

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Active
Туре	Floating Point
Interface	EBI/EMI, DAI, I ² C, SPI, SPORT, UART/USART
Clock Rate	400MHz
Non-Volatile Memory	External
On-Chip RAM	5Mbit
Voltage - I/O	3.30V
Voltage - Core	1.10V
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	100-LQFP-EP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-21489bswz-4a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

GENERAL DESCRIPTION

The ADSP-2148x SHARC[®] processors are members of the SIMD SHARC family of DSPs that feature Analog Devices' Super Harvard Architecture. The processors are source code compatible with the ADSP-2126x, ADSP-2136x, ADSP-2137x, ADSP-2146x, ADSP-2147x and ADSP-2116x DSPs, as well as with first generation ADSP-2106x SHARC processors in SISD (single-instruction, single-data) mode. The ADSP-2148x processors are 32-bit/40-bit floating point processors optimized for high performance audio applications with large on-chip SRAM, multiple internal buses to eliminate I/O bottlenecks, and an innovative digital applications interface (DAI).

Table 1 shows performance benchmarks for the ADSP-2148x processors. Table 2 shows the features of the individual product offerings.

Table 1. Processor Benchmarks

Benchmark Algorithm	Speed (at 400 MHz)	Speed (at 450 MHz)
1024 Point Complex FFT (Radix 4, with Reversal)	23 µs	20.44 µs
FIR Filter (per Tap) ¹	1.25 ns	1.1 ns
llR Filter (per Biquad) ¹	5 ns	4.43 ns
Matrix Multiply (Pipelined)		
$[3 \times 3] \times [3 \times 1]$	11.25 ns	10.0 ns
$[4 \times 4] \times [4 \times 1]$	20 ns	17.78 ns
Divide (y/×)	7.5 ns	6.67 ns
Inverse Square Root	11.25 ns	10.0 ns

¹Assumes two files in multichannel SIMD mode

Feature	ADSP-21483	ADSP-21486	ADSP-21487	ADSP-21488	ADSP-21489
Maximum Instruction Rate	400 MHz	400 MHz	450 MHz	400 MHz	450 MHz
RAM	3 Mbits	5	Mbits	2/3 Mbits ¹	5 Mbits
ROM		4 Mbits			No
Audio Decoders in ROM ²	Yes No			No	
Pulse-Width Modulation	4 Units (3 Units on 100-Lead Packages)				
DTCP Hardware Accelerator		(Contact Analog Dev	ices	
External Port Interface (SDRAM, AMI) ³	Yes (16-bit)	AMI Only		Yes (16-bit)	
Serial Ports			8		
Direct DMA from SPORTs to External Port (External Memory)			Yes		
FIR, IIR, FFT Accelerator	Yes				
Watchdog Timer	Yes (176-Lead Package Only)				
MediaLB Interface	Automotive Models Only				
IDP/PDAP	Yes				
UART	1				
DAI (SRU)/DPI (SRU2)	Yes				
S/PDIF Transceiver	Yes				
SPI	Yes				
TWI	1				
SRC Performance ⁴	–128 dB				
Thermal Diode	Yes				
VISA Support			Yes		
Package ³		LQFP EPAD LQFP EPAD	176-Lead LQFP EPAD		d LQFP EPAD I LQFP EPAD⁵

Table 2. ADSP-2148x Family Features

¹See Ordering Guide on Page 66.

⁴Some models have –140 dB performance. For more information, see Ordering Guide on page 66.

⁵Only available up to 400 MHz. See Ordering Guide on Page 66 for details.

² ROM is factory programmed with latest multichannel audio decoding and post-processing algorithms from Dolby[®] Labs and DTS[®]. Decoder/post-processor algorithm combination support varies depending upon the chip version and the system configurations. Please visit www.analog.com for complete information.

³ The 100-lead packages do not contain an external port. The SDRAM controller pins must be disabled when using this package. For more information, see Pin Function Descriptions on Page 14. The ADSP-21486 processor in the 176-lead package also does not contain a SDRAM controller. For more information, see 176-Lead LQFP_EP Lead Assignment on page 60.

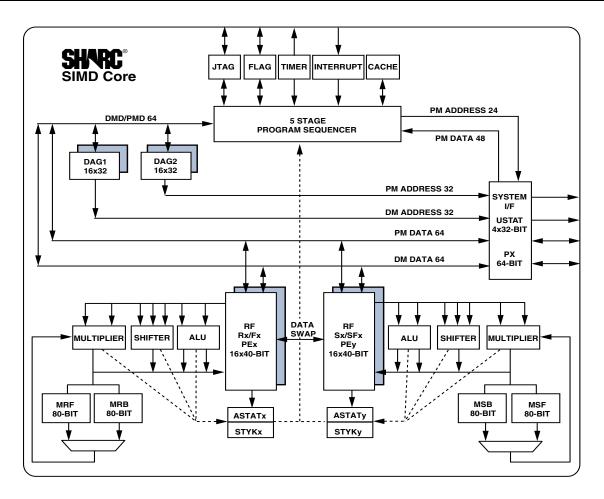


Figure 2. SHARC Core Block Diagram

Universal Registers

These registers can be used for general-purpose tasks. The USTAT (4) registers allow easy bit manipulations (Set, Clear, Toggle, Test, XOR) for all peripheral registers (control/status).

The data bus exchange register (PX) permits data to be passed between the 64-bit PM data bus and the 64-bit DM data bus, or between the 40-bit register file and the PM/DM data bus. These registers contain hardware to handle the data width difference.

Single-Cycle Fetch of Instruction and Four Operands

The ADSP-2148x features an enhanced Harvard architecture in which the data memory (DM) bus transfers data and the program memory (PM) bus transfers both instructions and data. With the its separate program and data memory buses and onchip instruction cache, the processor can simultaneously fetch four operands (two over each data bus) and one instruction (from the cache), all in a single cycle.

Instruction Cache

The processor includes an on-chip instruction cache that enables three-bus operation for fetching an instruction and four data values. The cache is selective—only the instructions whose fetches conflict with PM bus data accesses are cached. This cache allows full speed execution of core, looped operations such as digital filter multiply-accumulates, and FFT butterfly processing.

Data Address Generators With Zero-Overhead Hardware Circular Buffer Support

The two data address generators (DAGs) are used for indirect addressing and implementing circular data buffers in hardware. Circular buffers allow efficient programming of delay lines and other data structures required in digital signal processing, and are commonly used in digital filters and Fourier transforms. The two DAGs contain sufficient registers to allow the creation of up to 32 circular buffers (16 primary register sets, 16 secondary). The DAGs automatically handle address pointer wraparound, reduce overhead, increase performance, and simplify implementation. Circular buffers can start and end at any memory location.

Flexible Instruction Set

The 48-bit instruction word accommodates a variety of parallel operations, for concise programming. For example, the processor can conditionally execute a multiply, an add, and a

subtract in both processing elements while branching and fetching up to four 32-bit values from memory, all in a single instruction.

Variable Instruction Set Architecture (VISA)

In addition to supporting the standard 48-bit instructions from previous SHARC processors, the ADSP-2148x supports new instructions of 16 and 32 bits. This feature, called Variable Instruction Set Architecture (VISA), drops redundant/unused bits within the 48-bit instruction to create more efficient and compact code. The program sequencer supports fetching these 16-bit and 32-bit instructions from both internal and external SDRAM memory. This support is not extended to the asynchronous memory interface (AMI). Source modules need to be built using the VISA option, in order to allow code generation tools to create these more efficient opcodes.

On-Chip Memory

The ADSP-21483 and the ADSP-21488 processors contain 3 Mbits of internal RAM (Table 3) and the ADSP-21486, ADSP-21487, and ADSP-21489 processors contain 5 Mbits of internal RAM (Table 4). Each memory block supports singlecycle, independent accesses by the core processor and I/O processor.

IOP Registers 0x0000 0000-0x0003 FFFF			
Long Word (64 Bits)	Extended Precision Normal or Instruction Word (48 Bits)	Normal Word (32 Bits)	Short Word (16 Bits)
Block 0 ROM (Reserved)	Block 0 ROM (Reserved)	Block 0 ROM (Reserved)	Block 0 ROM (Reserved)
0x0004 0000–0x0004 7FFF	0x0008 0000–0x0008 AAA9	0x0008 0000–0x0008 FFFF	0x0010 0000–0x0011 FFFF
Reserved	Reserved	Reserved	Reserved
0x0004 8000-0x0004 8FFF	0x0008 AAAA-0x0008 BFFF	0x0009 0000-0x0009 1FFF	0x0012 0000-0x0012 3FFF
Block 0 SRAM	Block 0 SRAM	Block 0 SRAM	Block 0 SRAM
0x0004 9000–0x0004 CFFF	0x0008 C000–0x0009 1554	0x0009 2000–0x0009 9FFF	0x0012 4000–0x0013 3FFF
Reserved	Reserved	Reserved	Reserved
0x0004 D000–0x0004 FFFF	0x0009 1555–0x0009 FFFF	0x0009 A000–0x0009 FFFF	0x0013 4000–0x0013 FFFF
Block 1 ROM (Reserved)	Block 1 ROM (Reserved)	Block 1 ROM (Reserved)	Block 1 ROM (Reserved)
0x0005 0000–0x0005 7FFF	0x000A 0000-0x000A AAA9	0x000A 0000–0x000A FFFF	0x0014 0000–0x0015 FFFF
Reserved	Reserved	Reserved	Reserved
0x0005 8000-0x0005 8FFF	0x000A AAAA–0x000A BFFF	0x000B 0000-0x000B 1FFF	0x0016 0000-0x0016 3FFF
Block 1 SRAM	Block 1 SRAM	Block 1 SRAM	Block 1 SRAM
0x0005 9000-0x0005 CFFF	0x000A C000–0x000B 1554	0x000B 2000–0x000B 9FFF	0x0016 4000–0x0017 3FFF
Reserved	Reserved	Reserved	Reserved
0x0005 D000-0x0005 FFFF	0x000B 1555–0x000B FFFF	0x000B A000–0x000B FFFF	0x0017 4000-0x0017 FFFF
Block 2 SRAM	Block 2 SRAM	Block 2 SRAM	Block 2 SRAM
0x0006 0000-0x0006 1FFF	0x000C 0000–0x000C 2AA9	0x000C 0000–0x000C 3FFF	0x0018 0000–0x0018 7FFF
Reserved	Reserved	Reserved	Reserved
0x0006 2000– 0x0006 FFFF	0x000C 2AAA-0x000D FFFF	0x000C 4000–0x000D FFFF	0x0018 8000-0x001B FFFF
Block 3 SRAM	Block 3 SRAM	Block 3 SRAM	Block 3 SRAM
0x0007 0000-0x0007 1FFF	0x000E 0000–0x000E 2AA9	0x000E 0000-0x000E 3FFF	0x001C 0000–0x001C 7FFF
Reserved	Reserved	Reserved	Reserved
0x0007 2000-0x0007 FFFF	0x000E 2AAA-0x000F FFFF	0x000E 4000–0x000F FFFF	0x001C 8000–0x001F FFFF

Table 3. Internal Memory Space (3 MBits-ADSP-21483/ADSP-21488)¹

¹Some ADSP-2148x processors include a customer-definable ROM block. ROM addresses on these models are not reserved as shown in this table. Please contact your Analog Devices sales representative for additional details.

The processor's SRAM can be configured as a maximum of 160k words of 32-bit data, 320k words of 16-bit data, 106.7k words of 48-bit instructions (or 40-bit data), or combinations of different word sizes up to 5 megabits. All of the memory can be accessed as 16-bit, 32-bit, 48-bit, or 64-bit words. A 16-bit floating-point storage format is supported that effectively doubles the amount of data that may be stored on-chip. Conversion between the 32-bit floating-point and 16-bit floating-point formats is performed in a single instruction. While each memory block can store combinations of code and data, accesses are

most efficient when one block stores data using the DM bus for transfers, and the other block stores instructions and data using the PM bus for transfers.

Using the DM bus and PM buses, with one bus dedicated to a memory block, assures single-cycle execution with two data transfers. In this case, the instruction must be available in the cache.

The memory maps in Table 3 and Table 4 display the internal memory address space of the processors. The 48-bit space section describes what this address range looks like to an

• Arbitration logic to coordinate core and DMA transfers between internal and external memory over the external port.

Non-SDRAM external memory address space is shown in Table 5.

Table 5. External Memory for Non-SDRAM Addresses	Table 5.	External Memo	ory for Non-SDRAM Addresses
--	----------	---------------	-----------------------------

Bank	Size in Words	Address Range
Bank 0	6M	0x0020 0000–0x007F FFFF
Bank 1	8M	0x0400 0000-0x047F FFFF
Bank 2	8M	0x0800 0000-0x087F FFFF
Bank 3	8M	0x0C00 0000-0x0C7F FFFF

External Port

The external port provides a high performance, glueless interface to a wide variety of industry-standard memory devices. The external port, available on the 176-lead LQFP, may be used to interface to synchronous and/or asynchronous memory devices through the use of its separate internal memory controllers. The first is an SDRAM controller for connection of industry-standard synchronous DRAM devices while the second is an asynchronous memory controller intended to interface to a variety of memory devices. Four memory select pins enable up to four separate devices to coexist, supporting any desired combination of synchronous and asynchronous device types.

Asynchronous Memory Controller

The asynchronous memory controller provides a configurable interface for up to four separate banks of memory or I/O devices. Each bank can be independently programmed with different timing parameters, enabling connection to a wide variety of memory devices including SRAM, flash, and EPROM, as well as I/O devices that interface with standard memory control lines. Bank 0 occupies a 6M word window and banks 1, 2, and 3 occupy a 8M word window in the processor's address space but, if not fully populated, these windows are not made contiguous by the memory controller logic.

SDRAM Controller

The SDRAM controller provides an interface of up to four separate banks of industry-standard SDRAM devices at speeds up to f_{SDCLK} . Fully compliant with the SDRAM standard, each bank has its own memory select line ($\overline{MS0}$ – $\overline{MS3}$), and can be configured to contain between 4M bytes and 256M bytes of memory. SDRAM external memory address space is shown in Table 6. NOTE: this feature is not available on the ADSP-21486 model.

Table 6.	External	Memory	for S	DRAM	Addresses
----------	----------	--------	-------	------	-----------

Bank	Size in Words	Address Range
Bank 0	62M	0x0020 0000-0x03FF FFFF
Bank 1	64M	0x0400 0000-0x07FF FFFF
Bank 2	64M	0x0800 0000-0x0BFF FFFF
Bank 3	64M	0x0C00 0000-0x0FFF FFFF

A set of programmable timing parameters is available to configure the SDRAM banks to support slower memory devices. Note that 32-bit wide devices are not supported on the SDRAM and AMI interfaces.

The SDRAM controller address, data, clock, and control pins can drive loads up to distributed 30 pF. For larger memory systems, the SDRAM controller external buffer timing should be selected and external buffering should be provided so that the load on the SDRAM controller pins does not exceed 30 pF.

Note that the external memory bank addresses shown are for normal-word (32-bit) accesses. If 48-bit instructions as well as 32-bit data are both placed in the same external memory bank, care must be taken while mapping them to avoid overlap.

SIMD Access to External Memory

The SDRAM controller on the processor supports SIMD access on the 64-bit EPD (external port data bus) which allows access to the complementary registers on the PEy unit in the normal word space (NW). This removes the need to explicitly access the complimentary registers when the data is in external SDRAM memory.

VISA and ISA Access to External Memory

The SDRAM controller on the ADSP-2148x processors supports VISA code operation which reduces the memory load since the VISA instructions are compressed. Moreover, bus fetching is reduced because, in the best case, one 48-bit fetch contains three valid instructions. Code execution from the traditional ISA operation is also supported. Note that code execution is only supported from bank 0 regardless of VISA/ISA. Table 7 shows the address ranges for instruction fetch in each mode.

Table 7. External Bank 0 Instruction Fetch

Access Type	Size in Words	Address Range
ISA (NW)	4M	0x0020 0000-0x005F FFFF
VISA (SW)	10M	0x0060 0000-0x00FF FFFF

Pulse-Width Modulation

The PWM module is a flexible, programmable, PWM waveform generator that can be programmed to generate the required switching patterns for various applications related to motor and engine control or audio power control. The PWM generator can generate either center-aligned or edge-aligned PWM waveforms. In addition, it can generate complementary signals on two outputs in paired mode or independent signals in nonpaired mode (applicable to a single group of four PWM waveforms).

The entire PWM module has four groups of four PWM outputs generating 16 PWM outputs in total. Each PWM group produces two pairs of PWM signals on the four PWM outputs.

The outputs of PCG A and B can be routed through the DAI pins and the outputs of PCG C and D can be driven on to the DAI as well as the DPI pins.

Digital Peripheral Interface (DPI)

The ADSP-2148x SHARC processors have a digital peripheral interface that provides connections to two serial peripheral interface ports (SPI), one universal asynchronous receiver-transmitter (UART), 12 flags, a 2-wire interface (TWI), three PWM modules (PWM3–1), and two general-purpose timers.

Serial Peripheral (Compatible) Interface (SPI)

The SPI is an industry-standard synchronous serial link, enabling the SPI-compatible port to communicate with other SPI compatible devices. The SPI consists of two data pins, one device select pin, and one clock pin. It is a full-duplex synchronous serial interface, supporting both master and slave modes. The SPI port can operate in a multimaster environment by interfacing with up to four other SPI-compatible devices, either acting as a master or slave device. The SPI-compatible peripheral implementation also features programmable baud rate and clock phase and polarities. The SPI-compatible port uses open drain drivers to support a multimaster configuration and to avoid data contention.

UART Port

The processors provide a full-duplex Universal Asynchronous Receiver/Transmitter (UART) port, which is fully compatible with PC-standard UARTs. The UART port provides a simplified UART interface to other peripherals or hosts, supporting full-duplex, DMA-supported, asynchronous transfers of serial data. The UART also has multiprocessor communication capability using 9-bit address detection. This allows it to be used in multidrop networks through the RS-485 data interface standard. The UART port also includes support for 5 to 8 data bits, 1 or 2 stop bits, and none, even, or odd parity. The UART port supports two modes of operation:

- PIO (programmed I/O)—The processor sends or receives data by writing or reading I/O-mapped UART registers. The data is double-buffered on both transmit and receive.
- DMA (direct memory access)—The DMA controller transfers both transmit and receive data. This reduces the number and frequency of interrupts required to transfer data to and from memory. The UART has two dedicated DMA channels, one for transmit and one for receive. These DMA channels have lower default priority than most DMA channels because of their relatively low service rates.

Timers

The ADSP-2148x has a total of three timers: a core timer that can generate periodic software interrupts and two generalpurpose timers that can generate periodic interrupts and be independently set to operate in one of three modes:

- Pulse waveform generation mode
- Pulse width count/capture mode
- External event watchdog mode

The core timer can be configured to use FLAG3 as a timer expired signal, and the general-purpose timers have one bidirectional pin and four registers that implement its mode of operation: a 6-bit configuration register, a 32-bit count register, a 32-bit period register, and a 32-bit pulse width register. A single control and status register enables or disables the generalpurpose timer.

2-Wire Interface Port (TWI)

The TWI is a bidirectional 2-wire, serial bus used to move 8-bit data while maintaining compliance with the I²C bus protocol. The TWI master incorporates the following features:

- 7-bit addressing
- Simultaneous master and slave operation on multiple device systems with support for multi master data arbitration
- · Digital filtering and timed event processing
- 100 kbps and 400 kbps data rates
- Low interrupt rate

I/O PROCESSOR FEATURES

The I/O processors provide up to 65 channels of DMA, as well as an extensive set of peripherals.

DMA Controller

The processor's on-chip DMA controller allows data transfers without processor intervention. The DMA controller operates independently and invisibly to the processor core, allowing DMA operations to occur while the core is simultaneously executing its program instructions. DMA transfers can occur between the ADSP-2148x's internal memory and its serial ports, the SPI-compatible (serial peripheral interface) ports, the IDP (input data port), the PDAP, or the UART. The DMA channel summary is shown in Table 8.

Programs can be downloaded to the ADSP-2148x using DMA transfers. Other DMA features include interrupt generation upon completion of DMA transfers and DMA chaining for automatic linked DMA transfers.

Table 8. DMA Channels

Peripheral	DMA Channels
SPORTs	16
IDP/PDAP	8
SPI	2
UART	2
External Port	2
Accelerators	2
Memory-to-Memory	2
MLB ¹	31

¹Automotive models only.

Delay Line DMA

The processor provides delay line DMA functionality. This allows processor reads and writes to external delay line buffers (and hence to external memory) with limited core interaction.

Scatter/Gather DMA

The processor provides scatter/gather DMA functionality. This allows processor DMA reads/writes to/from non contiguous memory blocks.

FFT Accelerator

The FFT accelerator implements a radix-2 complex/real input, complex output FFT with no core intervention. The FFT accelerator runs at the peripheral clock frequency.

FIR Accelerator

The FIR (finite impulse response) accelerator consists of a 1024 word coefficient memory, a 1024 word deep delay line for the data, and four MAC units. A controller manages the accelerator. The FIR accelerator runs at the peripheral clock frequency.

IIR Accelerator

The IIR (infinite impulse response) accelerator consists of a 1440 word coefficient memory for storage of biquad coefficients, a data memory for storing the intermediate data, and one MAC unit. A controller manages the accelerator. The IIR accelerator runs at the peripheral clock frequency.

Watchdog Timer

The watchdog timer is used to supervise the stability of the system software. When used in this way, software reloads the watchdog timer in a regular manner so that the downward counting timer never expires. An expiring timer then indicates that system software might be out of control.

The 32-bit watchdog timer that can be used to implement a software watchdog function. A software watchdog can improve system reliability by forcing the processor to a known state through generation of a system reset, if the timer expires before being reloaded by software. Software initializes the count value of the timer, and then enables the timer. The watchdog timer resets both the core and the internal peripherals. Note that this feature is available on the 176-lead package only.

SYSTEM DESIGN

The following sections provide an introduction to system design options and power supply issues.

Program Booting

The internal memory of the ADSP-2148x boots at system power-up from an 8-bit EPROM via the external port, an SPI master, or an SPI slave. Booting is determined by the boot configuration (BOOT_CFG2-0) pins in Table 9 for the 176-lead package and Table 10 for the 100-lead package. Table 9. Boot Mode Selection, 176-Lead Package

BOOT_CFG2-0	Booting Mode
000	SPI Slave Boot
001	SPI Master Boot
010	AMI User Boot (for 8-bit Flash Boot)
011	No boot (processor executes from internal ROM after reset)
1xx	Reserved

BOOT_CFG1-0	Booting Mode
00	SPI Slave Boot
01	SPI Master Boot
10	Reserved
11	No boot (processor executes from internal ROM after reset)

The "Running Reset" feature allows a user to perform a reset of the processor core and peripherals, but without resetting the PLL and SDRAM controller, or performing a boot. The functionality of the RESETOUT/RUNRSTIN pin has now been extended to also act as the input for initiating a Running Reset. For more information, see the hardware reference.

Power Supplies

The processors have separate power supply connections for the internal (V_{DD_INT}) and external (V_{DD_EXT}) power supplies. The internal supply must meet the V_{DD_INT} specifications. The external supply must meet the V_{DD_EXT} specification. All external supply pins must be connected to the same power supply.

To reduce noise coupling, the PCB should use a parallel pair of power and ground planes for $V_{DD\ INT}$ and GND.

Static Voltage Scaling (SVS)

Some models of the ADSP-2148x feature Static Voltage Scaling (SVS) on the $V_{DD_{_INT}}$ power supply. (See the Ordering Guide on Page 66 for model details.) This voltage specification technique can provide significant performance benefits including 450 MHz core frequency operation without a significant increase in power.

SVS optimizes the required V_{DD_INT} voltage for each individual device to enable enhanced operating frequency up to 450 MHz. The optimized SVS voltage results in a reduction of maximum I_{DD_INT} which enables 450 MHz operation at the same or lower maximum power than 400 MHz operation at a fixed voltage supply. Implementation of SVS requires a specific voltage regulator circuit design and initialization code.

Refer to the Engineer-to-Engineer Note Static Voltage Scaling for ADSP-2148x SHARC Processors (EE-357) for further information. The EE-Note details the requirements and process to implement a SVS power supply system to enable operation up to 450 MHz. This applies only to specific products within the ADSP-2148x family which are capable of supporting 450 MHz operation.

Details on power consumption and Static and Dynamic current consumption can be found at Total Power Dissipation on Page 20. Also see Operating Conditions on Page 18 for more information.

The following are SVS features.

- SVS is applicable only to 450 MHz models (not applicable to 400 MHz or lower frequency models).
- Each individual SVS device includes a register (SVS_DAT) containing the unique SVS voltage set at the factory, known as $\rm SVS_{NOM}$.
- The ${\rm SVS}_{\rm NOM}$ value is the intended set voltage for the $V_{\rm DD\ INT}$ voltage regulator.
- No dedicated pins are required for SVS. The TWI serial bus is used to communicate SVS_{NOM} to the voltage regulator.
- Analog Devices recommends a specific voltage regulator design and initialization code sequence that optimizes the power-up sequence.

The Engineer-to-Engineer Note Static Voltage Scaling for ADSP-2148x SHARC Processors (EE-357) contains the details of the regulator design and the initialization requirements.

• Any differences from the Analog Devices recommended programmable regulator design must be reviewed by Analog Devices to ensure that it meets the voltage accuracy and range requirements.

Target Board JTAG Emulator Connector

Analog Devices DSP Tools product line of JTAG emulators uses the IEEE 1149.1 JTAG test access port of the ADSP-2148x processors to monitor and control the target board processor during emulation. Analog Devices DSP Tools product line of JTAG emulators provides emulation at full processor speed, allowing inspection and modification of memory, registers, and processor stacks. The processor's JTAG interface ensures that the emulator will not affect target system loading or timing.

For complete information on Analog Devices' SHARC DSP Tools product line of JTAG emulator operation, see the appropriate emulator hardware user's guide.

DEVELOPMENT TOOLS

Analog Devices supports its processors with a complete line of software and hardware development tools, including integrated development environments (which include CrossCore[®] Embedded Studio and/or VisualDSP++[®]), evaluation products, emulators, and a wide variety of software add-ins.

Integrated Development Environments (IDEs)

For C/C++ software writing and editing, code generation, and debug support, Analog Devices offers two IDEs.

CrossCore Embedded Studio is based on the Eclipse[™] framework. Supporting most Analog Devices processor families, it is the IDE of choice for future processors, including multicore devices. CrossCore Embedded Studio seamlessly integrates available software add-ins to support real time operating systems, file systems, TCP/IP stacks, USB stacks, algorithmic software modules, and evaluation hardware board support packages. For more information visit www.analog.com/cces.

The other Analog Devices IDE, VisualDSP++, supports processor families introduced prior to the release of CrossCore Embedded Studio. This IDE includes the Analog Devices VDK real time operating system and an open source TCP/IP stack. For more information visit www.analog.com/visualdsp. Note that VisualDSP++ will not support future Analog Devices processors.

EZ-KIT Lite Evaluation Board

For processor evaluation, Analog Devices provides wide range of EZ-KIT Lite[®] evaluation boards. Including the processor and key peripherals, the evaluation board also supports on-chip emulation capabilities and other evaluation and development features. Also available are various EZ-Extenders[®], which are daughter cards delivering additional specialized functionality, including audio and video processing. For more information visit www.analog.com and search on "ezkit" or "ezextender".

EZ-KIT Lite Evaluation Kits

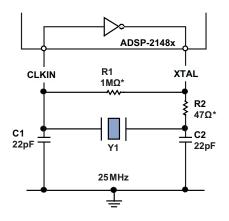
For a cost-effective way to learn more about developing with Analog Devices processors, Analog Devices offer a range of EZ-KIT Lite evaluation kits. Each evaluation kit includes an EZ-KIT Lite evaluation board, directions for downloading an evaluation version of the available IDE(s), a USB cable, and a power supply. The USB controller on the EZ-KIT Lite board connects to the USB port of the user's PC, enabling the chosen IDE evaluation suite to emulate the on-board processor in-circuit. This permits the customer to download, execute, and debug programs for the EZ-KIT Lite system. It also supports in-circuit programming of the on-board Flash device to store user-specific boot code, enabling standalone operation. With the full version of Cross-Core Embedded Studio or VisualDSP++ installed (sold separately), engineers can develop software for supported EZ-KITs or any custom system utilizing supported Analog Devices processors.

Software Add-Ins for CrossCore Embedded Studio

Analog Devices offers software add-ins which seamlessly integrate with CrossCore Embedded Studio to extend its capabilities and reduce development time. Add-ins include board support packages for evaluation hardware, various middleware packages, and algorithmic modules. Documentation, help, configuration dialogs, and coding examples present in these add-ins are viewable through the CrossCore Embedded Studio IDE once the add-in is installed.

Board Support Packages for Evaluation Hardware

Software support for the EZ-KIT Lite evaluation boards and EZ-Extender daughter cards is provided by software add-ins called Board Support Packages (BSPs). The BSPs contain the required drivers, pertinent release notes, and select example code for the given evaluation hardware. A download link for a specific BSP is located on the web page for the associated EZ-KIT or EZ-Extender product. The link is found in the Product Download area of the product web page.


Clock Signals

The ADSP-2148x can use an external clock or a crystal. See the CLKIN pin description in Table 11 on Page 14. Programs can configure the processor to use its internal clock generator by connecting the necessary components to CLKIN and XTAL. Figure 7 shows the component connections used for a crystal

operating in fundamental mode. Note that the clock rate is achieved using a 25 MHz crystal and a PLL multiplier ratio 16:1 (CCLK:CLKIN achieves a clock speed of 400 MHz). To achieve the full core clock rate, programs need to configure the multiplier bits in the PMCTL register.

CHOOSE C1 AND C2 BASED ON THE CRYSTAL Y1. R2 SHOULD BE CHOSEN TO LIMIT CRYSTAL DRIVE

POWER. REFER TO CRYSTAL MANUFACTURER'S

***TYPICAL VALUES**

Figure 7. Recommended Circuit for Fundamental Mode Crystal Operation

SPECIFICATIONS.

Timer PWM_OUT Cycle Timing

The following timing specification applies to timer0 and timer1 in PWM_OUT (pulse-width modulation) mode. Timer signals are routed to the DPI_P14-1 pins through the DPI SRU. Therefore, the timing specifications provided below are valid at the DPI_P14-1 pins.

Table 25. Timer PWM_OUT Timing

Parameter		Min	Мах	Unit
Switching C	haracteristic			
t _{PWMO}	Timer Pulse Width Output	$2 \times t_{PCLK} - 1.2$	$2 \times (2^{31} - 1) \times t_{PCLK}$	ns

Figure 12. Timer PWM_OUT Timing

Timer WDTH_CAP Timing

The following timing specification applies to timer0 and timer1, and in WDTH_CAP (pulse-width count and capture) mode. Timer signals are routed to the DPI_P14-1 pins through the SRU. Therefore, the timing specification provided below is valid at the DPI_P14-1 pins.

Table 26. Timer Width Capture Timing

Paramete	er	Min	Мах	Unit
Timing Re	equirement			
t _{PWI}	Timer Pulse Width	$2 \times t_{PCLK}$	$2 \times (2^{31} - 1) \times t_{PCLK}$	ns

Figure 13. Timer Width Capture Timing

Flags

The timing specifications provided below apply to the DPI_P14-1, ADDR7-0, ADDR23-8, DATA7-0, and FLAG3-0 pins when configured as FLAGS. See Table 11 on Page 14 for more information on flag use.

Table 30. Flags

Parameter		Min Max	Unit
Timing Requ	uirement		
t _{FIPW} 1	FLAGs IN Pulse Width	$2 \times t_{PCLK} + 3$	ns
Switching C	haracteristic		
t _{FOPW} ¹	FLAGs OUT Pulse Width	$2 \times t_{PCLK} - 3$	ns

¹This is applicable when the Flags are connected to DPI_P14-1, ADDR7-0, ADDR23-8, DATA7-0 and FLAG3-0 pins.

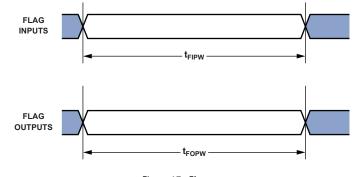


Figure 17. Flags

Table 36. Serial Ports—External Late Frame Sync

Parameter		Min	Max	Unit
Switching Ch	aracteristics			
t _{DDTLFSE} 1	Data Delay from Late External Transmit Frame Sync or External Receive Frame Sync with MCE = 1, MFD = 0		8.5	ns
t _{DDTENFS} ¹	Data Enable for MCE = 1, MFD = 0	0.5		ns

 1 The t_{DDTLFSE} and t_{DDTENFS} parameters apply to left-justified, as well as DSP serial mode, and MCE = 1, MFD = 0.

DRIVE SAMPLE DRIVE DAI_P20-1 (SCLK) t_{HFSE/I} t_{SFSE/I} DAI_P20-1 (FS) t_{DDTE/I} **t**_{DDTENFS} t_{HDTE/I} DAI_P20-1 (DATA CHANNEL A/B) 1ST BIT 2ND BIT \hat{a} t_{DDTLFSE}

EXTERNAL RECEIVE FS WITH MCE = 1, MFD = 0

LATE EXTERNAL TRANSMIT FS

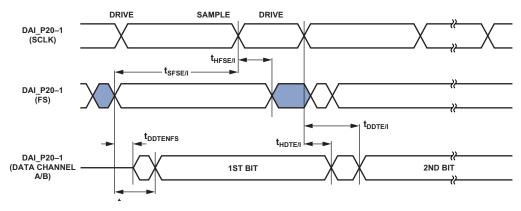


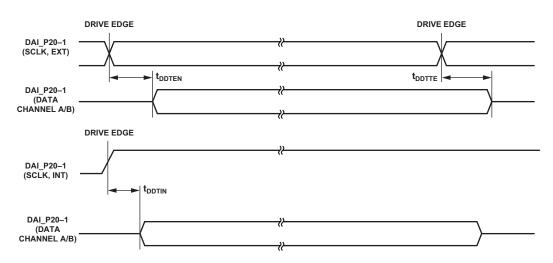
Figure 22. External Late Frame Sync¹

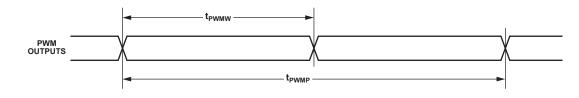
¹This figure reflects changes made to support left-justified mode.

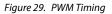
Table 37. Serial Ports—Enable and Three-State

Parameter		Min	Max	Unit
Switching Ch	paracteristics			
t _{DDTEN} 1	Data Enable from External Transmit SCLK	2		ns
t _{DDTTE} ¹	Data Disable from External Transmit SCLK		11.5	ns
t _{DDTIN} ¹	Data Enable from Internal Transmit SCLK	-1.5		ns

¹Referenced to drive edge.




Figure 23. Serial Ports—Enable and Three-State


Pulse-Width Modulation Generators (PWM)

The following timing specifications apply when the ADDR23-8/DPI_14-1 pins are configured as PWM.

Table 43. Pulse-Width Modulation (PWM) Timing

Parameter		Min	Max	Unit
Switching Cl	haracteristics			
t _{PWMW}	PWM Output Pulse Width	t _{PCLK} – 2	$(2^{16} - 2) \times t_{PCLK}$	ns
t _{PWMP}	PWM Output Period	$2 \times t_{PCLK} - 1.5$	$(2^{16} - 1) \times t_{PCLK}$	ns

S/PDIF Transmitter

Serial data input to the S/PDIF transmitter can be formatted as left-justified, I²S, or right-justified with word widths of 16, 18, 20, or 24 bits. The following sections provide timing for the transmitter.

S/PDIF Transmitter-Serial Input Waveforms

Figure 30 shows the right-justified mode. Frame sync is high for the left channel and low for the right channel. Data is valid on the rising edge of serial clock. The MSB is delayed the minimum in 24-bit output mode or the maximum in 16-bit output mode from a frame sync transition, so that when there are 64 serial clock periods per frame sync period, the LSB of the data is right-justified to the next frame sync transition.

Table 44. S/PDIF Transmitter Right-Justified Mode

Parameter		Nominal	Unit
Timing Requirer	nent		
t _{RJD}	Frame Sync to MSB Delay in Right-Justified Mode		
	16-Bit Word Mode	16	SCLK
	18-Bit Word Mode	14	SCLK
	20-Bit Word Mode	12	SCLK
	24-Bit Word Mode	8	SCLK

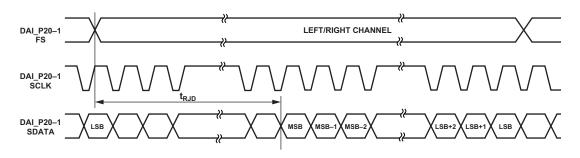


Figure 30. Right-Justified Mode

JTAG Test Access Port and Emulation

Table 54. JTAG Test Access Port and Emulation

Parameter		Min	Max	Unit
Timing Requ	irements			
t _{TCK}	TCK Period	20		ns
t _{STAP}	TDI, TMS Setup Before TCK High	5		ns
t _{HTAP}	TDI, TMS Hold After TCK High	6		ns
t _{SSYS} ¹	System Inputs Setup Before TCK High	7		ns
t _{HSYS} ¹	System Inputs Hold After TCK High	18		ns
t _{TRSTW}	TRST Pulse Width	4t _{CK}		ns
Switching C	haracteristics			
t _{DTDO}	TDO Delay from TCK Low		10	ns
t _{DSYS} ²	System Outputs Delay After TCK Low		t _{TCK} ÷ 2 + 7	ns

¹ System Inputs = DATA15-0, CLK_CFG1-0, RESET, BOOT_CFG2-0, DAI_Px, DPI_Px, and FLAG3-0. ² System Outputs = DAI_Px, DPI_Px ADDR23-0, AMI_RD, AMI_WR, FLAG3-0, SDCAS, SDCAS, SDCKE, SDA10, SDDQM, SDCLK and EMU.

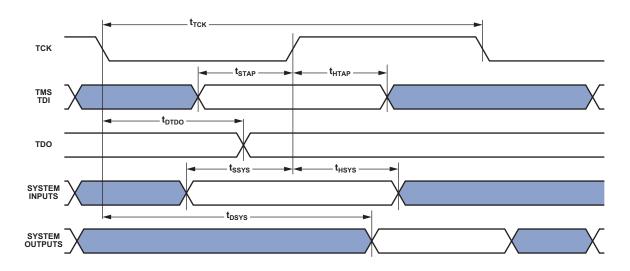


Figure 40. IEEE 1149.1 JTAG Test Access Port

OUTPUT DRIVE CURRENTS

Figure 41 shows typical I-V characteristics for the output drivers of the ADSP-2148x, and Table 55 shows the pins associated with each driver. The curves represent the current drive capability of the output drivers as a function of output voltage.

Table 55. Driver Types

Driver Type	Associated Pins
А	FLAG[0–3], AMI_ADDR[0–23], DATA[0–15],
	AMI_RD, AMI_WR, AMI_ACK, MS[1-0], SDRAS,
	SDCAS, SDWE, SDDQM, SDCKE, SDA10, EMU, TDO,
	RESETOUT, DPI[1–14], DAI[1–20], WDTRSTO,
	MLBDAT, MLBSIG, MLBSO, MLBDO, MLBCLK
В	SDCLK

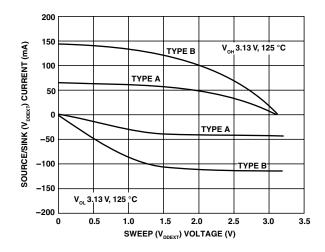
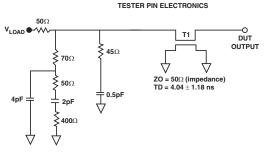


Figure 41. Typical Drive at Junction Temperature


TEST CONDITIONS

The ac signal specifications (timing parameters) appear in Table 21 on Page 26 through Table 54 on Page 54. These include output disable time, output enable time, and capacitive loading. The timing specifications for the SHARC apply for the voltage reference levels in Figure 42.

Timing is measured on signals when they cross the 1.5 V level as described in Figure 43. All delays (in nanoseconds) are measured between the point that the first signal reaches 1.5 $\rm V$ and the point that the second signal reaches 1.5 V.

Figure 43. Voltage Reference Levels for AC Measurements

NOTES

THE WORST CASE TRANSMISSION LINE DELAY IS SHOWN AND CAN BE USED FOR THE OUTPUT TIMING ANALYSIS TO REFLECT THE TRANSMISSION LINE EFFECT AND MUST BE CONSIDERED. THE TRANSMISSION LINE (TD) IS FOR LOAD ONLY AND DOES NOT AFFECT THE DATA SHEET TIMING SPECIFICATIONS.

ANALOG DEVICES RECOMMENDS USING THE IBIS MODEL TIMING FOR A GIVEN SYSTEM REQUIREMENT. IF NECESSARY, A SYSTEM MAY INCORPORATE EXTERNAL DRIVERS TO COMPENSATE FOR ANY TIMING DIFFERENCES.

Figure 42. Equivalent Device Loading for AC Measurements (Includes All Fixtures)

CAPACITIVE LOADING

Output delays and holds are based on standard capacitive loads: 30 pF on all pins (see Figure 42). Figure 46 and Figure 47 show graphically how output delays and holds vary with load capacitance. The graphs of Figure 44 through Figure 47 may not be linear outside the ranges shown for Typical Output Delay vs. Load Capacitance and Typical Output Rise Time (20% to 80%, V = Min) vs. Load Capacitance.

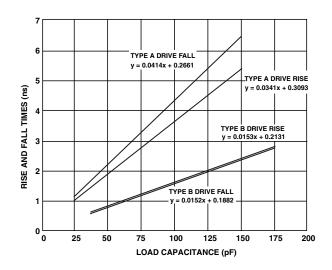


Figure 44. Typical Output Rise/Fall Time $(20\% to 80\%, V_{DD EXT} = Max)$

100-LQFP_EP LEAD ASSIGNMENT

Lead Name	Lead No.						
V _{DD_INT}	1	V _{DD_EXT}	26	DAI_P10	51	V _{DD_INT}	76
CLK_CFG1	2	DPI_P08	27	V _{DD_INT}	52	FLAG0	77
BOOT_CFG0	3	DPI_P07	28	V _{DD_EXT}	53	V _{DD_INT}	78
V _{DD_EXT}	4	V _{DD_INT}	29	DAI_P20	54	V _{DD_INT}	79
V _{DD_INT}	5	DPI_P09	30	V _{DD_INT}	55	FLAG1	80
BOOT_CFG1	6	DPI_P10	31	DAI_P08	56	FLAG2	81
GND	7	DPI_P11	32	DAI_P04	57	FLAG3	82
NC	8	DPI_P12	33	DAI_P14	58	MLBCLK	83
NC	9	DPI_P13	34	DAI_P18	59	MLBDAT	84
CLK_CFG0	10	DAI_P03	35	DAI_P17	60	MLBDO	85
V _{DD_INT}	11	DPI_P14	36	DAI_P16	61	V _{DD_EXT}	86
CLKIN	12	V _{DD_INT}	37	DAI_P15	62	MLBSIG	87
XTAL	13	V _{DD_INT}	38	DAI_P12	63	V _{DD_INT}	88
V _{DD_EXT}	14	V _{DD_INT}	39	V _{DD_INT}	64	MLBSO	89
V _{DD_INT}	15	DAI_P13	40	DAI_P11	65	TRST	90
V _{DD_INT}	16	DAI_P07	41	V _{DD_INT}	66	EMU	91
RESETOUT/RUNRSTIN	17	DAI_P19	42	V _{DD_INT}	67	TDO	92
V _{DD_INT}	18	DAI_P01	43	GND	68	V _{DD_EXT}	93
DPI_P01	19	DAI_P02	44	THD_M	69	V _{DD_INT}	94
DPI_P02	20	V _{DD_INT}	45	THD_P	70	TDI	95
DPI_P03	21	V _{DD_EXT}	46	V _{DD_THD}	71	тск	96
V _{DD_INT}	22	V _{DD_INT}	47	V _{DD_INT}	72	V _{DD_INT}	97
DPI_P05	23	DAI_P06	48	V _{DD_INT}	73	RESET	98
DPI_P04	24	DAI_P05	49	V _{DD_INT}	74	TMS	99
DPI_P06	25	DAI_P09	50	V _{DD_INT}	75	V _{DD_INT}	100
						GND	101*

Table 59. 100-Lead LQFP_EP Lead Assignments (Numerical by Lead Number)

MLB pins (pins 83, 84, 85, 87, and 89) are available for automotive models only. For non-automotive models, these pins should be connected to ground (GND).

* Pin no. 101 (exposed pad) is the GND supply (see Figure 48 and Figure 49) for the processor; this pad must be **robustly** connected to GND.

176-LEAD LQFP_EP LEAD ASSIGNMENT

NC 1 Vop_trt 45 DALP10 89 Vop_NT 133 MSO 2 PPLP08 46 Vop_NT 90 FLAG0 134 NC 3 DPLP07 47 Vop_ET 91 FLAG1 135 Vop_INT 4 Vop_NT 48 DALP20 92 FLAG2 136 CLK_CFG1 5 DPLP10 50 DALP08 94 FLAG3 138 BOOT_CFG0 7 DPLP11 51 DALP04 96 GND 140 ADDR1 9 DPLP13 53 DALP17 98 GND 142 ADDR3 11 DALP03 55 DALP17 98 GND 143 ADDR4 12 NC 56 DALP11 103 DATA0 147 ADDR5 13 Vop_DINT 62 BOOT_CFG2 106 DATA1 148 ADDR6 16 NC 63 Vop_IN	Lead Name	Lead No.	Lead Name	Lead No.	Lead Name	Lead No.	Lead Name	Lead No.
NC 3 DPL P07 47 VDD_DRT 91 FLAG1 135 VDD_JNT 48 DALP20 92 FLAG2 136 CLK_CFG1 5 DPLP09 49 VDD_NT 93 GND 137 ADDR0 6 DPLP10 50 DALP08 94 FLAG3 138 SOOT_CFG0 7 DPLP13 53 DALP14 95 GND 141 ADDR1 9 DPLP13 53 DALP16 94 VD_D_NT 143 ADDR3 11 DALP03 55 DALP12 100 GND 142 ADDR4 12 NC 56 DALP15 101 GND 145 BOOT_CFG1 14 NC 58 VD_D_INT 102 EMT 146 ADDR4 16 NC 60 VD_D_DT 103 DATA1 148 ADDR5 16 NC 61 VD_D_DT 105 DATA	NC	1	V _{DD_EXT}	45	DAI_P10	89	V _{DD_INT}	133
VDD_INT 4 VDD_INT 48 DAL_P20 92 FLAG2 136 CLK_CFG1 5 DPL_P09 49 VDD_INT 93 GND 137 ADDR0 6 DPL_P10 50 DAL_P08 94 ELAG3 138 BODT_CFG0 7 DPL_P13 53 DAL_P14 95 GND 140 ADDR1 9 DPL_P13 53 DAL_P15 99 YDD_DKT 141 ADDR3 11 DAL_P03 55 DAL_P15 99 YDD_DKT 143 ADDR4 12 NC 56 DAL_P15 101 GND 145 ADDR3 13 YDD_ERT 57 DAL_P15 102 EMU 146 GND 15 NC 59 DAL_P11 103 DATA1 148 ADDR6 16 NC 61 YDD_INT 105 DATA2 150 ADDR4 16 NC 63	MSO	2	DPI_P08	46	V _{DD_INT}	90	FLAG0	134
CLK_CFG1 5 DPLP09 49 VDD_INT 93 GND 137 ADDR0 6 DPLP10 50 DAL_P08 94 PLAG3 138 SODT_CFG0 7 DPLP11 51 DAL_P14 95 GND 139 VDD_EXT 8 DPLP12 52 DAL_P14 96 GND 141 ADDR1 9 DPLP13 53 DAL_P17 98 GND 142 ADDR3 11 DALP03 55 DAL_P15 99 VDD_MT 143 ADDR4 12 NC 56 DALP12 100 TRST 144 ADDR5 13 VD_LEXT 57 DALP11 103 DATA0 147 ADDR6 16 NC 58 VD_LNT 105 DATA2 149 ADDR6 16 NC 60 VDD_LNT 105 DATA3 150 NC 18 VD_LINT 62 BO	NC	3	DPI_P07	47	V _{DD_EXT}	91	FLAG1	135
ADDR0 6 DPLP10 50 DALP08 94 FLAG3 138 BOOT_CFG0 7 DPLP11 51 DALP14 95 GND 139 ADDR1 9 DPLP12 52 DALP18 97 VDD_DRT 141 ADDR3 10 DPLP13 53 DALP16 99 VDD_DRT 142 ADDR3 11 DALP03 55 DALP16 99 VDD_NT 143 ADDR4 12 NC 56 DALP15 101 GND 145 BOOT_CFG1 14 NC 58 VDD_INT 102 EMU 146 ADDR4 12 NC 59 DALP11 103 DATA1 148 ADDR5 13 VDD_INT 62 BOOT_CFG2 106 DATA2 149 NC 18 VDD_INT 62 BOOT_CFG2 106 DATA3 150 NC 18 VDD_INT 62	V _{DD_INT}	4	V _{DD_INT}	48	DAI_P20	92	FLAG2	136
ADDR0 6 DPL P10 50 DAL P08 94 FLAGS 139 BOOT_CFG0 7 DPLP11 51 DALP14 95 GND 139 VDD_DCT 8 DPLP12 52 DALP14 96 GND 140 ADDR1 9 DPLP13 53 DALP16 99 YDD_DKT 141 ADDR3 11 DALP03 55 DALP12 100 GND 142 ADDR4 12 NC 56 DALP12 101 GND 143 ADDR5 13 VD_DETT 57 DALP11 103 DATA1 144 ADDR6 16 NC 59 DALP11 103 DATA1 148 ADDR6 16 NC 60 YD_DENT 105 DATA1 148 ADDR6 17 NC 61 YD_DENT 105 DATA1 150 NC 18 YD_DINT 62 BOOT_CF	CLK_CFG1	5	DPI_P09	49	V _{DD INT}	93	GND	137
VDD_ENT 8 DPI_P12 52 DAI_P04 96 GND 140 ADDR1 9 DPI_P13 53 DAI_P18 97 VD_DENT 141 ADDR3 11 DAI_P03 55 DAI_P16 98 GND 142 ADDR4 12 NC 56 DAI_P12 101 GND 143 ADDR4 12 NC 58 DAI_P13 101 GND 145 BOOT_CFG1 14 NC 58 DAI_P11 102 EMU 146 ADDR4 15 NC 60 VD_D_INT 104 DATA1 148 ADDR4 18 VDD_INT 62 BOT_CFG2 106 DATA3 150 NC 18 VDD_INT 63 OD_INT 107 DO_D 151 ADDR4 20 NC 64 AMI_ACK 108 DATA4 152 ADDR4 21 VD_INT 65 G	ADDR0	6	DPI_P10	50	_	94	FLAG3	138
ADDR1 9 DPLP13 53 DALP18 97 VDD_EXT 141 ADDR2 10 DPLP14 54 DALP17 98 GND 142 ADDR3 11 DALP03 55 DALP16 99 VDD_INT 143 ADDR4 12 NC 56 DALP15 101 GND 145 BOOT_CFG1 14 NC 58 VDD_INT 102 EMU 146 GND 15 NC 59 DALP11 103 DATA1 148 ADDR6 16 NC 61 VDD_INT 107 DATA1 148 ADDR7 17 NC 61 VD_INT 107 DATA1 150 NC 19 NC 63 ROD_INT 107 DATA1 151 ADDR9 21 VDD_INT 65 GND 109 VDD_ETAT 153 CLK_CFG0 22 NC 61 THD_P	BOOT_CFG0	7	DPI_P11	51	DAI_P14	95	GND	139
ADDR1 9 DPLP13 53 DALP18 97 VDD_ENT 141 ADDR2 10 DPLP14 54 DALP16 99 VDD_ENT 142 ADDR3 11 DALP03 55 DALP16 99 VDD_INT 143 ADDR4 12 NC 56 DALP11 100 TRST 144 ADDR3 13 VDD_ENT 57 DALP11 103 DATA0 147 ADDR3 16 NC 58 VDD_INT 102 EMU 148 ADDR4 16 NC 61 VDD_INT 105 DATA3 150 NC 18 VDD_INT 62 BOOT_CFG2 106 DATA3 153 ADDR4 20 NC 63 VDD_INT 107 DOD 151 ADDR4 20 NC 64 AMLACK 168 DATA4 152 ADDR4 21 VDD_INT 65 GND	V _{DD EXT}	8	DPI_P12	52	DAI_P04	96	GND	140
ADDR2 10 DPLP14 54 DALP17 98 GND 142 ADDR3 11 DALP03 55 DALP16 99 VDD_INT 143 ADDR4 12 NC 56 DALP15 101 GND 145 ADDR5 13 VDD_ENT 57 DALP15 101 GND 145 BOOT_CFG1 14 NC 58 VDD_INT 102 EMU 147 ADDR6 16 NC 60 VDD_ENT 104 DATA2 149 ADDR7 17 NC 61 VDD_INT 107 DATA2 150 NC 18 VDD_INT 62 BOOT_CFG2 106 DATA4 152 ADDR8 20 NC 63 MD_LACK 108 DATA4 152 ADDR9 21 VD_INT 65 GND 109 VD_LACK 153 CLK_CFG0 22 NC 67 THD_P<		9	DPI_P13	53	DAI_P18	97	V _{DD EXT}	141
ADDR4 12 NC 56 DAI_P12 100 TRAT 144 ADDR5 13 VDD_EXT 57 DAL_P15 101 GND 145 BOOT_CFG1 14 NC 58 VDL_NT 102 EMU 146 GND 15 NC 59 DAL_P11 103 DATA0 147 ADDR6 16 NC 60 VDD_NT 104 DATA1 148 ADDR7 17 NC 61 VDD_INT 107 DOT DATA2 149 NC 18 VDD_INT 62 BOOT_CFG2 106 DATA4 152 ADDR8 20 NC 63 VDD_INT 107 DOT 151 ADDR9 21 VD_INT 65 GND 100 DATA5 154 VDD_INT 23 NC 67 THD_P 111 DATA6 155 CLK_CFG0 22 NC 64	ADDR2	10	DPI_P14	54	DAI_P17	98		142
ADDR4 12 NC 56 DAL_P12 100 TRST 144 ADDR5 13 VD_D_EXT 57 DAL_P15 101 GND 145 BOOT_CFG1 14 NC 58 VD_D.NT 102 EMU 146 GND 15 NC 59 DAL_P11 103 DATA0 147 ADDR6 16 NC 60 VD_D_EXT 104 DATA1 148 ADDR7 17 NC 61 VD_D_INT 107 DO DATA2 150 NC 18 VD_D_INT 62 BOOT_CFG2 106 DATA3 152 ADDR8 20 NC 63 VD_D_INT 107 DO 151 ADDR4 21 VD_D_INT 65 GND 109 VD_D_EXT 153 CLK_CFG0 22 NC 66 THD_M 110 DATA5 154 CLM_CTG0 71 MC MST	ADDR3	11	DAI_P03	55	DAI_P16	99	V _{DD INT}	143
BOOT_CFG1 14 NC 58 VDD_INT 102 EMU 146 GND 15 NC 59 DALP11 103 DATA0 147 ADDR6 16 NC 60 VDD_EXT 104 DATA1 148 ADDR7 17 NC 61 VDD_INT 105 DATA2 149 NC 18 VDD_INT 62 BOOT_CFG2 106 DATA3 150 NC 19 NC 63 VDD_INT 107 TDO 151 ADDR8 20 NC 64 AMLACK 108 DATA4 152 ADDR9 1 VDD_INT 65 GND 109 VD_DEXT 153 CLK_CFG0 22 NC 67 THD_P 111 DATA5 154 VDD_INT 23 NC 69 VD_INT 113 DATA7 157 ADDR10 26 WDTRSTO 70 VD_DINT	ADDR4	12	NC	56		100		144
BOOT_CFG1 14 NC 58 VDD_INT 102 EMU 146 GND 15 NC 59 DALP11 103 DATA0 147 ADDR6 16 NC 60 VDD_EXT 104 DATA1 148 ADDR7 17 NC 61 VDD_INT 105 DATA2 149 NC 18 VDD_INT 62 BOOT_CFG2 106 DATA3 150 NC 19 NC 63 VDD_INT 107 TDO 151 ADDR8 20 NC 64 AMLACK 108 DATA4 152 ADDR9 21 VDD_INT 65 GND 109 VDD_EXT 153 CLK_CFG0 22 NC 66 THD_M 110 DATA7 157 ADDR10 26 WDTRSTO 70 VD_INT 113 DATA7 157 ADDR10 28 VD_DEXT 72 VD_OINT<	ADDR5	13	V _{DD EXT}	57	DAI_P15	101	GND	145
GND 15 NC 59 DALP11 103 DATA0 147 ADDR6 16 NC 60 VDD_EXT 104 DATA1 148 ADDR7 17 NC 61 VDD_INT 105 DATA2 149 NC 18 VDD_INT 62 BOOT_CF62 DO DATA3 150 NC 19 NC 63 VDD_INT 107 DO 151 ADDR8 20 NC 64 AMI_ACK 108 DATA4 152 ADDR8 21 VDD_INT 65 GND 109 VD_D_EXT 153 CLK_CFG0 22 NC 66 THD_M 110 DATA6 155 CLKIN 24 VD_D_INT 68 VD_D_INT 114 DATA6 155 CLKIN 24 VD_D_INT 68 VD_D_INT 114 DATA6 155 VDL <xt< td=""> 73 NC 71 MST<td>BOOT_CFG1</td><td>14</td><td></td><td>58</td><td></td><td>102</td><td>EMU</td><td>146</td></xt<>	BOOT_CFG1	14		58		102	EMU	146
ADDR6 16 NC 60 VDD_ENT 104 DATA1 148 ADDR7 17 NC 61 VDD_INT 105 DATA2 149 NC 18 VDD_INT 62 BOOT_CFG2 106 DATA3 150 NC 18 VDD_INT 62 BOOT_CFG2 106 DATA4 152 ADDR8 20 NC 64 AMI_ACK 108 DATA4 152 ADDR9 21 VDD_INT 65 GND 109 VD_EXT 153 CLK_CFG0 22 NC 66 THD_P 110 DATA6 155 CLKIN 24 VDD_INT 68 VDD_INT 113 DATA7 157 ADDR10 26 WDTRSTO 70 VDD_INT 114 TDI 158 NC 27 NC 71 MST 115 NC 159* VDD_EXT 28 DALP17 73 WDT					_			
ADDR7 17 NC 61 VDD_INT 105 DATA2 149 NC 18 VDD_INT 62 BOOT_CFG2 106 DATA3 150 NC 19 NC 63 VDD_INT 107 TDO 151 ADDR8 20 NC 64 AMLACK 108 DATA4 152 ADDR9 21 VDD_INT 65 GND 109 VDD_EXT 153 CLK_CFG0 22 NC 66 THD_M 110 DATA5 154 VDD_INT 23 NC 67 THD_P 111 DATA6 155 CLK_CFG0 22 NC 69 VDD_INT 113 DATA7 157 ADDR10 26 WDTRSTO 70 VDD_INT 114 TDI 158 NC 27 NC 71 MST 116 VDD_EXT 160 VDD_INT 28 DALP07 73 WDT_CLKN </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
NC 18 V _{DD_INT} 62 BOOT_CFG2 106 DATA3 150 NC 19 NC 63 V _{DD_INT} 107 TDO 151 ADDR8 20 NC 64 AMI_ACK 108 DATA4 152 ADDR9 21 V _{DD_INT} 65 GND 109 V _{DD_ETT} 153 CLK_CFG0 22 NC 66 THD_M 110 DATA5 154 V _{DD_INT} 23 NC 67 THD_P 111 DATA6 155 CLKIN 24 V _{DD_INT} 68 V _{DD_INT} 113 DATA7 157 ADDR10 26 WDTRSTO 70 V _{DD_INT} 114 TDI 158 NC 27 NC 71 MST 115 NC 159* V _{DD_ENT} 28 V _{D_ENT} 72 V _{DD_INT} 116 V _{D_ENT} 160 ADDR11 30 DALP07 7	ADDR7							
NC 19 NC 63 VDD_INT 107 TDO 151 ADDR8 20 NC 64 AMI_ACK 108 DATA4 152 ADDR9 21 VDD_INT 65 GND 109 VDD_EXT 153 CLK_CFGO 22 NC 66 THD_P 111 DATA6 155 CLKIN 24 VD_INT 68 VDD_THD 112 VD_INT 156 XTAL 25 NC 69 VDD_INT 113 DATA7 157 ADDR10 26 WDTSTO 70 VDD_INT 114 TDI 158 NC 27 NC 71 MST 115 NC 159* VDD_EXT 28 VD_EXT 72 VDD_INT 116 VD_DEXT 160 ADDR11 30 DALP13 74 WDT_CLKO 117 DATA10 163 ADDR12 31 DALP07 77 ADD								
ADDR8 20 NC 64 AMI_ACK 108 DATA4 152 ADDR9 21 V _{DD_INT} 65 GND 109 V _{DD_EXT} 153 CLK_CF60 22 NC 66 THD_M 110 DATA5 154 V _{DD_INT} 23 NC 67 THD_P 111 DATA6 155 CLKIN 24 V _{DD_INT} 68 V _{DD_INT} 113 DATA7 157 ADDR10 26 WDTRSTO 70 V _{DD_INT} 114 TDI 158 NC 27 NC 71 MST 116 V _{DD_EXT} 160 V _{DD_INT} 28 V _{DD_EXT} 72 V _{DD_INT} 116 V _{DD_EXT} 160 ADDR11 30 DALP07 73 WDT_CLKIN 118 DATA9 161 ADDR12 31 DALP19 75 V _{DD_EXT} 119 DATA10 163 ADDR13 33 DAL_P								
ADDR9 21 VDD_INT 65 GND 109 VDD_EXT 153 CLK_CFG0 22 NC 66 THD_M 110 DATA5 154 VDD_INT 23 NC 67 THD_P 111 DATA6 155 CLKIN 24 VDD_INT 68 VD_INT 112 VDD_INT 156 XTAL 25 NC 69 VDD_INT 113 DATA7 157 ADDR10 26 WDTRSTO 70 VDD_INT 114 TDI 158 NC 27 NC 71 MST 115 NC 159* VDD_EXT 28 VDD_EXT 72 VDD_INT 116 VDD_EXT 160 ADDR11 30 DALP07 73 WDT_CLKO 117 DATA8 161 ADDR12 31 DALP01 76 ADDR23 120 TCK 164 ADDR13 33 DALP02 77					_			
CLK_CFG0 22 NC 66 THD_M 110 DATAS 154 VDD_INT 23 NC 67 THD_P 111 DATAG 155 CLKIN 24 VDD_INT 68 VDD_THD 112 VDD_INT 156 XTAL 25 NC 69 VDD_INT 113 DATA7 157 ADDR10 26 WDTRSTO 70 VD_INT 114 TDI 158 NC 27 NC 71 MST 115 NC 159* VDD_EXT 28 VDD_EXT 72 VDD_INT 116 VDD_EXT 160 VDD_INT 29 DALP07 73 WDT_CLKO 117 DATA8 161 ADDR11 30 DALP13 74 WDT_CLKIN 118 DATA9 162 ADDR13 33 DALP01 76 ADDR23 120 TCK 164 ADDR13 34 VDD_INT 78								
VDD_INT 23 NC 67 THD_P 111 DATA6 155 CLKIN 24 VDD_INT 68 VDD_THD 112 VDD_INT 156 XTAL 25 NC 69 VDD_INT 113 DATA7 157 ADDR10 26 WDTRSTO 70 VDD_INT 114 TDI 158 NC 27 NC 71 MS1 115 NC 159* VDD_EXT 28 VD_DEXT 72 VD_INT 116 VD_DEXT 160 VDD_INT 29 DALP07 73 WDT_CLKIN 118 DATA9 162 ADDR11 30 DALP13 74 WDT_CLKIN 118 DATA10 163 ADDR12 31 DALP01 76 ADDR23 120 TCK 164 ADDR13 32 DALP01 76 ADDR21 123 DATA11 165 VDD_INT 34 DA_DONT 7								
CLKIN 24 VDD_INT 68 VDD_THD 112 VDD_INT 156 XTAL 25 NC 69 VDD_INT 113 DATA7 157 ADDR10 26 WDTRSTO 70 VDD_INT 114 TDI 158 NC 27 NC 71 MS1 115 NC 159* VDD_EXT 28 VDD_EXT 72 VDD_INT 116 VDD_EXT 160 VDD_INT 29 DAI_P07 73 WDT_CLKO 117 DATA8 161 ADDR11 30 DAI_P13 74 WDT_CLKIN 118 DATA9 162 ADDR12 31 DAI_P01 76 ADDR23 120 TCK 164 ADDR13 33 DAI_P02 77 ADDR22 121 DATA11 165 VDD_INT 34 VDD_INT 78 ADDR12 122 DATA12 166 ADDR13 35 NC <								
XTAL 25 NC 69 VDD_INT 113 DATA7 157 ADDR10 26 WDTRSTO 70 VDD_INT 114 TDI 158 NC 27 NC 71 MS1 115 NC 159* VDD_EXT 28 VDD_EXT 72 VDD_INT 116 VDD_EXT 160 VDD_INT 29 DAI_P07 73 WDT_CLKO 117 DATA8 161 ADDR11 30 DAI_P13 74 WDT_CLKO 117 DATA8 162 ADDR12 31 DAI_P19 75 VDD_EXT 119 DATA10 163 ADDR13 33 DAI_P02 77 ADDR22 121 DATA11 165 VDD_INT 34 VDD_INT 78 ADDR21 122 DATA12 166 ADDR18 35 NC 79 VDD_INT 123 DATA13 168 VDD_INT 36 NC <t< td=""><td>—</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	—							
ADDR10 26 WDTRSTO 70 VDD_INT 114 TDI 158 NC 27 NC 71 MS1 115 NC 159* VDD_EXT 28 VDD_EXT 72 VDD_INT 116 VDD_EXT 160 VDD_INT 29 DAI_P07 73 WDT_CLKO 117 DATA8 161 ADDR11 30 DAI_P13 74 WDT_CLKIN 118 DATA9 162 ADDR12 31 DAI_P19 75 VDD_EXT 119 DATA10 163 ADDR13 32 DAI_P02 77 ADDR23 120 TCK 164 ADDR13 33 DAI_P02 77 ADDR22 121 DATA11 165 VDD_INT 34 VDD_INT 78 ADDR21 122 DATA14 167 RESETOUT/RUNRSTIN 36 NC 80 ADDR20 124 DATA13 168 VDD_INT 37 NC<					_			
NC 27 NC 71 MST 115 NC 159* VDD_EXT 28 VDD_EXT 72 VDD_INT 116 VDD_EXT 160 VDD_INT 29 DAL_P07 73 WDT_CLKO 117 DATA8 161 ADDR11 30 DAL_P13 74 WDT_CLKIN 118 DATA9 162 ADDR12 31 DAL_P19 75 VDD_EXT 119 DATA10 163 ADDR17 32 DAL_P01 76 ADDR23 120 TCK 164 ADDR13 33 DAL_P02 77 ADDR22 121 DATA11 165 VDD_INT 34 VDD_INT 78 ADDR21 122 DATA12 166 ADDR18 35 NC 79 VDD_INT 123 DATA13 168 VDD_INT 36 NC 80 ADDR19 125 VDD_INT 169 DPLP01 38 NC								
VDD_EXT 28 VDD_EXT 72 VDD_INT 116 VDD_EXT 160 VDD_INT 29 DALP07 73 WDT_CLKO 117 DATA8 161 ADDR11 30 DALP13 74 WDT_CLKIN 118 DATA9 162 ADDR12 31 DALP19 75 VDD_EXT 119 DATA10 163 ADDR17 32 DALP01 76 ADDR23 120 TCK 164 ADDR13 33 DALP02 77 ADDR22 121 DATA11 165 VDD_INT 34 VDD_INT 78 ADDR21 122 DATA12 166 ADDR18 35 NC 79 VDD_INT 123 DATA14 167 RESETOUT/RUNRSTIN 36 NC 80 ADDR19 125 VDD_INT 169 DPLP01 38 NC 82 VDD_EXT 126 DATA15 170 DPLP03 40 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>								
VDD_INT 29 DAI_P07 73 WDT_CLKO 117 DATA8 161 ADDR11 30 DAI_P13 74 WDT_CLKIN 118 DATA9 162 ADDR12 31 DAI_P19 75 VDD_EXT 119 DATA10 163 ADDR17 32 DAI_P01 76 ADDR23 120 TCK 164 ADDR13 33 DAI_P02 77 ADDR23 120 DATA11 165 VDD_INT 34 VDD_INT 78 ADDR21 122 DATA12 166 ADDR18 35 NC 79 VD_INT 123 DATA14 167 RESETOUT/RUNRSTIN 36 NC 80 ADDR19 125 VD_INT 169 DPI_P01 38 NC 82 VD_EXT 126 DATA13 168 VDD_INT 37 NC 83 ADDR19 125 VD_INT 169 DPI_P01 38 NC								
ADDR11 30 DAI_P13 74 WDT_CLKIN 118 DATA9 162 ADDR12 31 DAI_P19 75 V_DD_EXT 119 DATA10 163 ADDR17 32 DAI_P01 76 ADDR23 120 TCK 164 ADDR13 33 DAI_P02 77 ADDR22 121 DATA11 165 VDD_INT 34 V_DD_INT 78 ADDR21 122 DATA12 166 ADDR18 35 NC 79 V_D_INT 123 DATA14 167 RESETOUT/RUNRSTIN 36 NC 80 ADDR20 124 DATA13 168 V_DD_INT 37 NC 81 ADDR19 125 V_DD_INT 169 DPI_P01 38 NC 82 V_DD_EXT 126 DATA15 170 DPI_P02 39 NC 83 ADDR16 127 NC 171 DPI_P03 40 V_D_LINT 85 V_D_INT 129 RESET 172 VDD_INT			_		_			
ADDR12 31 DAI_P19 75 V_DD_EXT 119 DATA10 163 ADDR17 32 DAI_P01 76 ADDR23 120 TCK 164 ADDR13 33 DAI_P02 77 ADDR22 121 DATA11 165 VDD_INT 34 V_DD_INT 78 ADDR21 122 DATA12 166 ADDR18 35 NC 79 V_DD_INT 123 DATA13 168 VDD_INT 36 NC 80 ADDR20 124 DATA13 168 VDD_INT 37 NC 81 ADDR19 125 V_D_INT 169 DPI_P01 38 NC 82 V_D_EXT 126 DATA15 170 DPI_P02 39 NC 83 ADDR16 127 NC 171 DPI_P03 40 V_D_EXT 84 ADDR15 128 NC 172 V_DD_INT 41 V_D_D_INT 85 V_D_INT 129 RESET 173 DPI_P05 42								
ADDR1732DAI_P0176ADDR23120TCK164ADDR1333DAI_P0277ADDR22121DATA11165VDD_INT34VDD_INT78ADDR21122DATA12166ADDR1835NC79VDD_INT123DATA14167RESETOUT/RUNRSTIN36NC80ADDR20124DATA13168VDD_INT37NC81ADDR19125VDD_INT169DPI_P0138NC82VDD_EXT126DATA15170DPI_P0239NC83ADDR16127NC171DPI_P0340VDD_EXT84ADDR15128NC172VDD_INT41VDD_INT85VDD_INT129RESET173DPI_P0542DAI_P0686ADDR14130TMS174DPI_P0644DAI_P0988AMI_RD132VDD_INT176								
ADDR13 33 DAI_P02 77 ADDR22 121 DATA11 165 V_DD_INT 34 V_DD_INT 78 ADDR21 122 DATA12 166 ADDR18 35 NC 79 V_DD_INT 123 DATA14 167 RESETOUT/RUNRSTIN 36 NC 80 ADDR20 124 DATA13 168 V_DD_INT 37 NC 81 ADDR19 125 V_DD_INT 169 DPI_P01 38 NC 82 V_DD_EXT 126 DATA15 170 DPI_P02 39 NC 83 ADDR16 127 NC 171 DPI_P03 40 V_D_INT 85 V_D_INT 129 RESET 173 DPI_P05 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P06 44 DAL_P09 88 AMI_RD 132 V_DINT 176								
VDD_INT 34 VDD_INT 78 ADDR21 122 DATA12 166 ADDR18 35 NC 79 VDD_INT 123 DATA14 167 RESETOUT/RUNRSTIN 36 NC 80 ADDR20 124 DATA13 168 VDD_INT 37 NC 81 ADDR19 125 VDD_INT 169 DPI_P01 38 NC 82 VDD_EXT 126 DATA15 170 DPI_P02 39 NC 83 ADDR16 127 NC 171 DPI_P03 40 VDD_EXT 84 ADDR15 128 NC 172 VDD_INT 41 VDD_INT 85 VDD_INT 129 RESET 173 DPI_P03 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P04 43 DAI_P05 87 AMI_WR 131 NC 175 DPI_P06 44 DAI_P09								
ADDR18 35 NC 79 V _{DD_INT} 123 DATA14 167 RESETOUT/RUNRSTIN 36 NC 80 ADDR20 124 DATA13 168 V _{DD_INT} 37 NC 81 ADDR19 125 V _{DD_INT} 169 DPI_P01 38 NC 82 V _{DD_EXT} 126 DATA15 170 DPI_P02 39 NC 83 ADDR16 127 NC 171 DPI_P03 40 V _{DD_EXT} 84 ADDR15 128 NC 172 V _{DD_INT} 41 V _{DD_INT} 85 V _{DD_INT} 129 RESET 173 DPI_P05 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P04 43 DAI_P05 87 AMI_WR 131 NC 175 DPI_P06 44 DAI_P09 88 AMI_RD 132 V _{DD_INT} 176								
RESETOUT/RUNRSTIN 36 NC 80 ADDR20 124 DATA13 168 V _{DD_INT} 37 NC 81 ADDR19 125 V _{DD_INT} 169 DPI_P01 38 NC 82 V _{DD_EXT} 126 DATA15 170 DPI_P02 39 NC 83 ADDR16 127 NC 171 DPI_P03 40 V _{DD_EXT} 84 ADDR15 128 NC 172 V _{DD_INT} 41 V _{DD_INT} 85 V _{DD_INT} 129 RESET 173 DPI_P05 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P04 43 DAI_P05 87 AMI_WR 131 NC 175 DPI_P06 44 DAI_P09 88 AMI_RD 132 V _{DD_INT} 176	—							
V _{DD_INT} 37 NC 81 ADDR19 125 V _{DD_INT} 169 DPI_P01 38 NC 82 V _{DD_EXT} 126 DATA15 170 DPI_P02 39 NC 83 ADDR16 127 NC 171 DPI_P03 40 V _{DD_EXT} 84 ADDR15 128 NC 172 V _{DD_INT} 41 V _{DD_INT} 85 V _{DD_INT} 129 RESET 173 DPI_P05 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P04 43 DAI_P05 87 AMI_WR 131 NC 175 DPI_P06 44 DAI_P09 88 AMI_RD 132 V _{DD_INT} 176					_			
DPI_P01 38 NC 82 V _{DD_EXT} 126 DATA15 170 DPI_P02 39 NC 83 ADDR16 127 NC 171 DPI_P03 40 V _{DD_EXT} 84 ADDR15 128 NC 172 V _{DD_INT} 41 V _{DD_INT} 85 V _{DD_INT} 129 RESET 173 DPI_P05 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P04 43 DAI_P05 87 AMI_WR 131 NC 175 DPI_P06 44 DAI_P09 88 AMI_RD 132 V _{DD_INT} 176								
DPI_P02 39 NC 83 ADDR16 127 NC 171 DPI_P03 40 V _{DD_EXT} 84 ADDR15 128 NC 172 V _{DD_INT} 41 V _{DD_INT} 85 V _{DD_INT} 129 RESET 173 DPI_P05 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P04 43 DAI_P05 87 AMI_WR 131 NC 175 DPI_P06 44 DAI_P09 88 AMI_RD 132 V _{DD_INT} 176								
DPI_P03 40 V _{DD_EXT} 84 ADDR15 128 NC 172 V _{DD_INT} 41 V _{DD_INT} 85 V _{DD_INT} 129 RESET 173 DPI_P05 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P04 43 DAI_P05 87 AMI_WR 131 NC 175 DPI_P06 44 DAI_P09 88 AMI_RD 132 V _{DD_INT} 176								
V _{DD_INT} 41 V _{DD_INT} 85 V _{DD_INT} 129 RESET 173 DPI_P05 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P04 43 DAI_P05 87 AMI_WR 131 NC 175 DPI_P06 44 DAI_P09 88 AMI_RD 132 V _{DD_INT} 176	—							
DPI_P05 42 DAI_P06 86 ADDR14 130 TMS 174 DPI_P04 43 DAI_P05 87 AMI_WR 131 NC 175 DPI_P06 44 DAI_P09 88 AMI_RD 132 V_DD_INT 176								
DPI_P04 43 DAI_P05 87 AMI_WR 131 NC 175 DPI_P06 44 DAI_P09 88 AMI_RD 132 V_DD_INT 176								
DPI_P06 44 DAI_P09 88 AMI_RD 132 V_DD_INT 176								
	DF1_F00	44	DAI_PU9	00		152	V _{DD_INT} GND	176

Table 60. ADSP-21486 176-Lead LQFP_EP Lead Assignment (Numerical by Lead Number)

*No external connection should be made to this pin. Use as NC only.

** Lead no. 177 (exposed pad) is the GND supply (see Figure 50 and Figure 51) for the processor; this pad must be **robustly** connected to GND.

Figure 50 shows the top view of the 176-lead LQFP_EP lead configuration. Figure 51 shows the bottom view of the 176-lead LQFP_EP lead configuration.

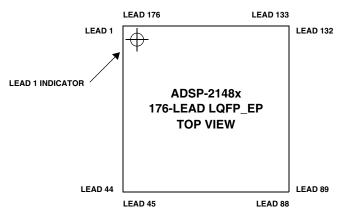


Figure 50. 176-Lead LQFP_EP Lead Configuration (Top View)

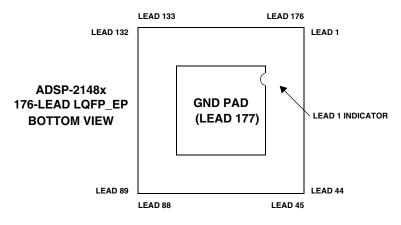
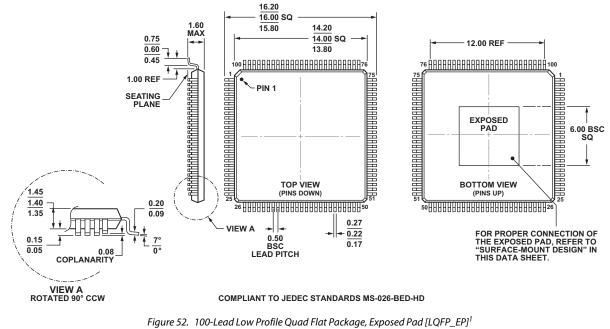



Figure 51. 176-Lead LQFP_EP Lead Configuration (Bottom View)

OUTLINE DIMENSIONS

The ADSP-2148x processors are available in 100-lead and 176-lead LQFP_EP RoHS compliant packages.

(SW-100-2)

Dimensions shown in millimeters

¹For information relating to the exposed pad on the SW-100-2 package, see the table endnote on Page 58.

www.analog.com

©2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D09018-0-5/16(D)

Rev. D | Page 68 of 68 | May 2016