

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	XCore
Core Size	32-Bit 32-Core
Speed	4000MIPS
Connectivity	USB
Peripherals	-
Number of I/O	176
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1M x 8
Voltage - Supply (Vcc/Vdd)	0.95V ~ 3.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	374-LFBGA
Supplier Device Package	374-FBGA (18x18)
Purchase URL	https://www.e-xfl.com/product-detail/xmos/xuf232-1024-fb374-i40

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 xCORE Multicore Microcontrollers

The xCORE200 Series is a comprehensive range of 32-bit multicore microcontrollers that brings the low latency and timing determinism of the xCORE architecture to mainstream embedded applications. Unlike conventional microcontrollers, xCORE multicore microcontrollers execute multiple real-time tasks simultaneously and communicate between tasks using a high speed network. Because xCORE multicore microcontrollers are completely deterministic, you can write software to implement functions that traditionally require dedicated hardware.

Figure 1: XUF232-1024-FB374 block diagram

Key features of the XUF232-1024-FB374 include:

- ► **Tiles**: Devices consist of one or more xCORE tiles. Each tile contains between five and eight 32-bit xCOREs with highly integrated I/O and on-chip memory.
- Logical cores Each logical core can execute tasks such as computational code, DSP code, control software (including logic decisions and executing a state machine) or software that handles I/O. Section 6.1
- xTIME scheduler The xTIME scheduler performs functions similar to an RTOS, in hardware. It services and synchronizes events in a core, so there is no requirement for interrupt handler routines. The xTIME scheduler triggers cores

2 XUF232-1024-FB374 Features

► Multicore Microcontroller with Advanced Multi-Core RISC Architecture

- 32 real-time logical cores on 4 xCORE tiles
- Cores share up to 2000 MIPS
 - Up to 4000 MIPS in dual issue mode
- Each logical core has:
 - Guaranteed throughput of between 1/5 and 1/8 of tile MIPS
 - 16x32bit dedicated registers
- 167 high-density 16/32-bit instructions
 - All have single clock-cycle execution (except for divide)
 - 32x32 ${\rightarrow}64$ bit MAC instructions for DSP, arithmetic and user-definable cryptographic functions

▶ Dual USB PHY, fully compliant with USB 2.0 specification

Programmable I/O

- 176 general-purpose I/O pins, configurable as input or output
 - Up to 56 x 1bit port, 22 x 4bit port, 13 x 8bit port, 6 x 16bit port, 4 x 32bit port
 8 xCONNECT links
- Port sampling rates of up to 60 MHz with respect to an external clock
- 64 channel ends for communication with other cores, on or off-chip

Memory

- 1024KB internal single-cycle SRAM (max 256KB per tile) for code and data storage
- 32KB internal OTP (max 8KB per tile) for application boot code
- 4MB internal flash for application code and overlays

Hardware resources

- 24 clock blocks (6 per tile)
- 40 timers (10 per tile)
- 16 locks (4 per tile)

JTAG Module for On-Chip Debug

Security Features

• Programming lock disables debug and prevents read-back of memory contents

-XM()S

AES bootloader ensures secrecy of IP held on external flash memory

Ambient Temperature Range

- Commercial qualification: 0°C to 70°C
- Industrial qualification: -40 °C to 85 °C
- Speed Grade
 - 40: 2000 MIPS
- Power Consumption
 - 1140 mA (typical)
- ▶ 374-pin FBGA package 0.8 mm pitch

4 Signal Description

This section lists the signals and I/O pins available on the XUF232-1024-FB374. The device provides a combination of 1 bit, 4bit, 8bit and 16bit ports, as well as wider ports that are fully or partially (gray) bonded out. All pins of a port provide either output or input, but signals in different directions cannot be mapped onto the same port.

Pins may have one or more of the following properties:

- PD/PU: The IO pin a weak pull-down or pull-up resistor. On GPIO pins this resistor can be enabled.
- ST: The IO pin has a Schmitt Trigger on its input.
- ▶ IOT: The IO pin is powered from VDDIOT (X1) or VDDIOT_2 (X3), not VDDIO
- ▶ IO: the pin is powered from VDDIO

	Power pins (12)						
Signal	Function Type Properties						
GND	Digital ground	GND					
OTP_VCC	OTP power supply	PWR					
PLL_AGND	Analog ground for PLL	PWR					
PLL_AVDD	Analog PLL power PWR						
USB_2_VDD	Digital tile power	PWR					
USB_2_VDD33	USB Analog power	PWR					
USB_VDD	Digital tile power	PWR					
USB_VDD33	USB Analog power	PWR					
VDD	Digital tile power	PWR					
VDDIO	Digital I/O power	PWR					
VDDIOT	Digital I/O power (top)	PWR					
VDDIOT_2	Digital I/O power (top, X3)	PWR					

JTAG pins (6)							
Signal	Function	Туре	Properties				
RST_N	Global reset input	Input	IO, PU, ST				
ТСК	Test clock	Input	IO, PD, ST				
TDI	Test data input	Input	IO, PU				
TDO	Test data output	Output	IO, PD				
TMS	Test mode select	Input	IO, PU				
TRST_N	Test reset input	Input	IO, PU, ST				

-XMOS

Signal	Function						Туре	Properties
X1D17	X ₀ L3 ⁰		4D ¹	8B ³	16A ¹¹		I/O	IO, PD
X1D18	$X_0L3_{out}^0$		4D ²	8B ⁴	16A ¹²		I/O	IO, PD
X1D19	X ₀ L3 ¹ _{out}		4D ³	8B ⁵	16A ¹³		I/O	IO, PD
X1D20			4C ²	8B ⁶	16A ¹⁴	32A ³⁰	I/O	IO, PD
X1D21			4C ³	8B ⁷	16A ¹⁵	32A ³¹	I/0	IO, PD
X1D22	X ₀ L3 ⁴ _{out}	1G ⁰					I/O	IO, PD
X1D23		1H ⁰					I/O	IO, PD
X1D24		110					I/O	IO, PD
X1D25		1J ⁰					I/O	IO, PD
X1D26			4E ⁰	8C ⁰	16B ⁰		I/0	IOT, PD
X1D27			4E ¹	8C1	16B ¹		I/0	IOT, PD
X1D28			4F ⁰	8C ²	16B ²		I/0	IOT, PD
X1D29			4F ¹	8C ³	16B ³		I/O	IOT, PD
X1D30			4F ²	8C ⁴	16B ⁴		I/0	IOT, PD
X1D31			4F ³	8C ⁵	16B ⁵		I/0	IOT, PD
X1D32			4E ²	8C ⁶	16B ⁶		I/O	IOT, PD
X1D33			4E ³	8C ⁷	16B ⁷		I/O	IOT, PD
X1D34	X ₀ L0 ² _{out}	1K ⁰					I/O	IO, PD
X1D35	X ₀ L0 ³	1 L ⁰					I/O	IO, PD
X1D36	X ₀ L0 ⁴ _{out}	1 M ⁰		8D ⁰	16B ⁸		I/O	IO, PD
X1D37	X ₀ L3 ⁴	1 N ⁰		8D1	16B ⁹		I/O	IO, PD
X1D38	X ₀ L3 ³	100		8D ²	16B ¹⁰		I/O	IO, PD
X1D39	X ₀ L3 ²	1 P ⁰		8D ³	16B ¹¹		I/0	IO, PD
X1D40				8D ⁴	16B ¹²		I/O	IOT, PD
X1D41				8D ⁵	16B ¹³		I/0	IOT, PD
X1D42				8D ⁶	16B ¹⁴		I/0	IOT, PD
X1D43				8D ⁷	16B ¹⁵		I/0	IOT, PD
X1D49	X ₀ L1 ⁴ _{in}					32A ⁰	I/0	IO, PD
X1D50	X ₀ L1 ³ _{in}					32A ¹	I/0	IO, PD
X1D51	X ₀ L1 ²					32A ²	I/O	IO, PD
X1D52	X ₀ L1 ¹ in					32A ³	I/O	IO, PD
X1D53	X ₀ L1 ⁰					32A ⁴	I/O	IO, PD
X1D54	X ₀ L1 ⁰ _{out}					32A ⁵	I/O	IO, PD
X1D55	X ₀ L1 ¹ ut					32A ⁶	I/0	IO, PD
X1D56	X ₀ L1 ² _{out}					32A ⁷	I/O	IO, PD
X1D57	X ₀ L1 ³ _{out}					32A ⁸	I/O	IO, PD
X1D58	X ₀ L1 ⁴ _{out}					32A ⁹	I/0	IO, PD
X1D61	X ₀ L2 ⁴					32A ¹⁰	I/0	IO, PD
X1D62	$X_0L2_{in}^3$					32A ¹¹	I/O	IO, PD
X1D63	$X_0L2_{in}^2$					32A ¹²	I/O	IO, PD
X1D64	X ₀ L2 ¹					32A ¹³	I/O	IO, PD
X1D65	X ₀ L2 ⁰					32A ¹⁴	I/O	IO, PD
X1D66	X ₀ L2 ⁰ _{out}					32A ¹⁵	I/O	IO, PD

(continued)

XS2-UF32A-1024-FB374

Signal	Function						Туре	Properties
X1D67	X ₀ L2 ¹					32A ¹⁶	I/0	IO, PD
X1D68	X ₀ L2 ² _{out}					32A ¹⁷	I/O	IO, PD
X1D69	X ₀ L2 ³ _{out}					32A ¹⁸	I/O	IO, PD
X1D70	X ₀ L2 ⁴ _{out}					32A ¹⁹	I/0	IO, PD
X2D00		1A ⁰					I/O	IO, PD
X2D02			4A ⁰	8A ⁰	16A ⁰	32A ²⁰	I/O	IO, PD
X2D03			4A ¹	8A ¹	16A ¹	32A ²¹	I/0	IO, PD
X2D04			4B ⁰	8A ²	16A ²	32A ²²	I/0	IO, PD
X2D05			4B ¹	8A ³	16A ³	32A ²³	I/O	IO, PD
X2D06			4B ²	8A ⁴	16A ⁴	32A ²⁴	I/O	IO, PD
X2D07			4B ³	8A ⁵	16A ⁵	32A ²⁵	I/O	IO, PD
X2D08			4A ²	8A ⁶	16A ⁶	32A ²⁶	I/0	IO, PD
X2D09			4A ³	8A ⁷	16A ⁷	32A ²⁷	I/0	IO, PD
X2D11		1D ⁰					I/0	IO, PD
X2D12		1E ⁰					I/0	IO, PD
X2D13		1F ⁰					I/O	IO, PD
X2D14			4C ⁰	8B ⁰	16A ⁸	32A ²⁸	I/0	IO, PD
X2D15			4C ¹	8B1	16A ⁹	32A ²⁹	I/0	IO, PD
X2D16	X ₂ L4 ⁴		4D ⁰	8B ²	16A ¹⁰		I/0	IO, PD
X2D17	$X_2L4_{in}^3$		4D ¹	8B ³	16A ¹¹		I/0	IO, PD
X2D18	$X_2L4_{in}^2$		4D ²	8B ⁴	16A ¹²		I/0	IO, PD
X2D19	X ₂ L4 ¹ _{in}		4D ³	8B ⁵	16A ¹³		I/0	IO, PD
X2D20			4C ²	8B ⁶	16A ¹⁴	32A ³⁰	I/0	IO, PD
X2D21			4C ³	8B ⁷	16A ¹⁵	32A ³¹	I/O	IO, PD
X2D22		1G ⁰					I/O	IO, PD
X2D23		1H ⁰					I/O	IO, PD
X2D24	$X_2L7_{in}^0$	11 ⁰					I/O	IO, PD
X2D25	X ₂ L7 ⁰ _{out}	1J ⁰					I/O	IO, PD
X2D26	$X_2L7_{out}^3$		4E ⁰	8C ⁰	16B ⁰		I/0	IO, PD
X2D27	X ₂ L7 ⁴ _{out}		4E ¹	8C ¹	16B ¹		I/O	IO, PD
X2D28			4F ⁰	8C ²	16B ²		I/O	IO, PD
X2D29			4F ¹	8C ³	16B ³		I/O	IO, PD
X2D30			4F ²	8C ⁴	16B ⁴		I/O	IO, PD
X2D31			4F ³	8C ⁵	16B ⁵		I/O	IO, PD
X2D32			4E ²	8C ⁶	16B ⁶		I/0	IO, PD
X2D33			4E ³	8C ⁷	16B ⁷		I/0	IO, PD
X2D34	X ₂ L7 ¹	1K ⁰					I/O	IO, PD
X2D35	$X_2L7_{out}^2$	1L ⁰					I/O	IO, PD
X2D36		1M ⁰		8D ⁰	16B ⁸		I/O	IO, PD
X2D49	X ₂ L5 ⁴ _{in}					32A ⁰	I/O	IO, PD
X2D50	X ₂ L5 ³ _{in}					32A ¹	I/O	IO, PD
X2D51	X ₂ L5 ² _{in}					32A ²	I/O	IO, PD
X2D52	X ₂ L5 ¹ _{in}					32A ³	I/O	IO, PD
								(continued)

-XMOS°-

Figure 7 also lists the values of OD, F and R, which are the registers that define the ratio of the tile frequency to the oscillator frequency:

$$F_{core} = F_{osc} \times \frac{F+1}{2} \times \frac{1}{R+1} \times \frac{1}{OD+1}$$

OD, *F* and *R* must be chosen so that $0 \le R \le 63$, $0 \le F \le 4095$, $0 \le OD \le 7$, and $260MHz \le F_{osc} \times \frac{F+1}{2} \times \frac{1}{R+1} \le 1.3GHz$. The *OD*, *F*, and *R* values can be modified by writing to the digital node PLL configuration register.

The MODE pins must be held at a static value during and after deassertion of the system reset. If the USB PHY is used, then either a 24 MHz or 12 MHz oscillator must be used.

If a different tile frequency is required (eg, 500 MHz), then the PLL must be reprogrammed after boot to provide the required tile frequency. The XMOS tools perform this operation by default. Further details on configuring the clock can be found in the xCORE-200 Clock Frequency Control document.

8 Boot Procedure

The device is kept in reset by driving RST_N low. When in reset, all GPIO pins have a pull-down enabled. The processor must be held in reset until VDDIOL is in spec for at least 1 ms. When the device is taken out of reset by releasing RST_N the processor starts its internal reset process. After 15-150 μ s (depending on the input clock) the processor boots.

Pin X2D06 must be pulled high with an external pull-up whilst the chip comes out of reset, to ensure that tile 2 will boot from link. X2D04, X2D05, and X2D07 should be kept low whilst the chip comes out of reset.

The device boots from a QSPI flash that is embedded in the device. The QSPI flash is connected to the ports on Tile 0 as shown in Figure 8. An external 1K resistor must connect X0D01 to VDDIOL. X0D10 should ideally not be connected. If X0D10 is connected, then a 150 ohm series resistor close to the device is recommended. X0D04..X0D07 should be not connected.

Feature	Bit	Description
Disable JTAG	0	The JTAG interface is disabled, making it impossible for the tile state or memory content to be accessed via the JTAG interface.
Disable Link access	1	Other tiles are forbidden access to the processor state via the system switch. Disabling both JTAG and Link access transforms an xCORE Tile into a "secure island" with other tiles free for non-secure user application code.
Secure Boot	5	The xCORE Tile is forced to boot from address 0 of the OTP, allowing the xCORE Tile boot ROM to be bypassed (see \S 8).
Redundant rows	7	Enables redundant rows in OTP.
Sector Lock 0	8	Disable programming of OTP sector 0.
Sector Lock 1	9	Disable programming of OTP sector 1.
Sector Lock 2	10	Disable programming of OTP sector 2.
Sector Lock 3	11	Disable programming of OTP sector 3.
OTP Master Lock	12	Disable OTP programming completely: disables up- dates to all sectors and security register.
Disable JTAG-OTP	13	Disable all (read & write) access from the JTAG inter- face to this OTP.
Disable Global Debug	14	Disables access to the DEBUG_N pin.
	2115	General purpose software accessable security register available to end-users.
	3122	General purpose user programmable JTAG UserID code extension.

Figure 10: Security register features

implement secure bootloaders and store encryption keys. Data for the security register is loaded from the OTP on power up. All additional data in OTP is copied from the OTP to SRAM and executed first on the processor.

The OTP memory is programmed using three special I/O ports: the OTP address port is a 16-bit port with resource ID 0x100200, the OTP data is written via a 32-bit port with resource ID 0x200100, and the OTP control is on a 16-bit port with ID 0x100300. Programming is performed through libotp and xburn.

9.2 SRAM

Each xCORE Tile integrates a single 256KBSRAM bank for both instructions and data. All internal memory is 32 bits wide, and instructions are either 16-bit or 32-bit. Byte (8-bit), half-word (16-bit) or word (32-bit) accesses are supported and are executed within one tile clock cycle. There is no dedicated external memory interface, although data memory can be expanded through appropriate use of the ports.

-XMOS-

We recommend that the high-speed clock and high-speed USB differential pairs are routed first before any other routing. When routing high speed USB signals, the following guidelines should be followed:

- ▶ High speed differential pairs should be routed together.
- ▶ High-speed USB signal pair traces should be trace-length matched. Maximum trace-length mismatch should be no greater than 4mm.
- ▶ Ensure that high speed signals (clocks, USB differential pairs) are routed as far away from off-board connectors as possible.
- ▶ High-speed clock and periodic signal traces that run parallel should be at least 1.27mm away from USB_DP/USB_DN (see Figure 15).
- Low-speed and non-periodic signal traces that run parallel should be at least 0.5mm away from USB_DP/USB_DN (see Figure 15).
- ▶ Route high speed USB signals on the top of the PCB wherever possible.
- Route high speed USB traces over continuous power planes, with no breaks. If a trade-off must be made, changing signal layers is preferable to crossing plane splits.
- Follow the $20 \times h$ rule; keep traces $20 \times h$ (the height above the power plane) away from the edge of the power plane.
- ▶ Use a minimum of vias in high speed USB traces.
- Avoid corners in the trace. Where necessary, rather than turning through a 90 degree angle, use two 45 degree turns or an arc.
- DO NOT route USB traces near clock sources, clocked circuits or magnetic devices.

	Bits	Perm	Init	Description
	31:24	RO	-	Reserved
	23:16	DRW	0	A bit for each thread in the machine allowing the breakpoint to be enabled individually for each thread.
0x9C 0x9F:	15:2	RO	-	Reserved
breakpoint control	1	DRW	0	When 0 break when condition A is met. When 1 = break when condition B is met.
register	0	DRW	0	When 1 the instruction breakpoint is enabled.

C Tile Configuration

The xCORE Tile control registers can be accessed using configuration reads and writes (use write_tile_config_reg(tileref, ...) and read_tile_config_reg(tileref, \rightarrow ...) for reads and writes).

Number	Perm	Description
0x00	CRO	Device identification
0x01	CRO	xCORE Tile description 1
0x02	CRO	xCORE Tile description 2
0x04	CRW	Control PSwitch permissions to debug registers
0x05	CRW	Cause debug interrupts
0x06	CRW	xCORE Tile clock divider
0x07	CRO	Security configuration
0x20 0x27	CRW	Debug scratch
0x40	CRO	PC of logical core 0
0x41	CRO	PC of logical core 1
0x42	CRO	PC of logical core 2
0x43	CRO	PC of logical core 3
0x44	CRO	PC of logical core 4
0x45	CRO	PC of logical core 5
0x46	CRO	PC of logical core 6
0x47	CRO	PC of logical core 7
0x60	CRO	SR of logical core 0
0x61	CRO	SR of logical core 1
0x62	CRO	SR of logical core 2
0x63	CRO	SR of logical core 3
0x64	CRO	SR of logical core 4
0x65	CRO	SR of logical core 5
0x66	CRO	SR of logical core 6
0x67	CRO	SR of logical core 7

Figure 31: Summary

C.1 Device identification: 0x00

This register identifies the xCORE Tile

-XMOS®

	Bits	Perm	Init	Description
	31:24	CRO		Processor ID of this XCore.
0×00:	23:16	CRO		Number of the node in which this XCore is located.
0x00: Device identification	15:8	CRO		XCore revision.
	7:0	CRO		XCore version.

C.2 xCORE Tile description 1: 0x01

This register describes the number of logical cores, synchronisers, locks and channel ends available on this xCORE tile.

Bits	Perm	Init	Description
31:24	CRO		Number of channel ends.
23:16	CRO		Number of the locks.
15:8	CRO		Number of synchronisers.
7:0	RO	-	Reserved

C.3 xCORE Tile description 2: 0x02

This register describes the number of timers and clock blocks available on this xCORE tile.

0x02: xCORE Tile description 2

0x01: xCORE Tile description 1

	Bits	Perm	Init	Description
02.	31:16	RO	-	Reserved
ile	15:8	CRO		Number of clock blocks.
12	7:0	CRO		Number of timers.

C.4 Control PSwitch permissions to debug registers: 0x04

-XMOS-

This register can be used to control whether the debug registers (marked with permission CRW) are accessible through the tile configuration registers. When this bit is set, write -access to those registers is disabled, preventing debugging of the xCORE tile over the interconnect.

Bits	Perm	Init	Description
31:28	RW	0	The direction for packets whose dimension is F.
27:24	RW	0	The direction for packets whose dimension is E.
23:20	RW	0	The direction for packets whose dimension is D.
19:16	RW	0	The direction for packets whose dimension is C.
15:12	RW	0	The direction for packets whose dimension is B.
11:8	RW	0	The direction for packets whose dimension is A.
7:4	RW	0	The direction for packets whose dimension is 9.
3:0	RW	0	The direction for packets whose dimension is 8.

0x0D: Directions 8-15

D.12 DEBUG_N configuration, tile 0: 0x10

Configures the behavior of the DEBUG_N pin.

0x10 DEBUG_N con figuration tile 0

-	Bits	Perm	Init	Description
0: n	31:2	RO	-	Reserved
n,	1	RW	0	Set 1 to enable GlobalDebug to generate debug request to XCore.
0	0	RW	0	Set 1 to enable inDebug bit to drive GlobalDebug.

D.13 DEBUG_N configuration, tile 1: 0x11

Configures the behavior of the DEBUG_N pin.

0x11 DEBUG_N con figuration tile 1

-	Bits	Perm	Init	Description
1:	31:2	RO	-	Reserved
1,	1	RW	0	Set 1 to enable GlobalDebug to generate debug request to XCore.
1	0	RW	0	Set 1 to enable inDebug bit to drive GlobalDebug.

D.14 Debug source: 0x1F

Contains the source of the most recent debug event.

 $\cdot X MOS$

Bits	Perm	Init	Description
31:5	RO	-	Reserved
4	RW		If set, external pin, is the source of last GlobalDebug event.
3:2	RO	-	Reserved
1	RW		If set, XCore1 is the source of last GlobalDebug event.
0	RW		If set, XCore0 is the source of last GlobalDebug event.

0x1F: Debug source

D.15 Link status, direction, and network: 0x20 .. 0x28

These registers contain status information for low level debugging (read-only), the network number that each link belongs to, and the direction that each link is part of. The registers control links 0..7.

Bits	Perm	Init	Description
31:26	RO	-	Reserved
25:24	RO		Identify the SRC_TARGET type 0 - SLink, 1 - PLink, 2 - SSCTL, 3 - Undefine.
23:16	RO		When the link is in use, this is the destination link number to which all packets are sent.
15:12	RO	-	Reserved
11:8	RW	0	The direction that this link operates in.
7:6	RO	-	Reserved
5:4	RW	0	Determines the network to which this link belongs, reset as 0.
3	RO	-	Reserved
2	RO		1 when the current packet is considered junk and will be thrown away.
1	RO		1 when the dest side of the link is in use.
0	RO		1 when the source side of the link is in use.

0x20 .. 0x28: Link status, direction, and network

D.16 PLink status and network: 0x40 .. 0x47

These registers contain status information and the network number that each processor-link belongs to.

Bits	Perm	Init	Description
31:26	RO	-	Reserved
25:24	RO		Identify the SRC_TARGET type 0 - SLink, 1 - PLink, 2 - SSCTL, 3 - Undefine.
23:16	RO		When the link is in use, this is the destination link number to which all packets are sent.
15:6	RO	-	Reserved
5:4	RW	0	Determines the network to which this link belongs, reset as 0.
3	RO	-	Reserved
2	RO		1 when the current packet is considered junk and will be thrown away.
1	RO		1 when the dest side of the link is in use.
0	RO		1 when the source side of the link is in use.

0x40 .. 0x47: PLink status and network

D.17 Link configuration and initialization: 0x80 .. 0x88

These registers contain configuration and debugging information specific to external links. The link speed and width can be set, the link can be initialized, and the link status can be monitored. The registers control links 0..7.

	Bits	Perm	Init	Description
	31	RW		Write to this bit with '1' will enable the XLink, writing '0' will disable it. This bit controls the muxing of ports with overlapping xlinks.
	30	RW	0	0: operate in 2 wire mode; 1: operate in 5 wire mode
	29:28	RO	-	Reserved
	27	RO		Rx buffer overflow or illegal token encoding received.
	26	RO	0	This end of the xlink has issued credit to allow the remote end to transmit
	25	RO	0	This end of the xlink has credit to allow it to transmit.
	24	WO		Clear this end of the xlink's credit and issue a HELLO token.
	23	WO		Reset the receiver. The next symbol that is detected will be the first symbol in a token.
- 2-	22	RO	-	Reserved
י. ג ו	21:11	RW	0	Specify min. number of idle system clocks between two contin- uous symbols witin a transmit token -1.
1 1	10:0	RW	0	Specify min. number of idle system clocks between two contin- uous transmit tokens -1.

-XMOS"

0x80 .. 0x88: Link configuration and initialization

E.3 Node identifier: 0x05

0x05: Node identifier

Bits	Perm	Init	Description
31:16	RO	-	Reserved
15:0	RW	0	16-bit node identifier. This does not need to be set, and present for compatibility with XS1-switches.

E.4 System clock frequency: 0x51

Bits	Perm	Init	Description
31:7	RO	-	Reserved
6:0	RW	25	Oscillator clock frequency in MHz rounded up to the nearest integer value. Only values between 5 and 100 MHz are valid - writes outside this range are ignored and will be NACKed. This field must be set on start up of the device and any time that the input oscillator clock frequency is changed. It must contain the system clock frequency in MHz rounded up to the nearest integer value.

System clock frequency

0x51:

E.5 Link Control and Status: 0x80

Bits	Perm	Init	Description
31:28	RO	-	Reserved
27	RO		Rx buffer overflow or illegal token encoding received.
26	RO	0	This end of the xlink has issued credit to allow the remote end to transmit
25	RO	0	This end of the xlink has credit to allow it to transmit.
24	WO		Clear this end of the xlink's credit and issue a HELLO token.
23	wo		Reset the receiver. The next symbol that is detected will be the first symbol in a token.
22	RO	-	Reserved
21:11	RW	1	Specify min. number of idle system clocks between two contin- uous symbols witin a transmit token -1.
10:0	RW	1	Specify min. number of idle system clocks between two contin- uous transmit tokens -1.

-XMOS

0x80: Link Control and Status is

XS2-UF32A-1024-FB374

Bits	Perm	Init	Description
31:8	RO	-	Reserved
7	RW	0	Set to 1 to switch UIFM to EXTVBUSIND mode.
6	RW	0	Set to 1 to switch UIFM to DRVVBUSEXT mode.
5	RO	-	Reserved
4	RW	0	Set to 1 to switch UIFM to UTMI+ CHRGVBUS mode.
3	RW	0	Set to 1 to switch UIFM to UTMI+ DISCHRGVBUS mode.
2	RW	0	Set to 1 to switch UIFM to UTMI+ DMPULLDOWN mode.
1	RW	0	Set to 1 to switch UIFM to UTMI+ DPPULLDOWN mode.
0	RW	0	Set to 1 to switch UIFM to IDPULLUP mode.

0x10: UIFM on-the-go control

F.6 UIFM on-the-go flags: 0x14

Status flags used for on-the-go negotiation

Bits	Perm	Init	Description
31:6	RO	-	Reserved
5	RO	0	Value of UTMI+ Bvalid flag.
4	RO	0	Value of UTMI+ IDGND flag.
3	RO	0	Value of UTMI+ HOSTDIS flag.
2	RO	0	Value of UTMI+ VBUSVLD flag.
1	RO	0	Value of UTMI+ SESSVLD flag.
0	RO	0	Value of UTMI+ SESSEND flag.

-XMOS°

0x14: UIFM on-the-go flags

Bits	Perm	Init	Description
31:7	RO	-	Reserved
6	RO	0	1 if UIFM is in UTMI+ RXRCV mode.
5	RO	0	1 if UIFM is in UTMI+ RXDM mode.
4	RO	0	1 if UIFM is in UTMI+ RXDP mode.
3	RW	0	Set to 1 to switch UIFM to UTMI+ TXSE0 mode.
2	RW	0	Set to 1 to switch UIFM to UTMI+ TXDATA mode.
1	RW	1	Set to 0 to switch UIFM to UTMI+ TXENABLE mode.
0	RW	0	Set to 1 to switch UIFM to UTMI+ FSLSSERIAL mode.

F.7 UIFM Serial Control: 0x18

0x18: UIFM Serial Control

F.8 UIFM signal flags: 0x1C

Set of flags that monitor line and error states. These flags normally clear on the next packet, but they may be made sticky by using PER_UIFM_FLAGS_STICKY, in which they must be cleared explicitly.

Bits	Perm	Init	Description
31:7	RO	-	Reserved
6	RW	0	Set to 1 when the UIFM decodes a token successfully (e.g. it passes CRC5, PID check and has matching device address).
5	RW	0	Set to 1 when linestate indicates an SEO symbol.
4	RW	0	Set to 1 when linestate indicates a K symbol.
3	RW	0	Set to 1 when linestate indicates a J symbol.
2	RW	0	Set to 1 if an incoming datapacket fails the CRC16 check.
1	RW	0	Set to the value of the UTMI_RXACTIVE input signal.
0	RW	0	Set to the value of the UTMI_RXERROR input signal

0x1C: UIFM signal flags

F.9 UIFM Sticky flags: 0x20

These bits define the sticky-ness of the bits in the UIFM IFM FLAGS register. A 1 means that bit will be sticky (hold its value until a 1 is written to that bitfield), or normal, in which case signal updates to the UIFM IFM FLAGS bits may be over-written by subsequent changes in those signals.

-XMOS-

Pins MODE0 and MODE1 are set to the correct value for the chosen oscillator frequency. The MODE settings are shown in the Oscillator section, Section 7. If you have a choice between two values, choose the value with the highest multiplier ratio since that will boot faster.

I.5 Boot

- \square X0D01 has a 1K pull-up to VDDIO (Section 8).
- The device is kept in reset for at least 1 ms after VDDIO has reached its minimum level (Section 8).

I.6 JTAG, XScope, and debugging

- \Box You have decided as to whether you need an XSYS header or not (Section H)
- ☐ If you have not included an XSYS header, you have devised a method to program the SPI-flash or OTP (Section H).

I.7 GPIO

- You have not mapped both inputs and outputs to the same multi-bit port.
- Pins X0D04, X0D05, X0D06, and X0D07 are output only and are, during and after reset, pulled low or not connected (Section 8)
- Pins X2D04, X2D05, X2D06 and X2D07 are output only and during and after reset, X2D06 is pulled high and X2D04, X2D05, and X2D07 are pulled low (Section 8)

I.8 Multi device designs

Skip this section if your design only includes a single XMOS device.

 \Box One device is connected to a QSPI or SPI flash for booting.

-XM()S-

- Devices that boot from link have, for example, X0D06 pulled high and have link XL0 connected to a device to boot from (Section 8).
- \Box If you included an XSYS header, you have included buffers for TMS, and TCK (Section G).

K Associated Design Documentation

Document Title	Information	Document Number
Estimating Power Consumption For XS1-UF Devices	Power consumption	
Programming XC on XMOS Devices	Timers, ports, clocks, cores and channels	X9577
xTIMEcomposer User Guide	Compilers, assembler and linker/mapper	X3766
	Timing analyzer, xScope, debugger	
	Flash and OTP programming utilities	

L Related Documentation

Document Title	Information	Document Number
The XMOS XS1 Architecture	ISA manual	X7879
XS1 Port I/O Timing	Port timings	X5821
xCONNECT Architecture	Link, switch and system information	X4249
XS1-UF Link Performance and Design Guidelines	Link timings	
XS1-UF Clock Frequency Control	Advanced clock control	

M Revision History

Date	Description
2015-03-20	Preliminary release
2015-04-14	Added RST to pins to be pulled hard, and removed reference to TCK from Errata
	Removed TRST_N references in packages that have no TRST_N
	New diagram for boot from embedded flash showing ports
	Pull up requirements for shared clock and external resistor for QSPI
2015-05-06	Removed references to DEBUG_N
2015-07-09	Updated electrical characteristics - Section 13
2015-08-19	Added I(USB_VDD) - Section 13
	Added USB layout guidelines - Section 12
2015-08-27	Updated part marking and product code - Section 15
2015-11-23	Updated status of X2D04, X2D05, X2D06, X2D07 during boot - Section 8
	Updated Schematics Design Checklist: GPIO for X2D04, X2D05, X2D06, X2D07 during boot - Section I
2015-12-18	Clarified connectivity of internal and external xCONNECT links - Sections 3 and 4
	Made pin names canonical - Sections 3 and 4
	Updated JTAG diagram - Section 11
	Removed references to 400MHz parts - Section 13
2016-01-05	Updated signal tables to use VDDIO - Section 4
	Updated IDD value - Section 13
	Updated land pattern description - Section 12.3

XMOS®

Copyright © 2016, All Rights Reserved.

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the "Information") and is providing it to you "AS IS" with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos Ltd. makes no representation that the Information, or any particular implementation thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any such claims.