

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Active
Туре	Floating Point
Interface	EBI/EMI, DAI, I ² C, SPI, SPORT, UART/USART
Clock Rate	350MHz
Non-Volatile Memory	External
On-Chip RAM	3Mbit
Voltage - I/O	3.30V
Voltage - Core	1.10V
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	100-LQFP-EP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-21488bswz-3a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

subtract in both processing elements while branching and fetching up to four 32-bit values from memory, all in a single instruction.

Variable Instruction Set Architecture (VISA)

In addition to supporting the standard 48-bit instructions from previous SHARC processors, the ADSP-2148x supports new instructions of 16 and 32 bits. This feature, called Variable Instruction Set Architecture (VISA), drops redundant/unused bits within the 48-bit instruction to create more efficient and compact code. The program sequencer supports fetching these 16-bit and 32-bit instructions from both internal and external SDRAM memory. This support is not extended to the asynchronous memory interface (AMI). Source modules need to be built using the VISA option, in order to allow code generation tools to create these more efficient opcodes.

On-Chip Memory

The ADSP-21483 and the ADSP-21488 processors contain 3 Mbits of internal RAM (Table 3) and the ADSP-21486, ADSP-21487, and ADSP-21489 processors contain 5 Mbits of internal RAM (Table 4). Each memory block supports singlecycle, independent accesses by the core processor and I/O processor.

IOP Registers 0x0000 0000–0x0003 FFFF				
Long Word (64 Bits)	Extended Precision Normal or Instruction Word (48 Bits)	Normal Word (32 Bits)	Short Word (16 Bits)	
Block 0 ROM (Reserved)	Block 0 ROM (Reserved)	Block 0 ROM (Reserved)	Block 0 ROM (Reserved)	
0x0004 0000–0x0004 7FFF	0x0008 0000–0x0008 AAA9	0x0008 0000–0x0008 FFFF	0x0010 0000–0x0011 FFFF	
Reserved	Reserved	Reserved	Reserved	
0x0004 8000–0x0004 8FFF	0x0008 AAAA–0x0008 BFFF	0x0009 0000–0x0009 1FFF	0x0012 0000–0x0012 3FFF	
Block 0 SRAM	Block 0 SRAM	Block 0 SRAM	Block 0 SRAM	
0x0004 9000–0x0004 CFFF	0x0008 C000–0x0009 1554	0x0009 2000–0x0009 9FFF	0x0012 4000–0x0013 3FFF	
Reserved	Reserved	Reserved	Reserved	
0x0004 D000–0x0004 FFFF	0x0009 1555–0x0009 FFFF	0x0009 A000–0x0009 FFFF	0x0013 4000–0x0013 FFFF	
Block 1 ROM (Reserved)	Block 1 ROM (Reserved)	Block 1 ROM (Reserved)	Block 1 ROM (Reserved)	
0x0005 0000–0x0005 7FFF	0x000A 0000–0x000A AAA9	0x000A 0000–0x000A FFFF	0x0014 0000–0x0015 FFFF	
Reserved	Reserved	Reserved	Reserved	
0x0005 8000–0x0005 8FFF	0x000A AAAA–0x000A BFFF	0x000B 0000–0x000B 1FFF	0x0016 0000–0x0016 3FFF	
Block 1 SRAM	Block 1 SRAM	Block 1 SRAM	Block 1 SRAM	
0x0005 9000–0x0005 CFFF	0x000A C000–0x000B 1554	0x000B 2000–0x000B 9FFF	0x0016 4000–0x0017 3FFF	
Reserved	Reserved	Reserved	Reserved	
0x0005 D000–0x0005 FFFF	0x000B 1555–0x000B FFFF	0x000B A000–0x000B FFFF	0x0017 4000–0x0017 FFFF	
Block 2 SRAM	Block 2 SRAM	Block 2 SRAM	Block 2 SRAM	
0x0006 0000–0x0006 1FFF	0x000C 0000–0x000C 2AA9	0x000C 0000–0x000C 3FFF	0x0018 0000–0x0018 7FFF	
Reserved	Reserved	Reserved	Reserved	
0x0006 2000– 0x0006 FFFF	0x000C 2AAA–0x000D FFFF	0x000C 4000–0x000D FFFF	0x0018 8000–0x001B FFFF	
Block 3 SRAM	Block 3 SRAM	Block 3 SRAM	Block 3 SRAM	
0x0007 0000–0x0007 1FFF	0x000E 0000–0x000E 2AA9	0x000E 0000–0x000E 3FFF	0x001C 0000–0x001C 7FFF	
Reserved	Reserved	Reserved	Reserved	
0x0007 2000–0x0007 FFFF	0x000E 2AAA-0x000F FFFF	0x000E 4000–0x000F FFFF	0x001C 8000–0x001F FFFF	

Table 3. Internal Memory Space (3 MBits-ADSP-21483/ADSP-21488)¹

¹Some ADSP-2148x processors include a customer-definable ROM block. ROM addresses on these models are not reserved as shown in this table. Please contact your Analog Devices sales representative for additional details.

The processor's SRAM can be configured as a maximum of 160k words of 32-bit data, 320k words of 16-bit data, 106.7k words of 48-bit instructions (or 40-bit data), or combinations of different word sizes up to 5 megabits. All of the memory can be accessed as 16-bit, 32-bit, 48-bit, or 64-bit words. A 16-bit floating-point storage format is supported that effectively doubles the amount of data that may be stored on-chip. Conversion between the 32-bit floating-point and 16-bit floating-point formats is performed in a single instruction. While each memory block can store combinations of code and data, accesses are

most efficient when one block stores data using the DM bus for transfers, and the other block stores instructions and data using the PM bus for transfers.

Using the DM bus and PM buses, with one bus dedicated to a memory block, assures single-cycle execution with two data transfers. In this case, the instruction must be available in the cache.

The memory maps in Table 3 and Table 4 display the internal memory address space of the processors. The 48-bit space section describes what this address range looks like to an

The PWM generator is capable of operating in two distinct modes while generating center-aligned PWM waveforms: single-update mode or double-update mode. In single-update mode the duty cycle values are programmable only once per PWM period. This results in PWM patterns that are symmetrical about the midpoint of the PWM period. In double-update mode, a second updating of the PWM registers is implemented at the midpoint of the PWM period. In this mode, it is possible to produce asymmetrical PWM patterns that produce lower harmonic distortion in three-phase PWM inverters.

PWM signals can be mapped to the external port address lines or to the DPI pins.

MediaLB

The automotive models of the ADSP-2148x processors have an MLB interface which allows the processor to function as a media local bus device. It includes support for both 3-pin as well as 5-pin media local bus protocols. It supports speeds up to 1024 FS (49.25 Mbits/sec, FS = 48.1 kHz) and up to 31 logical channels, with up to 124 bytes of data per media local bus frame. For a list of automotive models, see Automotive Products on Page 66.

Digital Applications Interface (DAI)

The digital applications interface (DAI) allows the connection of various peripherals to any of the DAI pins (DAI_P20-1). Programs make these connections using the signal routing unit (SRU).

The SRU is a matrix routing unit (or group of multiplexers) that enables the peripherals provided by the DAI to be interconnected under software control. This allows easy use of the DAI associated peripherals for a much wider variety of applications by using a larger set of algorithms than is possible with nonconfigurable signal paths.

The DAI includes eight serial ports, four precision clock generators (PCG), a S/PDIF transceiver, four ASRCs, and an input data port (IDP). The IDP provides an additional input path to the SHARC core, configurable as either eight channels of serial data, or a single 20-bit wide synchronous parallel data acquisition port. Each data channel has its own DMA channel that is independent from the processor's serial ports.

Serial Ports (SPORTs)

The ADSP-2148x features eight synchronous serial ports that provide an inexpensive interface to a wide variety of digital and mixed-signal peripheral devices such as Analog Devices' AD183x family of audio codecs, ADCs, and DACs. The serial ports are made up of two data lines, a clock, and frame sync. The data lines can be programmed to either transmit or receive and each data line has a dedicated DMA channel.

Serial ports can support up to 16 transmit or 16 receive DMA channels of audio data when all eight SPORTs are enabled, or four full duplex TDM streams of 128 channels per frame.

Serial port data can be automatically transferred to and from on-chip memory/external memory via dedicated DMA channels. Each of the serial ports can work in conjunction with another serial port to provide TDM support. One SPORT provides two transmit signals while the other SPORT provides the two receive signals. The frame sync and clock are shared.

Serial ports operate in five modes:

- Standard serial mode
- Multichannel (TDM) mode
- I²S mode
- Packed I²S mode
- Left-justified mode

S/PDIF-Compatible Digital Audio Receiver/Transmitter

The S/PDIF receiver/transmitter has no separate DMA channels. It receives audio data in serial format and converts it into a biphase encoded signal. The serial data input to the receiver/transmitter can be formatted as left-justified, I²S or right-justified with word widths of 16, 18, 20, or 24 bits.

The serial data, clock, and frame sync inputs to the S/PDIF receiver/transmitter are routed through the signal routing unit (SRU). They can come from a variety of sources, such as the SPORTs, external pins, or the precision clock generators (PCGs), and are controlled by the SRU control registers.

Asynchronous Sample Rate Converter (SRC)

The asynchronous sample rate converter contains four SRC blocks and is the same core as that used in the AD1896 192 kHz stereo asynchronous sample rate converter and provides up to 128 dB SNR. The SRC block is used to perform synchronous or asynchronous sample rate conversion across independent stereo channels, without using internal processor resources. The four SRC blocks can also be configured to operate together to convert multichannel audio data without phase mismatches. Finally, the SRC can be used to clean up audio data from jittery clock sources such as the S/PDIF receiver.

Input Data Port

The IDP provides up to eight serial input channels—each with its own clock, frame sync, and data inputs. The eight channels are automatically multiplexed into a single 32-bit by eight-deep FIFO. Data is always formatted as a 64-bit frame and divided into two 32-bit words. The serial protocol is designed to receive audio channels in I²S, left-justified sample pair, or right-justified mode.

The IDP also provides a parallel data acquisition port (PDAP), which can be used for receiving parallel data. The PDAP port has a clock input and a hold input. The data for the PDAP can be received from DAI pins or from the external port pins. The PDAP supports a maximum of 20-bit data and four different packing modes to receive the incoming data.

Precision Clock Generators

The precision clock generators (PCG) consist of four units, each of which generates a pair of signals (clock and frame sync) derived from a clock input signal. The units, A B, C, and D, are identical in functionality and operate independently of each other. The two signals generated by each unit are normally used as a serial bit clock/frame sync pair.

Table 11. Pin Descriptions (Continued)

		State During/	
Name	Туре	After Reset	Description
SDRAS	O/T (ipu)	High-Z/ driven high	SDRAM Row Address Strobe. Connect to SDRAM's RAS pin. In conjunction with other SDRAM command pins, defines the operation for the SDRAM to perform.
SDCAS	O/T (ipu)	High-Z/ driven high	SDRAM Column Address Select. Connect to SDRAM's CAS pin. In conjunction with other SDRAM command pins, defines the operation for the SDRAM to perform.
SDWE	O/T (ipu)	High-Z/ driven high	SDRAM Write Enable. Connect to SDRAM's WE or W buffer pin. In conjunction with other SDRAM command pins, defines the operation for the SDRAM to perform.
SDCKE	O/T (ipu)	High-Z/ driven high	SDRAM Clock Enable. Connect to SDRAM's CKE pin. Enables and disables the CLK signal. For details, see the data sheet supplied with the SDRAM device.
SDA10	O/T (ipu)	High-Z/ driven high	SDRAM A10 Pin. Enables applications to refresh an SDRAM in parallel with non-SDRAM accesses. This pin replaces the DSP's ADDR10 pin only during SDRAM accesses.
SDDQM	O/T (ipu)	High-Z/ driven high	DQM Data Mask. SDRAM Input mask signal for write accesses and output mask signal for read accesses. Input data is masked when DQM is sampled high during a write cycle. The SDRAM output buffers are placed in a High-Z state when DQM is sampled high during a read cycle. SDDQM is driven high from reset de-assertion until SDRAM initialization completes. Afterwards it is driven low irrespective of whether any SDRAM accesses occur or not.
SDCLK	O/T (ipd)	High-Z/ driving	SDRAM Clock Output. Clock driver for this pin differs from all other clock drivers. See Figure 41 on Page 55. For models in the 100-lead package, the SDRAM interface should be disabled to avoid unnecessary power switching by setting the DSDCTL bit in SDCTL register. For more information, see the hardware reference.
DAI_P ₂₀₋₁	I/O/T (ipu)	High-Z	Digital Applications Interface . These pins provide the physical interface to the DAI SRU. The DAI SRU configuration registers define the combination of on-chip audio- centric peripheral inputs or outputs connected to the pin and to the pin's output enable. The configuration registers of these peripherals then determines the exact behavior of the pin. Any input or output signal present in the DAI SRU may be routed to any of these pins.
DPI_P ₁₄₋₁	I/O/T (ipu)	High-Z	Digital Peripheral Interface. These pins provide the physical interface to the DPI SRU. The DPI SRU configuration registers define the combination of on-chip peripheral inputs or outputs connected to the pin and to the pin's output enable. The configu- ration registers of these peripherals then determines the exact behavior of the pin. Any input or output signal present in the DPI SRU may be routed to any of these pins.
WDT_CLKIN	I		Watchdog Timer Clock Input. This pin should be pulled low when not used.
WDT_CLKO	0		Watchdog Resonator Pad Output.
WDTRSTO	O (ipu)		Watchdog Timer Reset Out.
THD_P	I		Thermal Diode Anode. When not used, this pin can be left floating.
THD_M	0		Thermal Diode Cathode. When not used, this pin can be left floating.

The following symbols appear in the Type column of this table: **A** = asynchronous, **I** = input, **O** = output, **S** = synchronous, **A/D** = active drive, **O/D** = open drain, and **T** = three-state, **ipd** = internal pull-down resistor, **ipu** = internal pull-up resistor.

The internal pull-up (ipu) and internal pull-down (ipd) resistors are designed to hold the internal path from the pins at the expected logic levels. To pull-up or pull-down the external pads to the expected logic levels, use external resistors. Internal pull-up/pull-down resistors cannot be enabled/disabled and the value of these resistors cannot be programmed. The range of an ipu resistor can be between $26 \text{ k}\Omega-63 \text{ k}\Omega$. The range of an ipd resistor can be between $31 \text{ k}\Omega-85 \text{ k}\Omega$. The three-state voltage of ipu pads will not reach to the full V_{DD_EXT} level; at typical conditions the voltage is in the range of 2.3 V to 2.7 V.

In this table, all pins are LVTTL compliant with the exception of the thermal diode pins.

Table 11. Pin Descriptions (Continued)

Name	Туре	State During/ After Reset	Description
CLK_CFG ₁₋₀	1		Core to CLKIN Ratio Control. These pins set the start up clock frequency. Note that the operating frequency can be changed by programming the PLL multiplier and divider in the PMCTL register at any time after the core comes out of reset. The allowed values are:
			00 = 8:1 01 = 32:1 10 = 16:1
			11 = reserved
CLKIN	1		Local Clock In. Used in conjunction with XTAL. CLKIN is the clock input. It configures the processors to use either its internal clock generator or an external clock source. Connecting the necessary components to CLKIN and XTAL enables the internal clock generator. Connecting the external clock to CLKIN while leaving XTAL unconnected configures the processors to use the external clock source such as an external clock oscillator. CLKIN may not be halted, changed, or operated below the specified frequency.
XTAL	0		Crystal Oscillator Terminal. Used in conjunction with CLKIN to drive an external crystal.
RESET	1		Processor Reset. Resets the processor to a known state. Upon deassertion, there is a 4096 CLKIN cycle latency for the PLL to lock. After this time, the core begins program execution from the hardware reset vector address. The RESET input must be asserted (low) at power-up.
RESETOUT/ RUNRSTIN	I/O (ipu)		Reset Out/Running Reset In. The default setting on this pin is reset out. This pin also has a second function as RUNRSTIN which is enabled by setting bit 0 of the RUNRSTCTL register. For more information, see the hardware reference.
BOOT_CFG ₂₋₀	I		Boot Configuration Select. These pins select the boot mode for the processor (see Table 9). The BOOT_CFG pins must be valid before RESET (hardware and software) is asserted.

The following symbols appear in the Type column of this table: **A** = asynchronous, **I** = input, **O** = output, **S** = synchronous, **A/D** = active drive, **O/D** = open drain, and **T** = three-state, **ipd** = internal pull-down resistor, **ipu** = internal pull-up resistor.

The internal pull-up (ipu) and internal pull-down (ipd) resistors are designed to hold the internal path from the pins at the expected logic levels. To pull-up or pull-down the external pads to the expected logic levels, use external resistors. Internal pull-up/pull-down resistors cannot be enabled/disabled and the value of these resistors cannot be programmed. The range of an ipu resistor can be between $26 \text{ k}\Omega-63 \text{ k}\Omega$. The range of an ipd resistor can be between $31 \text{ k}\Omega-85 \text{ k}\Omega$. The three-state voltage of ipu pads will not reach to the full V_{DD_EXT} level; at typical conditions the voltage is in the range of 2.3 V to 2.7 V.

In this table, all pins are LVTTL compliant with the exception of the thermal diode pins.

¹ The MLB pins are only available on the automotive models.

Table 12. Pin List, Power and Ground

Name	Туре	Description
V _{DD_INT}	Р	Internal Power Supply
V _{DD_EXT}	Р	I/O Power Supply
GND ¹	G	Ground
V _{DD_THD}	Р	Thermal Diode Power Supply. When not used, this pin can be left floating.

¹ The exposed pad is required to be electrically and thermally connected to GND. Implement this by soldering the exposed pad to a GND PCB land that is the same size as the exposed pad. The GND PCB land should be robustly connected to the GND plane in the PCB for best electrical and thermal performance. No separate GND pins are provided in the package.

ELECTRICAL CHARACTERISTICS

			300 MHz / 350 MHz / 400 MHz / 450 MHz			
Parameter ¹	Description	Test Conditions	Min	Тур	Max	Unit
V _{OH} ²	High Level Output Voltage	@ $V_{DD_EXT} = Min$, $I_{OH} = -1.0 \text{ mA}^3$	2.4			V
V _{OL} ²	Low Level Output Voltage	@ $V_{DD_EXT} = Min$, $I_{OL} = 1.0 \text{ mA}^3$			0.4	v
I _{IH} ^{4, 5}	High Level Input Current	@ V _{DD_EXT} = Max, V _{IN} = V _{DD_EXT} Max			10	μA
ا _{ال} 4	Low Level Input Current	$@V_{DD_{EXT}} = Max, V_{IN} = 0 V$			10	μA
I _{ILPU} ⁵	Low Level Input Current Pull-up	$@V_{DD_EXT} = Max, V_{IN} = 0 V$			200	μA
I _{OZH} ^{6, 7}	Three-State Leakage Current	@ $V_{DD_EXT} = Max$, $V_{IN} = V_{DD_EXT} Max$			10	μA
I _{OZL} ⁶	Three-State Leakage Current	@ $V_{DD_EXT} = Max$, $V_{IN} = 0 V$			10	μA
I _{OZLPU} ⁷	Three-State Leakage Current Pull-up	@ $V_{DD_EXT} = Max$, $V_{IN} = 0 V$			200	μA
I _{OZHPD} ⁸	Three-State Leakage Current Pull-down	@ V _{DD_EXT} = Max, V _{IN} = V _{DD_EXT} Max			200	μA
I _{DD_INT} 9	Supply Current (Internal)	f _{CCLK} > 0 MHz			Table 14 + Table 15 × ASF	mA
I _{DD_INT}	Supply Current (Internal)	V _{DDINT} = 1.1 V, ASF = 1, T _J = 25°C		410 / 450 / 500 / 550		mA
C _{IN} ^{10, 11}	Input Capacitance	T _{CASE} = 25°C			5	pF

¹ Specifications subject to change without notice.

² Applies to output and bidirectional pins: ADDR23-0, DATA15-0, <u>AMI_RD</u>, <u>AMI_WR</u>, FLAG3-0, DAI_Px, DPI_Px, <u>EMU</u>, TDO, <u>RESETOUT</u> MLBSIG, MLBDAT, MLBDO, MLBSO, <u>SDRAS</u>, <u>SDCAS</u>, <u>SDWE</u>, SDCKE, SDA10, SDDQM, <u>MS0-1</u>.

³See Output Drive Currents on Page 55 for typical drive current capabilities.

⁴Applies to input pins: BOOT_CFGx, CLK_CFGx, TCK, RESET, CLKIN.

⁵ Applies to input pins with internal pull-ups: TRST, TMS, TDI.

⁶Applies to three-statable pin: TDO.

⁷Applies to three-statable pins with pull-ups: DAI_Px, DPI_Px, EMU.

⁸Applies to three-statable pin with pull-down: SDCLK.

⁹See Engineer-to-Engineer Note Estimating Power for ADSP-214xx SHARC Processors (EE-348) for further information.

¹⁰Applies to all signal pins.

¹¹Guaranteed, but not tested.

Flags

The timing specifications provided below apply to the DPI_P14-1, ADDR7-0, ADDR23-8, DATA7-0, and FLAG3-0 pins when configured as FLAGS. See Table 11 on Page 14 for more information on flag use.

Table 30. Flags

Parameter		Min	Max	Unit
Timing Requirement				
t _{FIPW} 1	FLAGs IN Pulse Width	$2 \times t_{PCLK} + 3$		ns
Switching Chara	cteristic			
t _{FOPW} ¹	FLAGs OUT Pulse Width	$2 \times t_{PCLK} - 3$		ns

¹This is applicable when the Flags are connected to DPI_P14-1, ADDR7-0, ADDR23-8, DATA7-0 and FLAG3-0 pins.

Figure 17. Flags

AMI Write

Use these specifications for asynchronous interfacing to memories. Note that timing for AMI_ACK, ADDR, DATA, AMI_RD, AMI_WR, and strobe timing parameters only apply to asynchronous access mode.

Table 33. AMI Write

Parameter		Min	Мах	Unit
Timing Requi	Timing Requirements			
t _{DAAK} ^{1, 2}	AMI_ACK Delay from Address, Selects		$t_{SDCLK} - 9.7 + W$	ns
t _{DSAK} ^{1, 3}	AMI_ACK Delay from AMI_WR Low		W – 6	ns
Switching Cha	aracteristics			
t _{DAWH} ²	Address Selects to AMI_WR Deasserted	$t_{SDCLK} - 3.1 + W$		ns
t _{DAWL} ²	Address Selects to AMI_WR Low	t _{SDCLK} – 3		ns
t _{WW}	AMI_WR Pulse Width	W – 1.3		ns
t _{DDWH}	Data Setup Before AMI_WR High	$t_{SDCLK} - 3.7 + W$		ns
t _{DWHA}	Address Hold After AMI_WR Deasserted	H + 0.15		ns
t _{DWHD}	Data Hold After AMI_WR Deasserted	Н		ns
t _{DATRWH} 4	Data Disable After AMI_WR Deasserted	$t_{SDCLK} - 4.3 + H$	$t_{SDCLK} + 4.9 + H$	ns
t _{WWR} ⁵	AMI_WR High to AMI_WR Low	t _{SDCLK} – 1.5 + H		ns
t _{DDWR}	Data Disable Before AMI_RD Low	$2 \times t_{SDCLK} - 6$		ns
t _{WDE}	Data Enabled to AMI_WR Low	t _{SDCLK} – 3.7		ns
W = (number	of wait states specified in AMICTLx register) × tsr	<u></u>		

 $H = (number of hold cycles specified in AMICTLX register) \times t_{SDCLK}$

¹AMI_ACK delay/setup: System must meet t_{DAAK}, or t_{DSAK}, for deassertion of AMI_ACK (low).

² The falling edge of $\overline{\text{MSx}}$ is referenced.

³Note that timing for AMI_ACK, AMI_RD, AMI_WR, and strobe timing parameters only applies to asynchronous access mode.

⁴See Test Conditions on Page 55 for calculation of hold times given capacitive and dc loads.

⁵ For Write to Write: t_{SDCLK} + H, for both same bank and different bank. For Write to Read: 3 × t_{SDCLK} + H, for the same bank and different banks.

Figure 20. AMI Write

Serial Ports

In slave transmitter mode and master receiver mode, the maximum serial port frequency is $f_{PCLK}/8$. In master transmitter mode and slave receiver mode, the maximum serial port clock frequency is $f_{PCLK}/4$. To determine whether communication is possible between two devices at clock speed n, the following

specifications must be confirmed: 1) frame sync delay and frame sync setup and hold; 2) data delay and data setup and hold; and 3) SCLK width.

Serial port signals (SCLK, frame sync, Data Channel A, Data Channel B) are routed to the DAI_P20-1 pins using the SRU. Therefore, the timing specifications provided below are valid at the DAI_P20-1 pins.

Parameter		Min	Max	Unit
Timing Requi	rements			
t _{SFSE} ¹	Frame Sync Setup Before SCLK (Externally Generated Frame Sync in either Transmit or Receive Mode)	2.5		ns
t _{HFSE} 1	Frame Sync Hold After SCLK (Externally Generated Frame Sync in either Transmit or Receive Mode)	2.5		ns
t _{SDRE} ¹	Receive Data Setup Before Receive SCLK	1.9		ns
t _{HDRE} 1	Receive Data Hold After SCLK	2.5		ns
t _{SCLKW}	SCLK Width	(t _{PCLK} × 4) ÷ 2 – 1.5		ns
t _{SCLK}	SCLK Period	$t_{PCLK} \times 4$		ns
Switching Ch	aracteristics			
t _{DFSE} ²	Frame Sync Delay After SCLK (Internally Generated Frame Sync in either Transmit or Receive Mode)		10.25	ns
t _{HOFSE} ²	Frame Sync Hold After SCLK (Internally Generated Frame Sync in either Transmit or Receive Mode)	2		ns
t _{DDTE} ²	Transmit Data Delay After Transmit SCLK		9	ns
t _{HDTE} ²	Transmit Data Hold After Transmit SCLK	2		ns

Table 34. Serial Ports—External Clock

¹Referenced to sample edge.

²Referenced to drive edge.

Table 35. Serial Ports—Internal Clock

Paramete	r	Min	Max	Unit
Timing Rea	quirements			
t _{SFSI} ¹	Frame Sync Setup Before SCLK (Externally Generated Frame Sync in either Transmit or Receive Mode)	7		ns
t _{HFSI} 1	Frame Sync Hold After SCLK (Externally Generated Frame Sync in either Transmit or Receive Mode)	2.5		ns
t _{SDRI} 1	Receive Data Setup Before SCLK	7		ns
t _{HDRI} 1	Receive Data Hold After SCLK	2.5		ns
Switching	Characteristics			
t _{DFSI} ²	Frame Sync Delay After SCLK (Internally Generated Frame Sync in Transmit Mode)		4	ns
t _{HOFSI} 2	Frame Sync Hold After SCLK (Internally Generated Frame Sync in Transmit Mode)	-1		ns
t _{DFSIR} ²	Frame Sync Delay After SCLK (Internally Generated Frame Sync in Receive Mode)		9.75	ns
t _{HOFSIR} ²	Frame Sync Hold After SCLK (Internally Generated Frame Sync in Receive Mode)	-1		ns
t _{DDTI} ²	Transmit Data Delay After SCLK		3.25	ns
t _{HDTI} ²	Transmit Data Hold After SCLK	-2		ns
t _{SCKLIW}	Transmit or Receive SCLK Width	$2 \times t_{PCLK} - 1.5$	$2 \times t_{PCLK} + 1.5$	ns

¹Referenced to the sample edge.

²Referenced to drive edge.

The SPORTx_TDV_O output signal (routing unit) becomes active in SPORT multichannel mode. During transmit slots (enabled with active channel selection registers) the SPORTx-_TDV_O is asserted for communication with external devices.

Table 38. Serial Ports-TDV (Transmit Data Valid)

Parameter		Min	Мах	Unit
Switching Chard	acteristics ¹			
t _{DRDVEN}	TDV Assertion Delay from Drive Edge of External Clock	3		ns
t _{DFDVEN}	TDV Deassertion Delay from Drive Edge of External Clock		8	ns
t _{DRDVIN}	TDV Assertion Delay from Drive Edge of Internal Clock	-1		ns
t _{DFDVIN}	TDV Deassertion Delay from Drive Edge of Internal Clock		2	ns

¹Referenced to drive edge.

Figure 24. Serial Ports—TDM Internal and External Clock

Sample Rate Converter—Serial Input Port

The ASRC input signals are routed from the DAI_P20-1 pins using the SRU. Therefore, the timing specifications provided in Table 41 are valid at the DAI_P20-1 pins.

Table 41. ASRC, Serial Input Port

Parameter			Мах	Unit
Timing Require	nents			
t _{SRCSFS} ¹	Frame Sync Setup Before Serial Clock Rising Edge	4		ns
t _{SRCHFS} ¹	Frame Sync Hold After Serial Clock Rising Edge	5.5		ns
t _{SRCSD} ¹	Data Setup Before Serial Clock Rising Edge	4		ns
t _{SRCHD} 1	Data Hold After Serial Clock Rising Edge	5.5		ns
t _{SRCCLKW}	Clock Width	$(t_{PCLK} \times 4) \div 2$	2 – 1	ns
t _{SRCCLK}	Clock Period	$t_{PCLK} \times 4$		ns

¹ The serial clock, data, and frame sync signals can come from any of the DAI pins. The serial clock and frame sync signals can also come via PCG or SPORTs. PCG's input can be either CLKIN or any of the DAI pins.

Figure 27. ASRC Serial Input Port Timing

Pulse-Width Modulation Generators (PWM)

The following timing specifications apply when the ADDR23-8/DPI_14-1 pins are configured as PWM.

Table 43. Pulse-Width Modulation (PWM) Timing

Parameter		Min	Мах	Unit
Switching Characteristics				
t _{PWMW}	PWM Output Pulse Width	t _{PCLK} – 2	$(2^{16} - 2) \times t_{PCLK}$	ns
t _{PWMP}	PWM Output Period	$2 \times t_{PCLK} - 1.5$	$(2^{16} - 1) \times t_{PCLK}$	ns

S/PDIF Transmitter

Serial data input to the S/PDIF transmitter can be formatted as left-justified, I²S, or right-justified with word widths of 16, 18, 20, or 24 bits. The following sections provide timing for the transmitter.

S/PDIF Transmitter-Serial Input Waveforms

Figure 30 shows the right-justified mode. Frame sync is high for the left channel and low for the right channel. Data is valid on the rising edge of serial clock. The MSB is delayed the minimum in 24-bit output mode or the maximum in 16-bit output mode from a frame sync transition, so that when there are 64 serial clock periods per frame sync period, the LSB of the data is right-justified to the next frame sync transition.

Table 44. S/PDIF Transmitter Right-Justified Mode

Parameter		Nominal	Unit
Timing Require	nent		
t _{RJD}	Frame Sync to MSB Delay in Right-Justified Mode		
	16-Bit Word Mode	16	SCLK
	18-Bit Word Mode	14	SCLK
	20-Bit Word Mode	12	SCLK
	24-Bit Word Mode	8	SCLK

Figure 30. Right-Justified Mode

Figure 31 shows the default I²S-justified mode. The frame sync is low for the left channel and HI for the right channel. Data is valid on the rising edge of serial clock. The MSB is left-justified to the frame sync transition but with a delay.

Table 45. S/PDIF Transmitter I²S Mode

Parameter		Nominal	Unit
Timing Requirement			
t _{I2SD}	Frame Sync to MSB Delay in I ² S Mode	1	SCLK

Figure 31. I²S-Justified Mode

Figure 32 shows the left-justified mode. The frame sync is high for the left channel and low for the right channel. Data is valid on the rising edge of serial clock. The MSB is left-justified to the frame sync transition with no delay.

Table 46. S/PDIF Transmitter Left-Justified Mode

Parameter		Nominal	Unit
Timing Requirement			
t _{LJD}	Frame Sync to MSB Delay in Left-Justified Mode	0	SCLK

Figure 32. Left-Justified Mode

S/PDIF Receiver

The following section describes timing as it relates to the S/PDIF receiver.

Internal Digital PLL Mode

In the internal digital phase-locked loop mode the internal PLL (digital PLL) generates the $512 \times FS$ clock.

Table 49. S/PDIF Receiver Internal Digital PLL Mode Timing

Parameter		Min	Мах	Unit
Switching Characteristics				
t _{DFSI}	Frame Sync Delay After Serial Clock		5	ns
t _{HOFSI}	Frame Sync Hold After Serial Clock	-2		ns
t _{DDTI}	Transmit Data Delay After Serial Clock		5	ns
t _{HDTI}	Transmit Data Hold After Serial Clock	-2		ns
t _{SCLKIW} ¹	Transmit Serial Clock Width	$8 \times t_{PCLK} - 2$	2	ns

¹SCLK frequency is $64 \times FS$ where FS = the frequency of frame sync.

Figure 34. S/PDIF Receiver Internal Digital PLL Mode Timing

SPI Interface—Master

The ADSP-2148x contains two SPI ports. Both primary and secondary are available through DPI only. The timing provided in Table 50 and Table 51 applies to both.

Table 50. SPI Interface Protocol-Master Switching and Timing Specifications

Parameter		Min M	ax Unit
Timing Requiremen	ts		
t _{SSPIDM}	Data Input Valid to SPICLK Edge (Data Input Setup Time)	8.2	ns
t _{HSPIDM}	SPICLK Last Sampling Edge to Data Input Not Valid	2	ns
Switching Characte	ristics		
t _{SPICLKM}	Serial Clock Cycle	$8 \times t_{PCLK} - 2$	ns
t _{SPICHM}	Serial Clock High Period	$4 \times t_{PCLK} - 2$	ns
t _{SPICLM}	Serial Clock Low Period	$4 \times t_{PCLK} - 2$	ns
t _{DDSPIDM}	SPICLK Edge to Data Out Valid (Data Out Delay Time)	2.	5 ns
t _{HDSPIDM}	SPICLK Edge to Data Out Not Valid (Data Out Hold Time)	$4 \times t_{PCLK} - 2$	ns
t _{SDSCIM}	DPI Pin (SPI Device Select) Low to First SPICLK Edge	$4 \times t_{PCLK} - 2$	ns
t _{HDSM}	Last SPICLK Edge to DPI Pin (SPI Device Select) High	$4 \times t_{PCLK} - 2$	ns
t _{SPITDM}	Sequential Transfer Delay	$4 \times t_{PCLK} - 1.2$	ns

Figure 35. SPI Master Timing

SPI Interface—Slave

Table 51. SPI Interface Protocol—Slave Switching and Timing Specifications

Parameter		Min	Max	Unit
Timing Require	ments			
t _{SPICLKS}	Serial Clock Cycle	$4 \times t_{PCLK} - 2$		ns
t _{SPICHS}	Serial Clock High Period	$2 \times t_{PCLK} - 2$		ns
t _{SPICLS}	Serial Clock Low Period	$2 \times t_{PCLK} - 2$		ns
t _{SDSCO}	SPIDS Assertion to First SPICLK Edge CPHASE = 0 CPHASE = 1	$2 \times t_{PCLK}$		ns
t _{HDS}	Last SPICLK Edge to SPIDS Not Asserted, CPHASE = 0	$2 \times t_{PCLK}$		ns
t _{SSPIDS}	Data Input Valid to SPICLK edge (Data Input Set-up Time)	2		ns
t _{HSPIDS}	SPICLK Last Sampling Edge to Data Input Not Valid	2		ns
t _{SDPPW}	SPIDS Deassertion Pulse Width (CPHASE=0)	$2 \times t_{PCLK}$		ns
Switching Char	acteristics			
t _{DSOE}	SPIDS Assertion to Data Out Active	0	7.5	ns
t _{DSOE} 1	SPIDS Assertion to Data Out Active (SPI2)	0	7.5	ns
t _{DSDHI}	SPIDS Deassertion to Data High Impedance	0	10.5	ns
t _{DSDHI} 1	SPIDS Deassertion to Data High Impedance (SPI2)	0	10.5	ns
t _{DDSPIDS}	SPICLK Edge to Data Out Valid (Data Out Delay Time)		9.5	ns
t _{HDSPIDS}	SPICLK Edge to Data Out Not Valid (Data Out Hold Time)	$2 \times t_{PCLK}$		ns
t _{DSOV}	$\overline{\text{SPIDS}}$ Assertion to Data Out Valid (CPHASE = 0)		$5 \times t_{PCLK}$	ns

¹The timing for these parameters applies when the SPI is routed through the signal routing unit. For more information, see the "Serial Peripheral Interface Port" chapter of the hardware reference.

Figure 36. SPI Slave Timing

Figure 37. MLB Timing (3-Pin Interface)

Table 53. MLB Interface, 5-Pin Specifications

Parameter	Parameter		Тур	Max	Unit
5-Pin Chard	acteristics				
t _{MLBCLK}	MLB Clock Period				
	512 FS		40		ns
	256 FS		81		ns
t _{MCKL}	MLBCLK Low Time				
	512 FS	15			ns
	256 FS	30			ns
t _{MCKH}	MLBCLK High Time				
	512 FS	15			ns
	256 FS	30			ns
t _{MCKR}	MLBCLK Rise Time (V_{IL} to V_{IH})			6	ns
t _{MCKF}	MLBCLK Fall Time (V_{H} to V_{IL})			6	ns
t _{MPWV} ¹	MLBCLK Pulse Width Variation			2	nspp
t _{DSMCF} ²	DAT/SIG Input Setup Time	3			ns
t _{DHMCF}	DAT/SIG Input Hold Time	5			ns
t _{MCDRV}	DS/DO Output Data Delay From MLBCLK Rising Edge			8	ns
t _{MCRDL} ³	DO/SO Low From MLBCLK High				
	512 FS			10	ns
	256 FS			20	ns
C _{MLB}	DS/DO Pin Load			40	pf

¹Pulse width variation is measured at 1.25 V by triggering on one edge of MLBCLK and measuring the spread on the other edge, measured in ns peak-to-peak (pp). ²Gate Delays due to OR'ing logic on the pins must be accounted for.

³When a node is not driving valid data onto the bus, the MLBSO and MLBDO output lines shall remain low. If the output lines can float at anytime, including while in reset, external pull-down resistors are required to keep the outputs from corrupting the MediaLB signal lines when not being driven.

OUTPUT DRIVE CURRENTS

Figure 41 shows typical I-V characteristics for the output drivers of the ADSP-2148x, and Table 55 shows the pins associated with each driver. The curves represent the current drive capability of the output drivers as a function of output voltage.

Table 55. Driver Types

Driver Type	Associated Pins
A	FLAG[0–3], AMI_ADDR[0–23], DATA[0–15], <u>AMI_RD</u> , <u>AMI_WR</u> , AMI_ACK, <u>MS[1-0]</u> , <u>SDRAS</u> , <u>SDCAS</u> , <u>SDWE</u> , SDDQM, SDCKE, SDA10, <u>EMU</u> , TDO, <u>RESETOUT</u> , DPI[1–14], DAI[1–20], <u>WDTRSTO</u> , MLBDAT, MLBSIG, MLBSO, MLBDO, MLBCLK
В	SDCLK

Figure 41. Typical Drive at Junction Temperature

TEST CONDITIONS

The ac signal specifications (timing parameters) appear in Table 21 on Page 26 through Table 54 on Page 54. These include output disable time, output enable time, and capacitive loading. The timing specifications for the SHARC apply for the voltage reference levels in Figure 42.

Timing is measured on signals when they cross the 1.5 V level as described in Figure 43. All delays (in nanoseconds) are measured between the point that the first signal reaches 1.5 $\rm V$ and the point that the second signal reaches 1.5 V.

Figure 43. Voltage Reference Levels for AC Measurements

NOTES

THE WORST CASE TRANSMISSION LINE DELAY IS SHOWN AND CAN BE USED FOR THE OUTPUT TIMING ANALYSIS TO REFLECT THE TRANSMISSION LINE EFFECT AND MUST BE CONSIDERED. THE TRANSMISSION LINE (TD) IS FOR LOAD ONLY AND DOES NOT AFFECT THE DATA SHEET TIMING SPECIFICATIONS.

ANALOG DEVICES RECOMMENDS USING THE IBIS MODEL TIMING FOR A GIVEN SYSTEM REQUIREMENT. IF NECESSARY, A SYSTEM MAY INCORPORATE EXTERNAL DRIVERS TO COMPENSATE FOR ANY TIMING DIFFERENCES.

Figure 42. Equivalent Device Loading for AC Measurements (Includes All Fixtures)

CAPACITIVE LOADING

Output delays and holds are based on standard capacitive loads: 30 pF on all pins (see Figure 42). Figure 46 and Figure 47 show graphically how output delays and holds vary with load capacitance. The graphs of Figure 44 through Figure 47 may not be linear outside the ranges shown for Typical Output Delay vs. Load Capacitance and Typical Output Rise Time (20% to 80%, V = Min) vs. Load Capacitance.

Figure 44. Typical Output Rise/Fall Time $(20\% to 80\%, V_{DD EXT} = Max)$

100-LQFP_EP LEAD ASSIGNMENT

Lead Name	Lead No.						
V _{DD_INT}	1	V _{DD_EXT}	26	DAI_P10	51	V _{DD_INT}	76
CLK_CFG1	2	DPI_P08	27	V _{DD_INT}	52	FLAG0	77
BOOT_CFG0	3	DPI_P07	28	V _{DD_EXT}	53	V _{DD_INT}	78
V _{DD_EXT}	4	V _{DD_INT}	29	DAI_P20	54	V _{DD_INT}	79
V _{DD_INT}	5	DPI_P09	30	V _{DD_INT}	55	FLAG1	80
BOOT_CFG1	6	DPI_P10	31	DAI_P08	56	FLAG2	81
GND	7	DPI_P11	32	DAI_P04	57	FLAG3	82
NC	8	DPI_P12	33	DAI_P14	58	MLBCLK	83
NC	9	DPI_P13	34	DAI_P18	59	MLBDAT	84
CLK_CFG0	10	DAI_P03	35	DAI_P17	60	MLBDO	85
V _{DD_INT}	11	DPI_P14	36	DAI_P16	61	V _{DD_EXT}	86
CLKIN	12	V _{DD_INT}	37	DAI_P15	62	MLBSIG	87
XTAL	13	V _{DD_INT}	38	DAI_P12	63	V _{DD_INT}	88
V _{DD_EXT}	14	V _{DD_INT}	39	V _{DD_INT}	64	MLBSO	89
V _{DD_INT}	15	DAI_P13	40	DAI_P11	65	TRST	90
V _{DD_INT}	16	DAI_P07	41	V _{DD_INT}	66	EMU	91
RESETOUT/RUNRSTIN	17	DAI_P19	42	V _{DD_INT}	67	TDO	92
V _{DD_INT}	18	DAI_P01	43	GND	68	V _{DD_EXT}	93
DPI_P01	19	DAI_P02	44	THD_M	69	V _{DD_INT}	94
DPI_P02	20	V _{DD_INT}	45	THD_P	70	TDI	95
DPI_P03	21	V _{DD_EXT}	46	V _{DD_THD}	71	ТСК	96
V _{DD_INT}	22	V _{DD_INT}	47	V _{DD_INT}	72	V _{DD_INT}	97
DPI_P05	23	DAI_P06	48	V _{DD_INT}	73	RESET	98
DPI_P04	24	DAI_P05	49	V _{DD_INT}	74	TMS	99
DPI_P06	25	DAI_P09	50	V _{DD_INT}	75	V _{DD_INT}	100
						GND	101*

Table 59. 100-Lead LQFP_EP Lead Assignments (Numerical by Lead Number)

MLB pins (pins 83, 84, 85, 87, and 89) are available for automotive models only. For non-automotive models, these pins should be connected to ground (GND).

* Pin no. 101 (exposed pad) is the GND supply (see Figure 48 and Figure 49) for the processor; this pad must be **robustly** connected to GND.

Figure 48 shows the top view of the 100-lead LQFP_EP lead configuration. Figure 49 shows the bottom view of the 100-lead LQFP_EP lead configuration.

Figure 48. 100-Lead LQFP_EP Lead Configuration (Top View)

Figure 49. 100-Lead LQFP_EP Lead Configuration (Bottom View)

Figure 50 shows the top view of the 176-lead LQFP_EP lead configuration. Figure 51 shows the bottom view of the 176-lead LQFP_EP lead configuration.

Figure 50. 176-Lead LQFP_EP Lead Configuration (Top View)

Figure 51. 176-Lead LQFP_EP Lead Configuration (Bottom View)