E. Renesas Electronics America Inc - <u>R7FS128783A01CFJ#AA1 Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	CANbus, DALI, I ² C, SCI, SPI, UART/USART, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x14b; D/A 3x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r7fs128783a01cfj-aa1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Precautions

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

1.5 Pin Functions

Table 1.14 Pin functions (1 of 3)

Function	Signal	I/O	Description
Power supply	VCC	Input	Power supply pin. Connect it to the system power supply. Connect this pin to VSS by a 0.1 - μ F capacitor. The capacitor should be placed close to the pin.
	VCL	I/O	Connect this pin to the VSS pin by the smoothing capacitor used to stabilize the internal power supply. Place the capacitor close to the pin.
	VSS	Input	Ground pin. Connect it to the system power supply (0 V).
Clock	XTAL	Output	Pins for a crystal resonator. An external clock signal can be input through
	EXTAL	Input	the EXTAL pin.
	XCIN	Input	Input/output pins for the sub-clock oscillator. Connect a crystal resonator
	XCOUT	Output	between XCOUT and XCIN.
	CLKOUT	Output	Clock output pin
Operating mode control	MD	Input	Pins for setting the operating mode. The signal levels on these pins must not be changed during operation mode transition at the time of release from the reset state.
System control	RES	Input	Reset signal input pin. The MCU enters the reset state when this signal goes low.
CAC	CACREF	Input	Measurement reference clock input pin
On-chip debug	SWDIO	I/O	Serial wire debug data input/output pin
	SWCLK	Input	Serial wire clock pin
Interrupt	NMI	Input	Non-maskable interrupt request pin
	IRQ0 to IRQ7	Input	Maskable interrupt request pins
GPT	GTETRGA, GTETRGB	Input	External trigger input pin
	GTIOC0A to GTIOC6A, GTIOC0B to GTIOC6B	I/O	Input capture, output compare, or PWM output pin
	GTIU	Input	Hall sensor input pin U
	GTIV	Input	Hall sensor input pin V
	GTIW	Input	Hall sensor input pin W
	GTOUUP	Output	3-phase PWM output for BLDC motor control (positive U phase)
	GTOULO	Output	3-phase PWM output for BLDC motor control (negative U phase)
	GTOVUP	Output	3-phase PWM output for BLDC motor control (positive V phase)
	GTOVLO	Output	3-phase PWM output for BLDC motor control (negative V phase)
	GTOWUP	Output	3-phase PWM output for BLDC motor control (positive W phase)
	GTOWLO	Output	3-phase PWM output for BLDC motor control (negative W phase)
AGT	AGTEE0, AGTEE1	Input	External event input enable
	AGTIO0, AGTIO1	I/O	External event input and pulse output
	AGTO0, AGTO1	Output	Pulse output
	AGTOA0, AGTOA1	Output	Output compare match A output
	AGTOB0, AGTOB1	Output	Output compare match B output
RTC	RTCOUT	Output	Output pin for 1-Hz/64-Hz clock

RENESAS

Function	Signal	I/O	Description
SCI	SCK0, SCK1, SCK9	I/O	Input/output pins for the clock (clock synchronous mode)
	RXD0, RXD1, RXD9	Input	Input pins for received data (asynchronous mode/clock synchronous mode)
	TXD0, TXD1, TXD9	Output	Output pins for transmitted data (asynchronous mode/clock synchronous mode)
	CTS0_RTS0, CTS1_RTS1, CTS9_RTS9	I/O	Input/output pins for controlling the start of transmission and reception (asynchronous mode/clock synchronous mode), active-low
	SCL0, SCL1, SCL9	I/O	Input/output pins for the IIC clock (simple IIC)
	SDA0, SDA1, SDA9	I/O	Input/output pins for the IIC data (simple IIC)
	SCK0, SCK1, SCK9	I/O	Input/output pins for the clock (simple SPI)
	MISO0, MISO1, MISO9	I/O	Input/output pins for slave transmission of data (simple SPI)
	MOSI0, MOSI1, MOSI9	I/O	Input/output pins for master transmission of data (simple SPI)
	SS0, SS1, SS9	Input	Chip-select input pins (simple SPI), active-low
DALI	DRX0	Input	Input pin for DALI received data
	DTX0	Output	Output pin for DALI transmitted data
IIC	SCL0, SCL1	I/O	Input/output pins for clock
	SDA0, SDA1	I/O	Input/output pins for data
SPI	RSPCKA, RSPCKB	I/O	Clock input/output pin
	MOSIA, MOSIB	I/O	Inputs or outputs data output from the master
	MISOA, MISOB	I/O	Inputs or outputs data output from the slave
	SSLA0, SSLB0	I/O	Input or output pin for slave selection
	SSLA1 to SSLA3, SSLB1 to SSLB3	Output	Output pin for slave selection
CAN	CRX0	Input	Receive data
	CTX0	Output	Transmit data
USBFS	VSS_USB	Input	Ground pins
	VCC_USB_LDO	Input	Power supply pin for USB LDO regulator
	VCC_USB	I/O	Input: Power supply pin for USB transceiver. Output: USB LDO regulator output pin. This pin should be connected to an external capacitor.
	USB_DP	I/O	D+ I/O pin of the USB on-chip transceiver. This pin should be connected to the D+ pin of the USB bus.
	USB_DM	I/O	D– I/O pin of the USB on-chip transceiver. This pin should be connected to the D– pin of the USB bus.
	USB_VBUS	Input	USB cable connection monitor pin. This pin should be connected to VBUS of the USB bus. The VBUS pin status (connected or disconnected) can be detected when the USB module is operating as a device controller.
Analog power supply	AVCC0	Input	Analog block power supply pin
	AVSS0	Input	Analog block power supply ground pin
	VREFH0	Input	Reference power supply pin
	VREFL0	Input	Reference power supply ground pin

Table 1.14 Pin functions (2 of 3)

Function	Signal	I/O	Description
ADC14	AN000 to AN013, AN016 to AN022	Input	Input pins for the analog signals to be processed by the A/D converter
	ADTRG0	Input	Input pins for the external trigger signals that start the A/D conversion, active-low
DAC8	DA0 to DA2	Output	Output pins for the analog signals to be processed by the D/A converter
Comparator output	VCOUT	Output	Comparator output pin
ACMPHS	IVREF0 to IVREF2	Input	Reference voltage input pin
	IVCMP0 to IVCMP2	Input	Analog voltage input pin
ACMPLP	CMPREF0, CMPREF1	Input	Reference voltage input pins
	CMPIN0, CMPIN1	Input	Analog voltage input pins
OPAMP	AMP0+ to AMP3+	Input	Analog voltage input pins
	AMP0- to AMP3-	Input	Analog voltage input pins
	AMP0O to AMP3O	Output	Analog voltage output pins
CTSU	TS00 to TS22, TS25 to TS29	Input	Capacitive touch detection pins (touch pins)
	TSCAP	-	Secondary power supply pin for the touch driver
KINT	KR00 to KR07	Input	Key interrupt input pins
I/O ports	P000 to P004, P010 to P015	I/O	General-purpose input/output pins
	P100 to P113	I/O	General-purpose input/output pins
	P200	Input	General-purpose input pin
	P201, P204 to P206, P212, P213	I/O	General-purpose input/output pins
	P214, P215	Input	General-purpose input pins
	P300 to P304	I/O	General-purpose input/output pins
	P400 to P403, P407 to P411	I/O	General-purpose input/output pins
	P500 to P502	I/O	General-purpose input/output pins
	P914, P915	I/O	General-purpose input/output pins

Table 1.14Pin functions (3 of 3)

1.6 Pin Assignments

Figure 1.3 to Figure 1.8 show the pin assignments.

Figure 1.8 Pin assignment for QFN 32-pin

1.7 Pin Lists

s s			Pin ni	umber						Timer	rs		Communication Interfaces		es	Analogs				НМІ		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LQFP64	LQFP48	QFN48	LGA36	LQFP32	QFN32	Power, System, Clock, Debug, CAC	I/O ports	AGT	GPT_OPS, POEG	GPT	RTC	USBFS,CAN, DALI	sci	lic	IdS	ADC14	DAC8	ACMPHS, ACMPLP	орамр	CTSU	Interru pt
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	1	-	-	-	CACREF_ C	P400	AGTIO1_ D		GTIOC6A _A			SCK0_B/ SCK1_B	SCL0_A						TS20	IRQ0
3 .	2	2	2	ļ	i	-		P401		GTETRGA _ ^B	GTIOC6B _A		CTX0_B	CTS0_RTS 0_B/SS0_B/ TXD1_B/ MOSI1_B/ SDA1_B	SDA0_A						TS19	IRQ5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	-	-	-	-	-		P402			GTIOC3B _B		CRX0_B	RXD1_B/ MISO1_B/ SCL1_B							TS18	IRQ4
5 3 3 A1 1 1 VCL Image: state of the	4	-	-	-	-	-		P403			GTIOC3A _B			CTS1_RTS 1_B/SS1_B							TS17	
6 4 4 B1 2 2 XCIN P215 Image: constraint of the second secon	5	3	3	A1	1	1	VCL															
7 5 5 C1 3 3 XCOUT P214 P213 P216 P216 P217 P214 P213 P214 P213 P214 P213 P214 P213	6	4	4	B1	2	2	XCIN	P215														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	5	5	C1	3	3	XCOUT	P214														
9 7 7 D3 5 5 XTAL P213 GTETRGA GTIOCOA TXD1_A' MOSI1_A' SDA1_A IRQ2 10 8 8 D2 6 6 EXTAL P212 AGTET GTETRGA GTIOCOB RXD1_A' MOSI1_A' IRQ3 IRQ3 11 9 9 E1 7 7 VCC IRQ3 TXD0_B' MOSIA_B IRQ3 IRQ3 12 - - - P411 AGTO1 GTOVLP, B GTIOCOB TXD0_B' MOSIA_B IRQ3 IRQ3 13 - - - P410 AGTO1 GTOVLP, B GTIOCOB RXD0_A' MISOA_B ISOA IRQ5 14 10 10 - - - P409 GTOWLP, B GTIOCSB TXD0_A' MOSIA_B ISOA_B IRQ6 15 11 11 - - - P409 GTOWLP, B GTIOCSB RXD0_A' SL0_B ITX00_B' MOSIA_B IRQ6 14 10 10	8	6	6	D1	4	4	VSS															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	7	7	D3	5	5	XTAL	P213		GTETRGA _D	GTIOC0A _D			TXD1_A/ MOSI1_A/ SDA1_A								IRQ2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	8	8	D2	6	6	EXTAL	P212	AGTEE1	GTETRGB _D	GTIOC0B _D			RXD1_A/ MISO1_A/ SCL1_A								IRQ3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	9	9	E1	7	7	VCC															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	-	-	-	-	-		P411	AGTOA1	GTOVUP_ B	GTIOC6A _B			TXD0_B/ MOSI0_B/ SDA0_B		MOSIA_B					TS07	IRQ4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	-	-	-	-	-		P410	AGTOB1	GTOVLO_ B	GTIOC6B _B			RXD0_B/ MISO0_B/ SCL0_B		MISOA_B					TS06	IRQ5
15 11 11 - - P408 GTOWLO_GTIOC5B B RXD9_A/ B SCL0_C MISO9_A/ SCL0_A SCL0_C TS04 IR07 16 12 12 E2 8 8 P407 AGTIOO_ C GTIOC0A C RTC USB_VBU CTS0_RTS 0_D/SS0_D SA0_B SSLB3_A ADTRG0_ B TS03 17 13 D1 4 4 VSS_USB - - 0<	14	10	10	-	-	-		P409		GTOWUP _B	GTIOC5A _B			TXD0_E/ MOSI0_E/ SDA0_E/ TXD9_A/ MOSI9_A/ SDA9_A							TS05	IRQ6
16 12 12 E2 8 8 P407 AGTIO0_ C GTIOC0A _E RTC USB_VBU CTS0_RTS 0_D/SS0_D SADA_B SSLB3_A ADTRG0_ B TS03 17 13 13 D1 4 4 VSS_USB	15	11	11	-	-	-		P408		GTOWLO_ B	GTIOC5B _B			RXD9_A/ MISO9_A/ SCL9_A	SCL0_C						TS04	IRQ7
17 13 13 D1 4 4 VSS_USB	16	12	12	E2	8	8		P407	AGTIO0_ C		GTIOC0A _E	RTC OUT	USB_VBU S	CTS0_RTS 0_D/SS0_D	SDA0_B	SSLB3_A	ADTRG0_ B				TS03	
	17	13	13	D1	4	4	VSS_USB															

2.2.10 VCC Rise and Fall Gradient and Ripple Frequency

Table 2.14 Rise and fall gradient characteristics

Conditions: VCC = AVCC0 = 0 to 5.5 V

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
Power-on VCC	Voltage monitor 0 reset disabled at startup	SrVCC	0.02	-	2	ms/V	-
rising gradient	Voltage monitor 0 reset enabled at startup*1, *2				-		
	SCI boot mode*2				2		

Note 1. When OFS1.LVDAS = 0.

Note 2. At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of OFS1.LVDAS bit.

Table 2.15 Rising and falling gradient and ripple frequency characteristics

Conditions: VCC = AVCC0 = 1.6 to 5.5 V

The ripple voltage must meet the allowable ripple frequency $f_{r(VCC)}$ within the range between the VCC upper limit (5.5 V) and lower limit (1.6 V).

When the VCC change exceeds VCC ±10%, the allowable voltage change rising and falling gradient dt/dVCC must be met.

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Allowable ripple frequency	f _{r (VCC)}	-	-	10	kHz	Figure 2.24 $V_{r (VCC)} \leq VCC \times 0.2$
		-	-	1	MHz	Figure 2.24 $V_{r (VCC)} \leq VCC \times 0.08$
		-	-	10	MHz	Figure 2.24 $V_{r (VCC)} \leq VCC \times 0.06$
Allowable voltage change rising and falling gradient	dt/dVCC	1.0	-	-	ms/V	When VCC change exceeds VCC ±10%

Figure 2.24 Ripple waveform

Table 2.18 Operation frequency in low-speed mode

Conditions: VCC = AVCC0 = 1.8 to 5.5 V

Parameter			Symbol	Min	Тур	Max* ⁵	Unit
Operation	System clock (ICLK)*1, *2, *4	1.8 to 5.5 V	f	0.032768	-	1	MHz
frequency	Peripheral module clock (PCLKB)*4	1.8 to 5.5 V		-	-	1	
	Peripheral module clock (PCLKD)*3, *4	1.8 to 5.5 V		-	-	1	

Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory.

Note 3. The lower-limit frequency of PCLKD is 1 MHz when the A/D converter is in use.

- Note 4. See section 8, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKB, and PCLKD.
- Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed operation, see Table 2.21, Clock timing.

Table 2.19 Operation frequency in low-voltage mode

Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Parameter			Symbol	Min	Тур	Max* ⁵	Unit
Operation	System clock (ICLK)*1, *2, *4	1.6 to 5.5 V	f	0.032768	-	4	MHz
frequency	Peripheral module clock (PCLKB)*4	1.6 to 5.5 V		-	-	4	
	Peripheral module clock (PCLKD)*3, *4	1.6 to 5.5 V		-	-	4	

Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory. When using ICLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

- Note 2. The frequency accuracy of ICLK must be ±3.5% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.
- Note 3. The lower-limit frequency of PCLKD is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in use.
- Note 4. See section 8, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKB, and PCLKD.
- Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed operation, see Table 2.21, Clock timing.

Table 2.20 Operation frequency in Subosc-speed mode

Conditions: VCC = AVCC0 = 1.8 to 5.5 V

Parameter				Min	Тур	Max	Unit
Operation	System clock (ICLK)*1, *3	1.8 to 5.5 V	f	27.8528	32.768	37.6832	kHz
frequency	Peripheral module clock (PCLKB)*3	1.8 to 5.5 V		-	-	37.6832	
	Peripheral module clock (PCLKD)* ^{2, *3}	1.8 to 5.5 V		-	-	37.6832	

Note 1. Programming and erasing the flash memory is not possible.

Note 2. The 14-bit A/D converter cannot be used.

Note 3. See section 8, Clock Generation Circuit in User's Manual for the relationship between ICLK, PCLKB, and PCLKD frequencies.

Note 2. The frequency accuracy of ICLK must be ±3.5% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

2.3.2 Clock Timing

Table 2.21Clock timing (1 of 2)

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
EXTAL external clock input cycle t	ime	t _{Xcyc}	50	-	-	ns	Figure 2.25
EXTAL external clock input high p	ulse width	t _{XH}	20	-	-	ns	1
EXTAL external clock input low put	Ilse width	t _{XL}	20	-	-	ns	7
EXTAL external clock rising time		t _{Xr}	-	-	5	ns	7
EXTAL external clock falling time		t _{Xf}	-	-	5	ns	7
EXTAL external clock input wait tin	me* ¹	t _{EXWT}	0.3	-	-	μs	-
EXTAL external clock input freque	ncy	f _{EXTAL}	-	-	20	MHz	2.4 ≤ VCC ≤ 5.5
			-	-	8		1.8 ≤ VCC < 2.4
			-	-	1		1.6 ≤ VCC < 1.8
Main clock oscillator oscillation fre	quency	f _{MAIN}	1	-	20	MHz	2.4 ≤ VCC ≤ 5.5
			1	-	8		1.8 ≤ VCC < 2.4
			1	-	4		1.6 ≤ VCC < 1.8
LOCO clock oscillation frequency		f _{LOCO}	27.8528	32.768	37.6832	kHz	-
LOCO clock oscillation stabilizatio	n time	t _{LOCO}	-	-	100	μs	Figure 2.26
IWDT-dedicated clock oscillation f	requency	f _{ILOCO}	12.75	15	17.25	kHz	-
MOCO clock oscillation frequency		f _{MOCO}	6.8	8	9.2	MHz	-
MOCO clock oscillation stabilization	on time	t _{MOCO}	-	-	1	μs	-
HOCO clock oscillation frequency		f _{HOCO24}	23.64	24	24.36	MHz	Ta = -40 to -20°C 1.8 ≤ VCC ≤ 5.5
			22.68	24	25.32		Ta = -40 to -85°C 1.6 ≤ VCC < 1.8
			23.76	24	24.24		Ta = -20 to 85°C 1.8 ≤ VCC ≤ 5.5
			23.52	24	24.48		Ta = 85 to 105°C 2.4 ≤ VCC ≤ 5.5
		f _{HOCO32}	31.52	32	32.48		Ta = -40 to -20°C 1.8 ≤ VCC ≤ 5.5
			30.24	32	33.76		Ta = -40 to 85°C 1.6 ≤ VCC < 1.8
			31.68	32	32.32		Ta = -20 to 85°C 1.8 ≤ VCC ≤ 5.5
			31.36	32	32.64		Ta = 85 to 105°C 2.4 ≤ VCC ≤ 5.5
		f _{HOCO48*} 3	47.28	48	48.72		Ta = -40 to -20°C 1.8 ≤ VCC ≤ 5.5
			47.52	48	48.48		Ta = -20 to 85°C 1.8 ≤ VCC ≤ 5.5
			47.04	48	48.96		Ta = -40 to 105°C 2.4 ≤ VCC ≤ 5.5
		f _{HOCO64*} 4	63.04	64	64.96		Ta = -40 to -20°C 2.4 ≤ VCC ≤ 5.5
			63.36	64	64.64		Ta = -20 to 85°C 2.4 ≤ VCC ≤ 5.5
			62.72	64	65.28		Ta = 85 to 105°C 2.4 ≤ VCC ≤ 5.5
HOCO clock oscillation stabilization time* ^{5, *6}	Except low- voltage mode	t _{HOCO24} t _{HOCO32}	-	-	37.1	μs	Figure 2.27
		t _{HOCO48}	-	-	43.3		
		t _{HOCO64}	-	-	80.6		
	Low-voltage mode	^t носо24 tносо32 t _{носо48} t _{носо64}	-	-	100.9		
Sub-clock oscillator oscillation free	quency	f _{SUB}	-	32.768	-	kHz	-

Table 2.21Clock timing (2 of 2)

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
Sub-clock oscillation stabilization time*2	t _{SUBOSC}	-	0.5	-	s	Figure 2.28

Note 1. Time until the clock can be used after the main clock oscillator stop bit (MOSCCR.MOSTP) is set to 0 (operating) when the external clock is stable.

Note 2. After changing the setting of the SOSCCR.SOSTP bit to start sub-clock oscillator operation, only start using the sub-clock oscillator after the sub-clock oscillation stabilization wait time elapsed. Use the oscillator wait time value recommended by the oscillator manufacturer.

Note 3. The 48-MHz HOCO can be used within a VCC range of 1.8 V to 5.5 V.

Note 4. The 64-MHz HOCO can be used within a VCC range of 2.4 V to 5.5 V.

Note 5. This is a characteristic when the HOCOCR.HCSTP bit is cleared to 0 (oscillation) in the MOCO stop state. When the HOCOCR.HCSTP bit is cleared to 0 (oscillation) during MOCO oscillation, this specification is shortened by 1 µs.

Note 6. Check OSCSF.HOCOSF to confirm whether stabilization time has elapsed.

Figure 2.25 EXTAL external clock input timing

Figure 2.26 LOCO clock oscillation start timing

2.3.4 Wakeup Time

Table 2.23	Timing of recovery from low power modes (1)

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions			
Recovery time from Software Standby mode ^{*1}	High-speed Crystal resonator connected to main clock oscillator (20 MHz)*2		System clock source is main clock oscillator (20 MHz) ^{*2}	t _{SBYMC}	-	2	3	ms	Figure 2.31
		External clock input to main clock oscillator	System clock source is main clock oscillator (20 MHz) ^{*3}	t _{SBYEX}	-	14	25	μs	
		System clock source is HOCO ^{*4} (HOCO clock is 32 MHz) System clock source is HOCO ^{*4} (HOCO clock is 48 MHz) System clock source is HOCO ^{*5} (HOCO clock is 64 MHz)		t _{SBYHO}	-	43	52	μs	
				t _{SBYHO}	-	44	52	μs	
				t _{SBYHO}	-	82	110	μs	
		System clock sou	urce is MOCO	t _{SBYMO}	-	16	25	μs	

Note 1. The division ratio of ICK and PCKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source.

Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.

Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.

Note 4. The HOCO clock wait control register (HOCOWTCR) is set to 05h.

Note 5. The HOCO clock wait control register (HOCOWTCR) is set to 06h.

Table 2.24 Timing of recovery from low power modes (2)

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions			
Recovery time from Software Standby mode*1	Middle-speed mode	Crystal resonator connected to main clock oscillator	System clock source is main clock oscillator (12 MHz)* ²	t _{SBYMC}	-	2	3	ms	Figure 2.31
		External clock input to main clock oscillator	System clock source is main clock oscillator (12 MHz)* ³	t _{SBYEX}	-	2.9	10	μs	
		System clock source is HOCO*4		t _{SBYHO}	-	38	50	μs	
System clock source is MOCO (8 MHz)		t _{SBYMO}	-	3.5	5.5	μs			

Note 1. The division ratio of ICK and PCKx is the minimum division ratio within the allowable frequency range. The recovery time is determined by the system clock source.

Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.

Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.

Note 4. The system clock is 12 MHz.

Figure 2.43 SCI simple SPI mode clock timing

Figure 2.44 SCI simple SPI mode timing (master, CKPH = 1)

Figure 2.45 SCI simple SPI mode timing (master, CKPH = 0)

Figure 2.46 SCI simple SPI mode timing (slave, CKPH = 1)

Note 1. t_{Pcyc}: PCLKB cycle.

Note 2. N is set as an integer from 1 to 8 by the SPCKD register.

Note 3. N is set as an integer from 1 to 8 by the SSLND register.

SPI clock timing

Figure 2.57 CLKOUT output timing

2.5 ADC14 Characteristics

Table 2.41	A/D conversion characteristics (1) in high-speed A/D conversion mode (1 of	of 2)
Conditions: VCC	= AVCC0 = 4.5 to 5.5 V, VREFH0 = 4.5 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V	
Reference voltage	e range applied to the VREFH0 and VREFL0.	

Parameter		Min	Тур	Max	Unit	Test Conditions	
Frequency			1	-	64	MHz	-
Analog input capacitance		Cs	-	-	15	pF	High-precision channel
			-	-	30	pF	Normal-precision channel
Analog input resistance		Rs	-	-	2.5	kΩ	-
Analog input voltage rang	je	Ain	0	-	VREFH0	V	-
12-bit mode							
Resolution			-	-	12	Bit	-
Conversion time*1 (Operation at PCLKD = 64 MHz)	conversion time*1Permissible signoperation atsource impedanceCLKD = 64 MHz)Max. = $0.3 \text{ k}\Omega$		0.70	-	-	μs	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh
			1.13	-	-	μs	Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h
Offset error			-	±0.5	±4.5	LSB	High-precision channel
					±6.0	LSB	Other than above
Full-scale error	Full-scale error		-	±0.75	±4.5	LSB	High-precision channel
					±6.0	LSB	Other than above
Quantization error			-	±0.5	-	LSB	-
Absolute accuracy			-	±1.25	±5.0	LSB	High-precision channel
					±8.0	LSB	Other than above
DNL differential nonlinear	rity error		-	±1.0	-	LSB	-
INL integral nonlinearity e	error		-	±1.0	±3.0	LSB	-
14-bit mode							
Resolution			-	-	14	Bit	-
Conversion time* ¹ (Operation at PCLKD = 64 MHz)	Permissible source imp Max. = 0.3	e signal edance kΩ	0.80	-	-	μs	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh
			1.22	-	-	μs	Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h

Table 2.43 A/D conversion characteristics (3) in high-speed A/D conversion mode (2 of 2)

Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter	Min	Тур	Max	Unit	Test Conditions
Offset error	-	±2.0	±18	LSB	High-precision channel
			±24.0	LSB	Other than above
Full-scale error	-	±3.0	±18	LSB	High-precision channel
			±24.0	LSB	Other than above
Quantization error	-	±0.5	-	LSB	-
Absolute accuracy	-	±5.0	±20	LSB	High-precision channel
			±32.0	LSB	Other than above
DNL differential nonlinearity error	-	±4.0	-	LSB	-
INL integral nonlinearity error	-	±4.0	±12.0	LSB	-

Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Table 2.44 A/D conversion characteristics (4) in low-power A/D conversion mode (1 of 2)

Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter			Min	Тур	Max	Unit	Test Conditions
Frequency			1	-	24	MHz	-
Analog input capacitance		Cs	-	-	15	pF	High-precision channel
			-	-	30	pF	Normal-precision channel
Analog input resistance		Rs	-	-	2.5	kΩ	-
Analog input voltage rang	е	Ain	0	-	VREFH0	V	-
12-bit mode							·
Resolution			-	-	12	Bit	-
Conversion time*1 (Operation at PCLKD = 24 MHz)	Permissible source imp Max. = 1.1	e signal edance kΩ	2.25	-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh
			3.38	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h
Offset error			-	±0.5	±4.5	LSB	High-precision channel
					±6.0	LSB	Other than above
Full-scale error			-	±0.75	±4.5	LSB	High-precision channel
					±6.0	LSB	Other than above
Quantization error			-	±0.5	-	LSB	-
Absolute accuracy			-	±1.25	±5.0	LSB	High-precision channel
					±8.0	LSB	Other than above
DNL differential nonlinear	ity error		-	±1.0	-	LSB	-
INL integral nonlinearity e	rror		-	±1.0	±3.0	LSB	-
14-bit mode							
Resolution			-	-	14	Bit	-
Conversion time*1 (Operation at PCLKD = 24 MHz)	Permissible source imp Max. = 1.1	e signal edance kΩ	2.50	-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh
			3.63	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h

Figure 2.68 Voltage detection circuit timing (V_{det2})

2.10 CTSU Characteristics

Table 2.55 CTSU characteristics

Conditions: VCC = AVCC0 = 1.8 to 5.5 V

Parameter	Symbol	Min	Тур	Мах	Unit	Test conditions
External capacitance connected to TSCAP pin	C _{tscap}	9	10	11	nF	-
TS pin capacitive load	C _{base}	-	-	50	pF	-
Permissible output high current	ΣΙοΗ	-	-	-24	mA	When the mutual capacitance method is applied

Table 2.61 Code flash characteristics (3)

Middle-speed operating mode

Conditions: VCC = AVCC0 = 1.8 to 5.5 V, Ta = -40 to $+85^{\circ}$ C

			ICLK = 1 MHz		ICLK = 8 MHz				
Parameter		Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Programming time	4 bytes	t _{P4}	-	157	1411	-	101	966	μs
Erasure time	1 KB	t _{E1K}	-	9.10	289	-	6.10	228	ms
Blank check time	2 bytes	t _{BC4}	-	-	87.7	-	-	52.5	μs
	1 KB	t _{BC1K}	-	-	1930	-	-	414	μs
Erase suspended time		t _{SED}	-	-	32.7	-	-	21.6	μs
Startup area switching s	etting time	t _{SAS}	-	22.8	592	-	14.2	465	ms
Access window time		t _{AWS}	-	22.8	592	-	14.2	465	ms
OCD/serial programmer	ID setting time	t _{OSIS}	-	22.8	592	-	14.2	465	ms
Flash memory mode transition wait time 1		t _{DIS}	2	-	-	2	-	-	μs
Flash memory mode transition wait time 2		t _{MS}	720	-	-	720	-	-	ns

Note 1. Does not include the time until each operation of the flash memory is started after instructions are executed by the software.

Note 2. The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 3. The frequency accuracy of ICLK must be ±3.5% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

2.13.2 Data Flash Memory Characteristics

Table 2.62Data flash characteristics (1)

Parameter	Symbol	Min	Тур	Max	Unit	Conditions	
Reprogramming/erasure cycle*1		N _{DPEC}	100000	1000000	-	Times	-
Data hold time	After 10000 times of N _{DPEC}	t _{DDRP}	20*2, *3	-	-	Year	Ta = +85°C
	After 100000 times of N _{DPEC}		5* ^{2, *3}	-	-	Year	
	After 1000000 times of N _{DPEC}		-	1* ^{2, *3}	-	Year	Ta = +25°C

Note 1. The reprogram/erase cycle is the number of erasure for each block. When the reprogram/erase cycle is n times (n = 100,000), erasing can be performed n times for each block. For instance, when 1-byte programming is performed 1,000 times for different addresses in 1-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasure is not enabled. (overwriting is prohibited.)

Note 2. Characteristics when using the flash memory programmer and the self-programming library provided by Renesas Electronics.

Note 3. These results are obtained from reliability testing.

Figure 1.2 LQFP 48-pin

RENESAS

