E·X Renesas Electronics America Inc - <u>R7FS128783A01CFL#AA0 Datasheet</u>

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	CANbus, DALI, I ² C, SCI, SPI, UART/USART, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	24К х 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 15x14b; D/A 3x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r7fs128783a01cfl-aa0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Overview

The S128 MCU integrates multiple series of software- and pin-compatible ARM[®]-based 32-bit MCUs that share a common set of Renesas peripherals to facilitate design scalability and efficient platform-based product development.

Based on the energy-efficient ARM Cortex[®]-M0+ 32-bit core, this MCU is particularly suited for cost-sensitive and low-power applications. The MCU in this series has the following features:

- Up to 256 KB code flash memory
- 24-KB SRAM
- Capacitive Touch Sensing Unit (CTSU)
- 14-bit A/D Converter (ADC14)
- 8-bit D/A Converter (DAC8)
- Security features.

1.1 Function Outline

Table 1.1 ARM core

Feature	Functional description
ARM Cortex-M0+	 Maximum operating frequency: up to 32 MHz ARM Cortex-M0+ Revision: r0p1-00rel0 ARMv6-M architecture profile Single-cycle integer multiplier. ARM Memory Protection Unit (MPU) ARMv6 Protected Memory System Architecture 8 protection regions. SysTick timer Driven by LOCO clock.

Table 1.2 Memory

Feature	Functional description
Code flash memory	Maximum 256 KB code flash memory. See section 42, Flash Memory in User's Manual.
Data flash memory	4 KB data flash memory. See section 42, Flash Memory in User's Manual.
Option-setting memory	The option-setting memory determines the state of the MCU after a reset. See section 6, Option-Setting Memory in User's Manual.
SRAM	On-chip high-speed SRAM with either parity bit or Error Correction Code (ECC). See section 41, SRAM in User's Manual.

Table 1.3 System (1 of 2)

Feature	Functional description
Operating mode	Two operating modes: • Single-chip mode • SCI boot mode. See section 3, Operating Modes in User's Manual.

2. Electrical Characteristics

Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions:

 $VCC^{*1} = AVCC0 = VCC_USB^{*2} = VCC_USB_LDO^{*2} = 1.6$ to 5.5V, VREFH0 = 1.6 to AVCC0,

 $VSS = AVSS0 = VREFL0 = VSS_USB = 0$ V, $Ta = T_{opr}$

Note 1. The typical condition is set to VCC = 3.3V.

Note 2. When USBFS is not used.

Figure 2.1 shows the timing conditions.

Figure 2.1 Input or output timing measurement conditions

The measurement conditions of the timing specifications for each peripheral are recommended for the best peripheral operation. However, make sure to adjust driving abilities for each pin to meet the conditions of your system.

Each function pin used for the same function must select the same drive ability. If the I/O drive ability of each function pin is mixed, the A/C specification of each function is not guaranteed.

Figure 2.3 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 1.6 V when low drive output is selected (reference data, except for P914 and P915)

Figure 2.4 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 2.7 V when low drive output is selected (reference data, except for P914 and P915)

RENESAS

Figure 2.17 Voltage dependency in high-speed mode (reference data)

Figure 2.20 Voltage dependency in low-voltage mode (reference data)

Figure 2.22 Temperature dependency in Software Standby mode (reference data)

S128

Parameter			Symbol	Min	Тур	Max	Unit	Test conditions
Operational	Low power mode	I _{AMP}	-	1.0	2.0	μA	-	
operating		2-unit operating		-	1.5	3.0	μA	-
current		3-unit operating		-	2.0	3.5	μA	-
		4-unit operating		-	2.5	4.5	μA	-
	High speed mode	1-unit operating		-	200	280	μA	-
		2-unit operating		-	320	450	μA	-
		3-unit operating		-	440	620	μA	-
		4-unit operating		-	560	790	μA	-
USB operating current	JSB operating current During USB communication under the following settings and conditions: • Function controller is in Full-Speed mode and - Bulk OUT transfer is (64 bytes) × 1 - Bulk IN transfer is (64 bytes) × 1 • Host device is connected by a 1-meter USB cable from the USB port.			-	3.6 (VCC) 1.1 (VCC_USB)*4	-	mA	-
 During suspended state under the following setting and conditions: Function controller is in Full-Speed mode (the USB_DP pin is pulled up) Software Standby mode Host device is connected by a 1-meter USB cable from the USB port. 			I _{SUSP} * ³	-	0.35 (VCC) 170 (VCC_USB)*4	-	μΑ	-
PWM Delay	PCLKD = 64 MHz, DLL M	ode = 5-bit mode	I _{CC}	-	3.3	4.6	mA	-
Generation Circuit current	PCLKD = 64 MHz, DLL M	ode = 4-bit mode		-	3.0	4.2	mA	-
	PCLKD = 32 MHz, DLL M]	-	2.0	2.8	mA	-	

Table 2.13 Operating and standby current (3)

Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Note 1. The reference power supply current is included in the power supply current value for D/A conversion.

Note 2. Current is consumed only by the USBFS.

Note 3. Includes the current supplied from the pull-up resistor of the USB_DP pin to the pull-down resistor of the host device, in addition to the current consumed by the MCU in the suspended state.

Note 4. When VCC = VCC_USB = 3.3 V.

Note 5. When the MCU is in Software Standby mode or the MSTPCRD.MSTPD16 (ADC140 module-stop bit) is in the module-stop state.

2.3.6 I/O Ports, POEG, GPT, AGT, KINT, and ADC14 Trigger Timing

Parameter	Symbol	Min	Мах	Unit	Test conditions		
I/O Ports	Input data pulse width	t _{PRW}	1.5	-	t _{Pcyc}	Figure 2.35	
	Input/output data cycle (P002, P003	3, P010, P011)	t _{POcyc}	10	-	μs	-
POEG	POEG input trigger pulse width		t _{POEW}	3	-	t _{Pcyc}	Figure 2.36
GPT	Input capture pulse width	Single edge	t _{GTICW}	1.5	-	t _{PDcyc}	Figure 2.37
		Dual edge		2.5	-		
AGT	AGTIO, AGTEE input cycle	2.7 V ≤ VCC ≤ 5.5 V	t _{ACYC} *1	250	-	ns	Figure 2.38
		2.4 V ≤ VCC < 2.7 V		500	-	ns	
		1.8 V ≤ VCC < 2.4 V		1000	-	ns	-
		1.6 V ≤ VCC < 1.8 V		2000	-	ns	
	AGTIO, AGTEE input high level	2.7 V ≤ VCC ≤ 5.5 V	t _{ACKWH} ,	100	-	ns	
	width, low-level width		t _{ACKWL}	200	-	ns	-
				400	-	ns	
		1.6 V ≤ VCC < 1.8 V		800	-	ns	1
	AGTIO, AGTO, AGTOA, AGTOB	2.7 V ≤ VCC ≤ 5.5 V	t _{ACYC2}	62.5	-	ns	Figure 2.38
	output frequency	2.4 V ≤ VCC < 2.7 V		125	-	ns	-
		1.8 V ≤ VCC < 2.4 V		250	-	ns	
		1.6 V ≤ VCC < 1.8 V		500	-	ns	
ADC14	14-bit A/D converter trigger input pulse width			1.5	-	t _{Pcyc}	Figure 2.39
KINT	Key interrupt input low-level width		t _{KR}	250	-	ns	Figure 2.40

Table 2.30 I/O Ports, POEG, GPT, AGT, KINT, and ADC14 trigger timing

Note 1. Constraints on AGTIO input: t_{Pcyc} × 2 (t_{Pcyc}: PCLKB cycle) < t_{ACYC}.

Figure 2.35 I/O ports input timing

Figure 2.41 SCK clock input timing

2.3.10 SPI Timing

Table 2.36SPI timing (1 of 2)

Conditions: Middle drive output is selected in the Port Drive Capability bit in the PmnPFS register.

Parameter			Symbol	Min	Мах	Unit ^{*1}	Test conditions					
SPI	RSPCK clock cycle	Master		Master		ock cycle Master		t _{SPcyc}	2	4096	t _{Pcyc}	Figure 2.49
		Slave			6	4096		C = 30 _P F				
	RSPCK clock high pulse width	Master Slave		Master		clock high Master ith		t _{spскwн}	(t _{SPcyc} – t _{SPCKR} – t _{SPCKF}) / 2 – 3	-	ns	
					3 × t _{Pcyc}	-						
	RSPCK clock low Master pulse width		t _{SPCKWL}	(t _{SPcyc} – t _{SPCKR} – t _{SPCKF}) / 2 – 3	-	ns						
		Slave			3 × t _{Pcyc}	-						
	RSPCK clock rise	Output	2.7V or above	t _{SPCKr,}	-	10	ns					
	and fall time		2.4V or above	t _{SPCKf}	-	15						
			1.8V or above		-	20						
			1.6V or above		-	30						
		Input			-	1	μs					

Note 1. t_{Pcyc}: PCLKB cycle.

Note 2. N is set as an integer from 1 to 8 by the SPCKD register.

Note 3. N is set as an integer from 1 to 8 by the SSLND register.

SPI clock timing

S128

Figure 2.59 Test circuit for Full-Speed (FS) connection

Figure 2.60 Test circuit for Low-Speed (LS) connection

2.4.2 USB External Supply

Table 2.40USB regulator

Parameter	Min	Тур	Max	Unit	Test conditions	
VCC_USB supply current	VCC_USB_LDO ≥ 3.8V	-	-	50	mA	-
	VCC_USB_LDO ≥ 4.5V	-	-	100	mA	-
VCC_USB supply voltage		3.0	-	3.6	V	-

Table 2.41 A/D conversion characteristics (1) in high-speed A/D conversion mode (2 of 2)

Conditions: VCC = AVCC0 = 4.5 to 5.5 V, VREFH0 = 4.5 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter	Min	Тур	Max	Unit	Test Conditions
Offset error	-	±2.0	±18	LSB	High-precision channel
			±24.0	LSB	Other than above
Full-scale error	-	±3.0	±18	LSB	High-precision channel
			±24.0	LSB	Other than above
Quantization error	-	±0.5	-	LSB	-
Absolute accuracy	-	±5.0	±20	LSB	High-precision channel
			±32.0	LSB	Other than above
DNL differential nonlinearity error	-	±4.0	-	LSB	-
INL integral nonlinearity error	-	±4.0	±12.0	LSB	-

Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Table 2.42 A/D conversion characteristics (2) in high-speed A/D conversion mode (1 of 2)

Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter			Min	Тур	Мах	Unit	Test Conditions
Frequency			1	-	48	MHz	-
Analog input capacitance		Cs	-	-	15	pF	High-precision channel
			-	-	30	pF	Normal-precision channel
Analog input resistance		Rs	-	-	2.5	kΩ	-
Analog input voltage rang	е	Ain	0	-	VREFH0	V	-
12-bit mode							
Resolution			-	-	12	Bit	-
Conversion time ^{*1} (Operation at PCLKD = 48 MHz)	Permissible source imp Max. = 0.3	e signal edance kΩ	0.94	-	-	μs	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh
			1.50	-	-	μs	Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h
Offset error			-	±0.5	±4.5	LSB	High-precision channel
					±6.0	LSB	Other than above
Full-scale error			-	±0.75	±4.5	LSB	High-precision channel
					±6.0	LSB	Other than above
Quantization error			-	±0.5	-	LSB	-
Absolute accuracy			-	±1.25	±5.0	LSB	High-precision channel
					±8.0	LSB	Other than above
DNL differential nonlinear	ity error		-	±1.0	-	LSB	-
INL integral nonlinearity e	rror		-	±1.0	±3.0	LSB	-
14-bit mode							
Resolution			-	-	14	Bit	-
Conversion time*1 (Operation at PCLKD = 48 MHz)	version time*1Permissible signaleration atsource impedanceKD = 48 MHz)Max. = 0.3 kΩ		1.06	-	-	μs	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh
			1.63	-	-	μs	Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h

Table 2.46 A/D conversion characteristics (6) in low-power A/D conversion mode (2 of 2)

Conditions: VCC = AVCC0 = 1.8 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.8 to 5.5 V, VSS = AVSS0 = VREFL0 = 0 V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter	Min	Тур	Мах	Unit	Test Conditions
Offset error	-	±4.0	±30.0	LSB	High-precision channel
			±40.0	LSB	Other than above
Full-scale error	-	±6.0	±30.0	LSB	High-precision channel
			±40.0	LSB	Other than above
Quantization error	-	±0.5	-	LSB	-
Absolute accuracy	-	±12.0	±32.0	LSB	High-precision channel
			±48.0	LSB	Other than above
DNL differential nonlinearity error	-	±4.0	-	LSB	-
INL integral nonlinearity error	-	±4.0	±12.0	LSB	-

Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Table 2.47 A/D conversion characteristics (7) in low-power A/D conversion mode (1 of 2)

Conditions: VCC = AVCC0 = 1.6 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.6 to 5.5 V, VSS = AVSS0 = VREFL0 = 0 Reference voltage range applied to the VREFH0 and VREFL0.

Parameter			Min	Тур	Мах	Unit	Test Conditions
Frequency			1	-	4	MHz	-
Analog input capacitance		Cs	-	-	15	pF	High-precision channel
			-	-	30	pF	Normal-precision channel
Analog input resistance		Rs	-	-	2.5	kΩ	-
Analog input voltage rang	е	Ain	0	-	VREFH0	V	-
12-bit mode					·		
Resolution			-	-	12	Bit	-
Conversion time ^{*1} (Operation at PCLKD = 4 MHz)	Conversion time*1Permissible signal(Operation atsource impedancePCLKD = 4 MHz)Max. = 9.9 kΩ		13.5	-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh
			20.25	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h
Offset error			-	±1.0	±7.5	LSB	High-precision channel
					±10.0	LSB	Other than above
Full-scale error			-	±1.5	±7.5	LSB	High-precision channel
					±10.0	LSB	Other than above
Quantization error			-	±0.5	-	LSB	-
Absolute accuracy			-	±3.0	±8.0	LSB	High-precision channel
					±12.0	LSB	Other than above
DNL differential nonlinear	ity error		-	±1.0	-	LSB	-
INL integral nonlinearity e	error		-	±1.0	±3.0	LSB	-
14-bit mode							
Resolution			-	-	14	Bit	-
Conversion time*1Permissible s(Operation atsource impedPCLKD = 4 MHz)Max. = 9.9 kG		e signal edance kΩ	15.0	-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh
			21.75	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions		
Power-on reset enable time	t _{W (POR)}	1	-	-	ms	Figure 2.65, VCC = below 1.0 V		
LVD operation stabilization time (after LVD is enabled)	T _{d (E-A)}	-	-	300	μs	Figure 2.67, Figure 2.68		
Hysteresis width (POR)	V _{PORH}	-	110	-	mV	-		
Hysteresis width (LVD0, LVD1 and LVD2)	V _{LVH}	-	60	-	mV	LVD0 selected		
		-	100	-		V_{det1_0} to V_{det1_2} selected.		
		-	60	-		V_{det1_3} to V_{det1_9} selected.		
		-	50	-		V _{det1_A} to V _{det1_B} selected.		
		-	40	-		V_{det1_C} to V_{det1_F} selected.		
		-	60	-		LVD2 selected		

 Table 2.54
 Power-on reset circuit and voltage detection circuit characteristics (2) (2 of 2)

Note 1. When OFS1.LVDAS = 0 Note 2. When OFS1.LVDAS = 1

Note 3. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels V_{POR}, V_{det0}, V_{det1}, and V_{det2} for the POR/LVD.

Figure 2.64 Voltage detection reset timing

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit	
Open gain	A _V	-	80	120	-	dB	
Gain-bandwidth (GB) product	GBW1	Low-power mode	-	0.012	-	MHz	
	GBW2	High-speed mode	-	1.7	-		
Phase margin	PM	CL = 20 pF		50	-	-	deg
Gain margin	GM	CL = 20 pF		10	-	-	dB
Equivalent input noise	V _{noise1}	f = 10 Hz	Low-power mode	-	700	-	nV/
	V _{noise2}	f = 1 kHz	High-speed mode	-	400	-	√Hz
	V _{noise3}	f = 1 kHz		-	90	-	
	V _{noise4}	f = 100 kHz		-	50	-	
Power supply reduction ratio	PSRR	-		-	90	-	dB
Common mode signal reduction ratio	CMRR	-		-	90	-	dB
Stabilization wait time	T _{std1}	CL = 20 pF Only operational	Low-power mode VCC < 3.6V	1800	-	-	μs
		amplifier is activated.*1	Low-power mode VCC < 5.5V	2500	-	-	
	T _{std2}		High-speed mode	13	-	-	
	T _{std3}	CL = 20 pF Operational	Low-power mode VCC < 3.6V	1800	-	-	
	a n	amplifier and reference current circuit are activated	Low-power mode VCC < 5.5V	2500	-	-	
	T _{std4}	simultaneously.	High-speed mode	13	-	-	
Settling time	T _{set1}	CL = 20 pF	Low-power mode VCC < 3.6V	-	-	1400	μs
			Low-power mode VCC < 5.5V	-	-	2000	μs
	T _{set2}	-	High-speed mode	-	-	13	μs
Slew rate	T _{slew1}	CL = 20 pF	Low-power mode	-	0.005	-	V/µs
T _{slew2}		-	-	1.1	-	V/µs	
Load current	Load current I _{load1} Low-power me			-100	-	100	μA
	I _{load2}	High-speed mode		-100	-	100	
Load capacitance	CL	-	-	-	20	pF	

Table 2.58OPAMP characteristics (2 of 2)Conditions: 1.8 V \leq AVCC0 = VCC \leq 5.5 V, VSS = AVSS0 = 0 V

Note 1. When the operational amplifier and the reference current circuit have already been activated.

2.13 Flash Memory Characteristics

2.13.1 Code Flash Memory Characteristics

Table 2.59 Code flash characteristics (1)

Parameter		Symbol	Min	Тур	Max	Unit	Conditions
Reprogramming/erasure cycle*1		N _{PEC}	1000	-	-	Times	-
Data hold time	After 1000 times N _{PEC}	t _{DRP}	20*2, *3	-	-	Year	T _a = +85°C

Note 1. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 1,000), erasing can be performed n times for each block. For instance, when 4-byte programming is performed 256 times for different addresses in 1-KB blocks, and then the entire block is erased, the reprogram/ erase cycle is counted as one. However, programming the same address for several times as one erasure is not enabled. (overwriting is prohibited.)

Note 2. Characteristic when using the flash memory programmer and the self-programming library provided by Renesas Electronics.

Note 3. This result is obtained from reliability testing.

Table 2.60 Code flash characteristics (2)

High-speed operating mode Conditions: VCC = AVCC0 = 2.7 to 5.5 V

			ICLK = 1 MHz			ICLK = 32 MHz			
Parameter		Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Programming time	4 bytes	t _{P4}	-	116	998	-	54	506	μs
Erasure time	1 KB	t _{E1K}	-	9.03	287	-	5.67	222	ms
Blank check time	4 bytes	t _{BC4}	-	-	56.8	-	-	16.6	μs
	1 KB	t _{BC1K}	-	-	1899	-	-	140	μs
Erase suspended time		t _{SED}	-	-	22.5	-	-	10.7	μs
Startup area switching setting time		t _{SAS}	-	21.9	585	-	12.1	447	ms
Access window time		t _{AWS}	-	21.9	585	-	12.1	447	ms
OCD/serial programmer ID setting time		t _{OSIS}	-	21.9	585	-	12.1	447	ms
Flash memory mode transition wait time 1		t _{DIS}	2	-	-	2	-	-	μs
Flash memory mode transition wait time 2		t _{MS}	5	-	-	5	-	-	μs

Note 1. Does not include the time until each operation of the flash memory is started after instructions are executed by the software.

Note 2. The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 3. The frequency accuracy of ICLK must be ±3.5% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

Figure 2.70 SWD input/output timing

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Corporation

http://www.renesas.com

 Renesas Electronics America Inc.

 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.

 Tei: +1-408-588-6000, Fax: +1-408-588-6130

 Renesas Electronics Canada Limited

 9251 Yongs Street, Suite Salo Bickhmond Hill, Ontario Canada L4C 913

 Tei: +1-408-5237-2004

 Renesas Electronics Europe Limited

 Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

 Tei: +4-912-565-100, Fax: +44-1628-568-00

 Renesas Electronics Europe GmbH

 Arcadiastrasse 10, 40472 Disseldorf, Germany

 Tei: +4-915-563-00, Fax: +44-1628-568-00

 Renesas Electronics (China) Co., Ltd.

 Room 1709, Quantum Plazz, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China

 Tei: +80-12-226-0888, Fax: +862-12-2260-099

 Renesas Electronics (Changha) Co., Ltd.

 Unit 301. Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333

 Tei: +862-2226-0889, Fax: +862-12260.099

 Renesas Electronics Taiwan Co., Ltd.

 Tafs. No. 363, Fu Shing North Road, Taipel 10543, Taiwan

 Tei: +862-2000, Fax: +862-24175-9670

 Renesas Electronics Malgyis Sdn.Bhd.

 Unit 1207. IBS-175.9600, Fax: +862-24175-9670

 Renesas Electronics Malgyis Sdn.Bhd.

 Unit 1207. IDS-65.400, Fax: +60-3-7955-9510

 <td