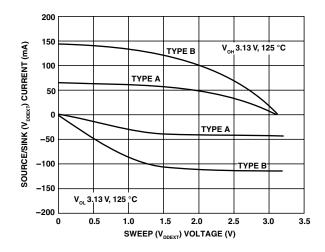
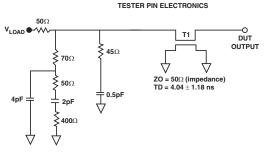


Figure 41. Typical Drive at Junction Temperature


TEST CONDITIONS

The ac signal specifications (timing parameters) appear in Table 21 on Page 26 through Table 54 on Page 54. These include output disable time, output enable time, and capacitive loading. The timing specifications for the SHARC apply for the voltage reference levels in Figure 42.

Timing is measured on signals when they cross the 1.5 V level as described in Figure 43. All delays (in nanoseconds) are measured between the point that the first signal reaches 1.5 $\rm V$ and the point that the second signal reaches 1.5 V.

Figure 43. Voltage Reference Levels for AC Measurements

NOTES

THE WORST CASE TRANSMISSION LINE DELAY IS SHOWN AND CAN BE USED FOR THE OUTPUT TIMING ANALYSIS TO REFLECT THE TRANSMISSION LINE EFFECT AND MUST BE CONSIDERED. THE TRANSMISSION LINE (TD) IS FOR LOAD ONLY AND DOES NOT AFFECT THE DATA SHEET TIMING SPECIFICATIONS.

ANALOG DEVICES RECOMMENDS USING THE IBIS MODEL TIMING FOR A GIVEN SYSTEM REQUIREMENT. IF NECESSARY, A SYSTEM MAY INCORPORATE EXTERNAL DRIVERS TO COMPENSATE FOR ANY TIMING DIFFERENCES.

Figure 42. Equivalent Device Loading for AC Measurements (Includes All Fixtures)

CAPACITIVE LOADING

Output delays and holds are based on standard capacitive loads: 30 pF on all pins (see Figure 42). Figure 46 and Figure 47 show graphically how output delays and holds vary with load capacitance. The graphs of Figure 44 through Figure 47 may not be linear outside the ranges shown for Typical Output Delay vs. Load Capacitance and Typical Output Rise Time (20% to 80%, V = Min) vs. Load Capacitance.

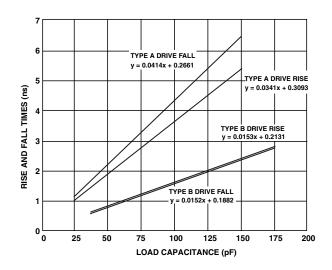


Figure 44. Typical Output Rise/Fall Time $(20\% to 80\%, V_{DD EXT} = Max)$

Table 62. Automotive Models ADSP-21488, and ADSP-21489 176-Lead LQFP_EP Lead Assignment (Numerical by Lead Number)

Lead Name	Lead No.						
SDDQM	1	V _{DD_EXT}	45	DAI_P10	89	V _{DD_INT}	133
MSO	2	DPI_P08	46	V _{DD_INT}	90	FLAG0	134
SDCKE	3	DPI_P07	47	V _{DD_EXT}	91	FLAG1	135
/ _{DD_INT}	4	V _{DD INT}	48	DAI_P20	92	FLAG2	136
CLK_CFG1	5	DPI_P09	49	V _{DD_INT}	93	MLBCLK	137
ADDRO	6	DPI_P10	50	DAI_P08	94	FLAG3	138
BOOT_CFG0	7	DPI_P11	51	DAI_P14	95	MLBDAT	139
V _{DD_EXT}	8	DPI_P12	52	DAI_P04	96	MLBDO	140
ADDR1	9	DPI_P13	53	DAI_P18	97	V _{DD_EXT}	141
ADDR2	10	DPI_P14	55	DAI_P17	98	MLBSIG	142
ADDR3	11	DAI_P03	55	DAI_P16	99	V _{DD_INT}	143
ADDR4	12	NC	56	DAI_P12	100		144
ADDR5	13	V _{DD_EXT}	57	DAI_P15	101	MLBSO	145
BOOT_CFG1	14	NC	58 50	V _{DD_INT}	102	EMU	146
GND	15	NC	59	DAI_P11	103	DATA0	147
ADDR6	16	NC	60	V _{DD_EXT}	104	DATA1	148
ADDR7	17	NC	61	V _{DD_INT}	105	DATA2	149
NC	18	V _{DD_INT}	62	BOOT_CFG2	106	DATA3	150
NC	19	NC	63	V _{DD_INT}	107	TDO	151
ADDR8	20	NC	64	AMI_ACK	108	DATA4	152
ADDR9	21	V _{DD_INT}	65	GND	109	V _{DD_EXT}	153
CLK_CFG0	22	NC	66	THD_M	110	DATA5	154
V _{DD_INT}	23	NC	67	THD_P	111	DATA6	155
CLKIN	24	V _{DD_INT}	68	V _{DD_THD}	112	V _{DD_INT}	156
XTAL	25	NC	69	V _{DD_INT}	113	DATA7	157
ADDR10	26	WDTRSTO	70	V _{DD_INT}	114	TDI	158
SDA10	27	NC	71	MS1	115	SDCLK	159
V _{DD_EXT}	28	V _{DD_EXT}	72	V _{DD INT}	116	V _{DD_EXT}	160
V _{DD_INT}	29	DAI_P07	73	WDT_CLKO	117	DATA8	161
ADDR11	30	DAI_P13	74	WDT_CLKIN	118	DATA9	162
ADDR12	31	DAI_P19	75	V _{DD_EXT}	119	DATA10	163
ADDR17	32	DAI_P01	76	ADDR23	120	тск	164
ADDR13	33	DAI_P02	77	ADDR22	121	DATA11	165
V _{DD_INT}	34	V _{DD_INT}	78	ADDR21	122	DATA12	166
ADDR18	35	NC	70	V _{DD INT}	122	DATA14	167
RESETOUT/RUNRSTIN		NC		ADDR20		DATA13	
	36		80		124		168
	37	NC	81	ADDR19	125		169
DPI_P01	38	NC	82	V _{DD_EXT}	126	DATA15	170
DPI_P02	39	NC	83	ADDR16	127	SDWE	171
DPI_P03	40	V _{DD_EXT}	84	ADDR15	128	SDRAS	172
V _{DD_INT}	41	V _{DD_INT}	85	V _{DD_INT}	129	RESET	173
DPI_P05	42	DAI_P06	86	ADDR14	130	TMS	174
DPI_P04	43	DAI_P05	87	AMI_WR	131	SDCAS	175
DPI_P06	44	DAI_P09	88	AMI_RD	132	V _{DD_INT}	176
						GND	177*

www.analog.com

©2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D09018-0-5/16(D)

Rev. D | Page 68 of 68 | May 2016