

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	CANbus, DALI, I ² C, SCI, SPI, UART/USART, USB
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	24К х 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 15x14b; D/A 3x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-WFQFN Exposed Pad
Supplier Device Package	48-HWQFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r7fs128783a01cne-ac1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1.4 Event Link

Feature	Functional description
Event Link Controller (ELC)	The Event Link Controller (ELC) uses the interrupt requests generated by various peripheral modules as event signals to connect them to different modules, enabling direct interaction between the modules without CPU intervention. See section 16, Event Link Controller in User's Manual.

Table 1.5 Direct memory access

Feature	Functional description
Data Transfer Controller (DTC)	A Data Transfer Controller (DTC) module is provided for transferring data when activated by an interrupt request. See section 15, Data Transfer Controller (DTC) in User's Manual.

Table 1.6 Timers

Feature	Functional description
General PWM Timer (GPT)	The General PWM Timer (GPT) is a 32-bit timer with 1 channel and a 16-bit timer with 6 channels. PWM waveforms can be generated by controlling the up-counter, down-counter, or the up- and down-counter. In addition, PWM waveforms can be generated for controlling brushless DC motors. The GPT can also be used as a general-purpose timer. See section 20, General PWM Timer (GPT) in User's Manual.
Port Output Enable for GPT (POEG)	Use the Port Output Enable for GPT (POEG) function to place the General PWM Timer (GPT) output pins in the output disable state. See section 19, Port Output Enable for GPT (POEG) in User's Manual.
Asynchronous General Purpose Timer (AGT)	The Asynchronous General Purpose Timer (AGT) is a 16-bit timer that can be used for pulse output, external pulse width or period measurement, and counting external events. This 16-bit timer consists of a reload register and a down-counter. The reload register and the down-counter are allocated to the same address, and they can be accessed with the AGT register. See section 22, Asynchronous General Purpose Timer (AGT) in User's Manual.
Realtime Clock (RTC)	The Realtime Clock (RTC) has two counting modes, calendar count mode and binary count mode, that are controlled by the register settings. For calendar count mode, the RTC has a 100-year calendar from 2000 to 2099 and automatically adjusts dates for leap years. For binary count mode, the RTC counts seconds and retains the information as a serial value. Binary count mode can be used for calendars other than the Gregorian (Western) calendar. See section 23, Realtime Clock (RTC) in User's Manual.

Table 1.7 Communication interfaces (1 of 2)

Feature	Functional description								
Serial Communications Interface (SCI)	 The Serial Communication Interface (SCI) is configurable to five asynchronous and synchronous serial interfaces: Asynchronous interfaces (UART and asynchronous communications interface adapter (ACIA)) 8-bit clock synchronous interface Simple IIC (master-only) Simple SPI Smart card interface. The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and transmission protocol. SCI0 has FIFO buffers to enable continuous and full-duplex communication, and the data transfer speed can be configured independently using an on-chip baud rate generator. See section 27, Serial Communications Interface (SCI) in User's Manual. 								
Digital Addressable Lighting Interface (DALI)	A Digital Addressable Lighting Interface (DALI) module is provided. DALI is an international open lighting control communication protocol that includes dimming control of electronic ballasts and LED lights from different manufacturers. The DALI interface module is designed to allow compliance with international standard IEC62386-101 Edition 1.0/2.0 (DALI 2), that includes software control. See section 28, Digital Addressable Lighting Interface (DALI) in User's Manual.								

Feature	Functional description
I ² C Bus interface (IIC)	A 2-channel IIC module conforms with and provides a subset of the NXP I ² C bus (Inter- Integrated Circuit bus) interface functions. See section 29, I ² C Bus Interface (IIC) in User's Manual.
Serial Peripheral Interface (SPI)	Two independent Serial Peripheral Interface (SPI) channels are capable of high-speed, full- duplex synchronous serial communications with multiple processors and peripheral devices. See section 31, Serial Peripheral Interface (SPI) in User's Manual.
CAN Module (CAN)	The Controller Area Network (CAN) module provides functionality to receive and transmit data using a message-based protocol between multiple slaves and masters in electromagnetically noisy applications. The CAN module complies with the ISO 11898-1 (CAN 2.0A/CAN 2.0B) standard and supports up to 32 mailboxes, which can be configured for transmission or reception in normal mailbox and FIFO modes. Both standard (11-bit) and extended (29-bit) messaging formats are supported. See section 30, Controller Area Network (CAN) in User's Manual.
USB 2.0 Full-Speed Module (USBFS)	The USBFS is a USB controller that can operate as a host controller or device controller. The module supports full-speed and low-speed transfer as defined in the Universal Serial Bus Specification 2.0. The module has an internal USB transceiver and supports all of the transfer types defined in the Universal Serial Bus Specification 2.0. The USB has buffer memory for data transfer, providing a maximum of 5 pipes. PIPE0 and PIPE4 to PIPE7 can be assigned any endpoint number based on the peripheral devices used for communication or based on the user system. The MCU supports revision 1.2 of the Battery Charging Specification. Because the MCU can be powered at 5 V, the USB LDO regulator provides the internal USB transceiver power supply at 3.3 V. See section 26, USB 2.0 Full-Speed Module (USBFS) in User's Manual.

Table 1.7Communication interfaces (2 of 2)

Table 1.8 Analog

Feature	Functional description
14-bit A/D Converter (ADC14)	A 14-bit successive approximation A/D converter is provided. Up to 21 analog input channels are selectable. Temperature sensor output and internal reference voltage are selectable for conversion. The A/D conversion accuracy is selectable from 12-bit and 14-bit conversion making it possible to optimize the tradeoff between speed and resolution in generating a digital value. See section 33, 14-Bit A/D Converter (ADC14) in User's Manual.
8-bit D/A Converter (DAC8)	An 8-bit D/A converter (DAC8) is provided. See section 34, 8-Bit D/A Converter (DAC8) in User's Manual.
Temperature Sensor (TSN)	The on-chip temperature sensor determines and monitors the die temperature for reliable operation of the device. The sensor outputs a voltage directly proportional to the die temperature, and the relationship between the die temperature and the output voltage is linear. The output voltage is provided to the ADC for conversion and can be further used by the end application. See section 35, Temperature Sensor (TSN) in User's Manual.
High-Speed Analog Comparator (ACMPHS)	The analog comparator compares a test voltage with a reference voltage and to provide a digital output based on the result of conversion. Both the test voltage and the reference voltage can be provided to the ACMPHS from internal sources (D/A converter output) and an external source. Such flexibility is useful in applications that require go/no-go comparisons to be performed between analog signals without necessarily requiring A/D conversion. See section 37, High-Speed Analog Comparator (ACMPHS) in User's Manual.
Low-Power Analog Comparator (ACMPLP)	The analog comparator compares a reference input voltage and analog input voltage. The comparison result can be read by software and also be output externally. The reference input voltage can be selected from either an input to the CMPREFi (i = 0, 1) pin, an output from internal D/A converter, or from the internal reference voltage (Vref) generated internally in the MCU. The ACMPLP response speed can be set before starting an operation. Setting high-speed mode decreases the response delay time, but increases current consumption. Setting low-speed mode increases the response delay time, but decreases current consumption. See section 38, Low-Power Analog Comparator (ACMPLP) in User's Manual.
Operational Amplifier (OPAMP)	The operational amplifier amplifies small analog input voltages and outputs the amplified voltages. A total of four differential operational amplifier units with two input pins and one output pin are provided. See section 36, Operational Amplifier (OPAMP) in User's Manual.

RENESAS

Figure 1.6 Pin assignment for LGA 36-pin (top view, pad side down)

Figure 1.7 Pin assignment for LQFP 32-pin

RENESAS

Figure 1.8 Pin assignment for QFN 32-pin

1.7 Pin Lists

s s		Pin number					Timers				Communication Interfaces				Analogs				НМІ			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	LQFP64	LQFP48	QFN48	LGA36	LQFP32	QFN32	Power, System, Clock, Debug, CAC	I/O ports	AGT	GPT_OPS, POEG	GPT	RTC	USBFS,CAN, DALI	sci	lic	IdS	ADC14	DAC8	ACMPHS, ACMPLP	орамр	CTSU	Interru pt
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	1	-	-	-	CACREF_ C	P400	AGTIO1_ D		GTIOC6A _A			SCK0_B/ SCK1_B	SCL0_A						TS20	IRQ0
3 .	2	2	2	ļ	i	-		P401		GTETRGA _ ^B	GTIOC6B _A		CTX0_B	CTS0_RTS 0_B/SS0_B/ TXD1_B/ MOSI1_B/ SDA1_B	SDA0_A						TS19	IRQ5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	-	-	-	-	-		P402			GTIOC3B _B		CRX0_B	RXD1_B/ MISO1_B/ SCL1_B							TS18	IRQ4
5 3 3 A1 1 1 VCL Image: state of the	4	-	-	-	-	-		P403			GTIOC3A _B			CTS1_RTS 1_B/SS1_B							TS17	
6 4 4 B1 2 2 XCIN P215 Image: constraint of the second secon	5	3	3	A1	1	1	VCL															
7 5 5 C1 3 3 XCOUT P214 P213 P216 P216 P217 P214 P213 P214 P213 P214 P213 P214 P213 P214 P213 P214 P213	6	4	4	B1	2	2	XCIN	P215														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	5	5	C1	3	3	XCOUT	P214														
9 7 7 D3 5 5 XTAL P213 GTETRGA GTIOCOA TXD1_A' MOSI1_A' SDA1_A IRQ2 10 8 8 D2 6 6 EXTAL P212 AGTET GTETRGA GTIOCOB RXD1_A' MOSI1_A' IRQ3 IRQ3 11 9 9 E1 7 7 VCC IRQ3 TXD0_B' MOSIA_B IRQ3 IRQ3 12 - - - P411 AGTO1 GTOVLP, B GTIOCOB TXD0_B' MOSIA_B IRQ3 IRQ3 13 - - - P410 AGTO1 GTOVLP, B GTIOCOB RXD0_A' MISOA_B ISOA IRQ5 14 10 10 - - - P409 GTOWLP, B GTIOCSB TXD0_A' MOSIA_B ISOA_B IRQ6 15 11 11 - - - P409 GTOWLP, B GTIOCSB RXD0_A' SL0_B ITX00_B' MOSIA_B IRQ6 14 10 10	8	6	6	D1	4	4	VSS															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	7	7	D3	5	5	XTAL	P213		GTETRGA _D	GTIOC0A _D			TXD1_A/ MOSI1_A/ SDA1_A								IRQ2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10	8	8	D2	6	6	EXTAL	P212	AGTEE1	GTETRGB _D	GTIOC0B _D			RXD1_A/ MISO1_A/ SCL1_A								IRQ3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	9	9	E1	7	7	VCC															
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	-	-	-	-	-		P411	AGTOA1	GTOVUP_ B	GTIOC6A _B			TXD0_B/ MOSI0_B/ SDA0_B		MOSIA_B					TS07	IRQ4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13	-	-	-	-	-		P410	AGTOB1	GTOVLO_ B	GTIOC6B _B			RXD0_B/ MISO0_B/ SCL0_B		MISOA_B					TS06	IRQ5
15 11 11 - - P408 GTOWLO_GTIOC5B B RXD9_A/ B SCL0_C MISO9_A/ SCL0_A SCL0_C TS04 IR07 16 12 12 E2 8 8 P407 AGTIOO_ C GTIOC0A C RTC USB_VBU CTS0_RTS 0_D/SS0_D SA0_B SSLB3_A ADTRG0_ B TS03 17 13 D1 4 4 VSS_USB - - 0<	14	10	10	-	-	-		P409		GTOWUP _B	GTIOC5A _B			TXD0_E/ MOSI0_E/ SDA0_E/ TXD9_A/ MOSI9_A/ SDA9_A							TS05	IRQ6
16 12 12 E2 8 8 P407 AGTIO0_ C GTIOC0A _E RTC USB_VBU CTS0_RTS 0_D/SS0_D SADA_B SSLB3_A ADTRG0_ B TS03 17 13 13 D1 4 4 VSS_USB	15	11	11	-	-	-		P408		GTOWLO_ B	GTIOC5B _B			RXD9_A/ MISO9_A/ SCL9_A	SCL0_C						TS04	IRQ7
17 13 13 D1 4 4 VSS_USB	16	12	12	E2	8	8		P407	AGTIO0_ C		GTIOC0A _E	RTC OUT	USB_VBU S	CTS0_RTS 0_D/SS0_D	SDA0_B	SSLB3_A	ADTRG0_ B				TS03	
	17	13	13	D1	4	4	VSS_USB															

Pin number						Timers				С	ommunicatio	on Interface	es		Ana	logs		НМІ			
LQFP64	LQFP48	QFN48	LGA36	LQFP32	QFN32	Power, System, Clock, Debug, CAC	I/O ports	АGТ	GPT_OPS, POEG	GРТ	RTC	USBFS,CAN, DALI	sci	2	SPI	ADC14	DAC8	ACMPHS, ACMPLP	орамр	cTSU	Interrupt
56	42	42	A4	29	29	AVCC0															
57	43	43	A3	30	30	AVSS0															
58	44	44	B3	31	31	VREFL0	P011									AN006	DA2_A		AMP2O		
59	45	45	A2	32	32	VREFH0	P010									AN005			AMP10		
60	-	-	-	-	-		P004									AN004	DA2_B			TS25	IRQ3
61	-	-	-	-	-		P003									AN003			AMP3O		
62	46	46	F1	-	-		P002									AN002			AMP0O		IRQ2
63	47	47	C2	-	-		P001									AN001		IVREF2	AMP0-	TS22	IRQ7
64	48	48	B2	-	-		P000									AN000		IVCMP2	AMP0+	TS21	IRQ6

Note: Several pin names have the added suffix of _A, _B, _C, _D and _E. The suffix can be ignored when assigning functionality.

Parameter	Symbol	Value	Min	Тур	Мах	Unit
Power supply voltages	VCC*1, *2	When USBFS is not used	1.6	-	5.5	V
		When USBFS is used USB Regulator Disable	VCC_USB	-	3.6	V
		When USBFS is used USB Regulator Enable	VCC_USB _LDO	-	5.5	V
	VSS		-	0	-	V
USB power supply voltages	VCC_USB	When USBFS is not used	-	VCC	-	V
		When USBFS is used USB Regulator Disable (Input)	3.0	3.3	3.6	V
	VCC_USB_LDO	When USBFS is not used	-	VCC	-	V
		When USBFS is used USB Regulator Enable	3.8	-	5.5	V
	VSS_USB		-	0	-	V
Analog power supply voltages	AVCC0*1, *2		1.6	-	5.5	V
	AVSS0		-	0	-	V
	VREFH0	When used as	1.6	-	AVCC0	V
	VREFL0	ADC14 Reference	-	0	-	V

Table 2.2 Recommended operating conditions

Note 1. Use AVCC0 and VCC under the following conditions: AVCC0 and VCC can be set individually within the operating range when VCC \ge 2.0 V AVCC0 = VCC when VCC < 2.0 V.

Note 2. When powering on the VCC and AVCC0 pins, power them on at the same time or the VCC pin first and then the AVCC0 pin.

Figure 2.13 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 2.7 V when middle drive output is selected (reference data)

Figure 2.14 V_{OH}/V_{OL} and I_{OH}/I_{OL} temperature characteristics at VCC = 3.3 V when middle drive output is selected (reference data)

Table 2.11Operating and standby current (1) (2 of 2)Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Parameter					Symbol	Typ* ⁹	Max	Unit	Test Conditions
Supply current*1	Low-voltage mode*3	Normal mode	All peripheral clock disabled, while (1) code executing from flash* ⁵	ICLK = 4 MHz	I _{CC}	1.5	-	μA	*7
			All peripheral clock disabled, CoreMark code executing from flash*5	ICLK = 4 MHz	-	1.4	-		
			All peripheral clock enabled, while (1) code executing from flash* ⁵	ICLK = 4 MHz		2.3	-		*8
			All peripheral clock enabled, code executing from flash* ⁵	ICLK = 4 MHz		-	4.0		
		Sleep mode	All peripheral clock disabled*5	ICLK = 4 MHz		0.9	-		*7
			All peripheral clock enabled*5	ICLK = 4 MHz		1.7	-		*8
	Subosc- speed mode* ⁴	Normal mode	All peripheral clock disabled, while (1) code executing from flash* ⁵	ICLK = 32.768 kHz	I _{CC}	5.9	-		*7
			All peripheral clock enabled, while (1) code executing from flash* ⁵	ICLK = 32.768 kHz		13.0	-		*8
			All peripheral clock enabled, code executing from flash* ⁵	ICLK = 32.768 kHz		128.3 (17.8)* ¹⁰	163.7		
		Sleep mode	All peripheral clock disabled*5	ICLK = 32.768 kHz	1	3.2	-		*7
			All peripheral clock enabled*5	ICLK = 32.768 kHz	1	10.0	-		*8

Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state.

Note 2. The clock source is HOCO.

Note 3. The clock source is MOCO.

Note 4. The clock source is the sub-clock oscillator.

Note 5. This does not include BGO operation.

Note 6. This is the increase for programming or erasure of the ROM or flash memory for data storage during program execution.

Note 7. PCLKB and PCLKD are set to divided by 64.

Note 8. PCLKB and PCLKD are the same frequency as that of ICLK.

Note 9. VCC = 3.3 V.

Note 10. MOCO and DAC is stopped.

S128

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions	
Operational Low power mode 1-unit operating		I _{AMP}	-	1.0	2.0	μA	-	
operating		2-unit operating		-	1.5	3.0	μA	-
current		3-unit operating		-	2.0	3.5	μA	-
		4-unit operating		-	2.5	4.5	μA	-
	High speed mode	1-unit operating		-	200	280	μA	-
		2-unit operating		-	320	450	μA	-
		3-unit operating		-	440	620	μA	-
		4-unit operating		-	560	790	μA	-
USB operating current During USB communication under the following settings and conditions: • Function controller is in Full-Speed mode and - Bulk OUT transfer is (64 bytes) × 1 - Bulk IN transfer is (64 bytes) × 1 • Host device is connected by a 1-meter USB cable from the USB port		I _{USBF} *2	-	3.6 (VCC) 1.1 (VCC_USB)*4	-	mA	-	
 During suspended state under the following setting and conditions: Function controller is in Full-Speed mode (the USB_DP pin is pulled up) Software Standby mode Host device is connected by a 1-meter USB cable from the USB port. 		I _{SUSP} * ³	-	0.35 (VCC) 170 (VCC_USB)*4	-	μΑ	-	
PWM Delay	PCLKD = 64 MHz, DLL M	ode = 5-bit mode	I _{CC}	-	3.3	4.6	mA	-
Generation Circuit current	PCLKD = 64 MHz, DLL M	ode = 4-bit mode		-	3.0	4.2	mA	-
	PCLKD = 32 MHz, DLL M	ode = 5-bit mode]	-	2.0	2.8	mA	-

Table 2.13 Operating and standby current (3)

Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Note 1. The reference power supply current is included in the power supply current value for D/A conversion.

Note 2. Current is consumed only by the USBFS.

Note 3. Includes the current supplied from the pull-up resistor of the USB_DP pin to the pull-down resistor of the host device, in addition to the current consumed by the MCU in the suspended state.

Note 4. When VCC = VCC_USB = 3.3 V.

Note 5. When the MCU is in Software Standby mode or the MSTPCRD.MSTPD16 (ADC140 module-stop bit) is in the module-stop state.

Table 2.18 Operation frequency in low-speed mode

Conditions: VCC = AVCC0 = 1.8 to 5.5 V

Parameter		Symbol	Min	Тур	Max* ⁵	Unit	
Operation	System clock (ICLK)*1, *2, *4	1.8 to 5.5 V	f	0.032768	-	1	MHz
frequency	Peripheral module clock (PCLKB)*4	1.8 to 5.5 V		-	-	1	
	Peripheral module clock (PCLKD)*3, *4	1.8 to 5.5 V		-	-	1	

Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory.

Note 3. The lower-limit frequency of PCLKD is 1 MHz when the A/D converter is in use.

- Note 4. See section 8, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKB, and PCLKD.
- Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed operation, see Table 2.21, Clock timing.

Table 2.19 Operation frequency in low-voltage mode

Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Parameter		Symbol	Min	Тур	Max* ⁵	Unit	
Operation	System clock (ICLK)*1, *2, *4	1.6 to 5.5 V	f	0.032768	-	4	MHz
frequency	Peripheral module clock (PCLKB)*4	1.6 to 5.5 V		-	-	4	
	Peripheral module clock (PCLKD)*3, *4	1.6 to 5.5 V		-	-	4	

Note 1. The lower-limit frequency of ICLK is 1 MHz while programming or erasing the flash memory. When using ICLK for programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

- Note 2. The frequency accuracy of ICLK must be ±3.5% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.
- Note 3. The lower-limit frequency of PCLKD is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in use.
- Note 4. See section 8, Clock Generation Circuit in User's Manual for the relationship of frequencies between ICLK, PCLKB, and PCLKD.
- Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed operation, see Table 2.21, Clock timing.

Table 2.20 Operation frequency in Subosc-speed mode

Conditions: VCC = AVCC0 = 1.8 to 5.5 V

Parameter		Symbol	Min	Тур	Max	Unit	
Operation	System clock (ICLK)*1, *3	1.8 to 5.5 V	f	27.8528	32.768	37.6832	kHz
frequency	Peripheral module clock (PCLKB)*3	1.8 to 5.5 V		-	-	37.6832	
	Peripheral module clock (PCLKD)* ^{2, *3}	1.8 to 5.5 V		-	-	37.6832	

Note 1. Programming and erasing the flash memory is not possible.

Note 2. The 14-bit A/D converter cannot be used.

Note 3. See section 8, Clock Generation Circuit in User's Manual for the relationship between ICLK, PCLKB, and PCLKD frequencies.

Note 2. The frequency accuracy of ICLK must be ±3.5% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

2.3.2 Clock Timing

Table 2.21Clock timing (1 of 2)

Parameter		Symbol	Min	Тур	Max	Unit	Test conditions
EXTAL external clock input cycle t	ime	t _{Xcyc}	50	-	-	ns	Figure 2.25
EXTAL external clock input high p	ulse width	t _{XH}	20	-	-	ns	1
EXTAL external clock input low put	Ilse width	t _{XL}	20	-	-	ns	7
EXTAL external clock rising time		t _{Xr}	-	-	5	ns	7
EXTAL external clock falling time		t _{Xf}	-	-	5	ns	7
EXTAL external clock input wait tin	me* ¹	t _{EXWT}	0.3	-	-	μs	-
EXTAL external clock input freque	ncy	f _{EXTAL}	-	-	20	MHz	2.4 ≤ VCC ≤ 5.5
			-	-	8		1.8 ≤ VCC < 2.4
			-	-	1		1.6 ≤ VCC < 1.8
Main clock oscillator oscillation fre	quency	f _{MAIN}	1	-	20	MHz	2.4 ≤ VCC ≤ 5.5
			1	-	8		1.8 ≤ VCC < 2.4
			1	-	4		1.6 ≤ VCC < 1.8
LOCO clock oscillation frequency		f _{LOCO}	27.8528	32.768	37.6832	kHz	-
LOCO clock oscillation stabilizatio	n time	t _{LOCO}	-	-	100	μs	Figure 2.26
IWDT-dedicated clock oscillation f	requency	f _{ILOCO}	12.75	15	17.25	kHz	-
MOCO clock oscillation frequency		f _{MOCO}	6.8	8	9.2	MHz	-
MOCO clock oscillation stabilization	on time	t _{MOCO}	-	-	1	μs	-
HOCO clock oscillation frequency		f _{HOCO24}	23.64	24	24.36	MHz	Ta = -40 to -20°C 1.8 ≤ VCC ≤ 5.5
			22.68	24	25.32		Ta = -40 to -85°C 1.6 ≤ VCC < 1.8
			23.76	24	24.24		Ta = -20 to 85°C 1.8 ≤ VCC ≤ 5.5
			23.52	24	24.48		Ta = 85 to 105°C 2.4 ≤ VCC ≤ 5.5
		f _{HOCO32}	31.52	32	32.48		Ta = -40 to -20°C 1.8 ≤ VCC ≤ 5.5
			30.24	32	33.76		Ta = -40 to 85°C 1.6 ≤ VCC < 1.8
			31.68	32	32.32		Ta = -20 to 85°C 1.8 ≤ VCC ≤ 5.5
			31.36	32	32.64		Ta = 85 to 105°C 2.4 ≤ VCC ≤ 5.5
		f _{HOCO48*} 3	47.28	48	48.72		Ta = -40 to -20°C 1.8 ≤ VCC ≤ 5.5
			47.52	48	48.48		Ta = -20 to 85°C 1.8 ≤ VCC ≤ 5.5
			47.04	48	48.96		Ta = -40 to 105°C 2.4 ≤ VCC ≤ 5.5
		f _{HOCO64*} 4	63.04	64	64.96		Ta = -40 to -20°C 2.4 ≤ VCC ≤ 5.5
			63.36	64	64.64		Ta = -20 to 85°C 2.4 ≤ VCC ≤ 5.5
			62.72	64	65.28		Ta = 85 to 105°C 2.4 ≤ VCC ≤ 5.5
HOCO clock oscillation stabilization time* ^{5, *6}	Except low- voltage mode	t _{HOCO24} t _{HOCO32}	-	-	37.1	μs	Figure 2.27
		t _{HOCO48}	-	-	43.3		
		t _{HOCO64}	-	-	80.6		
	Low-voltage mode	^t носо24 tносо32 t _{носо48} t _{носо64}	-	-	100.9		
Sub-clock oscillator oscillation free	quency	f _{SUB}	-	32.768	-	kHz	-

Note 1. The differences among lines in 1-LSB resolution are normalized by this value.

Note 2. The drive capability of the PWM delay generation circuit output port is middle drive.

CAC Timing 2.3.8

Table 2.32 CAC timing

Paramete	er		Symbol	Min	Тур	Max	Unit	Test conditions
CAC	CACREF input pulse width	$t_{Pcyc} *^1 \le t_{cac} *^2$	t _{CACREF}	$4.5 \times t_{cac} + 3 \times t_{Pcyc}$	-	-	ns	-
		$t_{Pcyc}^{*1} > t_{cac}^{*2}$		$5 \times t_{cac} + 6.5 \times t_{Pcyc}$	-	-	ns	

Note 1. t_{Pcyc} : PCLKB cycle.

Note 2. t_{cac}: CAC count clock source cycle.

2.3.9 SCI Timing

Table 2.33SCI timing (1)Conditions: VCC = AVCC0 = 1.6 to 5.5 V

Param	eter			Symbol	Min	Max	Unit ^{*1}	Test conditions
SCI	Input clock cycle	Asynchro	nous	t _{Scyc}	4	-	t _{Pcyc}	Figure 2.41
		Clock syn	chronous		6	-		
	Input clock pulse wid	th		t _{SCKW}	0.4	0.6	t _{Scyc}	
	Input clock rise time			t _{SCKr}	-	20	ns	
	Input clock fall time			t _{SCKf}	-	20	ns	
	Output clock cycle	Asynchro	nous	t _{Scyc}	6	-	t _{Pcyc}	
		Clock syn	chronous		4	-		
	Output clock pulse w	idth		t _{SCKW}	0.4	0.6	t _{Scyc}	
	Output clock rise time	e	1.8V or above	t _{SCKr}	-	20	ns	
			1.6V or above		-	30		
	Output clock fall time		1.8V or above	t _{SCKf}	-	20	ns	
			1.6V or above		-	30		
	Transmit data delay	Clock	1.8V or above	t _{TXD}	-	40	ns	Figure 2.42
	(master) synchr nous	synchro nous	1.6V or above		-	45		-
	Transmit data delay	Clock	2.7V or above	-	-	55	ns	
	(slave)	synchro	2.4V or above		-	60		
		11000	1.8V or above		-	100		
			1.6V or above		-	125		
	Receive data setup	Clock	2.7V or above	t _{RXS}	45	-	ns	
	time (master)	synchro	2.4V or above		55	-		
		11000	1.8V or above		90	-		
			1.6V or above		110	-		
	Receive data setup	Clock	2.7V or above		40	-	ns	
	time (slave) sy	synchro nous	1.6V or above	1	45	-		
	Receive data hold Clock stime (master)		nchronous t _{RXH}		5	-	ns	
	Receive data hold time (slave)	Clock syn	chronous	t _{RXH}	40	-	ns	

Note 1. t_{Pcyc}: PCLKB cycle.

-

Table 2.41 A/D conversion characteristics (1) in high-speed A/D conversion mode (2 of 2)

Conditions: VCC = AVCC0 = 4.5 to 5.5 V, VREFH0 = 4.5 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter	Min	Тур	Max	Unit	Test Conditions
Offset error	-	±2.0	±18	LSB	High-precision channel
			±24.0	LSB	Other than above
Full-scale error	-	±3.0	±18	LSB	High-precision channel
			±24.0	LSB	Other than above
Quantization error	-	±0.5	-	LSB	-
Absolute accuracy	-	±5.0	±20	LSB	High-precision channel
			±32.0	LSB	Other than above
DNL differential nonlinearity error	-	±4.0	-	LSB	-
INL integral nonlinearity error	-	±4.0	±12.0	LSB	-

Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Table 2.42 A/D conversion characteristics (2) in high-speed A/D conversion mode (1 of 2)

Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter			Min	Тур	Мах	Unit	Test Conditions
Frequency			1	-	48	MHz	-
Analog input capacitance		Cs	-	-	15	pF	High-precision channel
			-	-	30	pF	Normal-precision channel
Analog input resistance		Rs	-	-	2.5	kΩ	-
Analog input voltage rang	е	Ain	0	-	VREFH0	V	-
12-bit mode							
Resolution			-	-	12	Bit	-
Conversion time ^{*1} (Operation at PCLKD = 48 MHz)	Permissible source imp Max. = 0.3	e signal edance kΩ	0.94	-	-	μs	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh
			1.50	-	-	μs	Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h
Offset error			-	±0.5	±4.5	LSB	High-precision channel
					±6.0	LSB	Other than above
Full-scale error			-	±0.75	±4.5	LSB	High-precision channel
					±6.0	LSB	Other than above
Quantization error			-	±0.5	-	LSB	-
Absolute accuracy			-	±1.25	±5.0	LSB	High-precision channel
					±8.0	LSB	Other than above
DNL differential nonlinear	ity error		-	±1.0	-	LSB	-
INL integral nonlinearity e	rror		-	±1.0	±3.0	LSB	-
14-bit mode							
Resolution			-	-	14	Bit	-
Conversion time*1 (Operation at PCLKD = 48 MHz)	Permissible source imp Max. = 0.3	e signal edance kΩ	1.06	-	-	μs	High-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 0Dh
			1.63	-	-	μs	Normal-precision channel ADCSR.ADHSC = 0 ADSSTRn.SST[7:0] = 28h

Table 2.43 A/D conversion characteristics (3) in high-speed A/D conversion mode (2 of 2)

Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter	Min	Тур	Max	Unit	Test Conditions
Offset error	-	±2.0	±18	LSB	High-precision channel
			±24.0	LSB	Other than above
Full-scale error	-	±3.0	±18	LSB	High-precision channel
			±24.0	LSB	Other than above
Quantization error	-	±0.5	-	LSB	-
Absolute accuracy	-	±5.0	±20	LSB	High-precision channel
			±32.0	LSB	Other than above
DNL differential nonlinearity error	-	±4.0	-	LSB	-
INL integral nonlinearity error	-	±4.0	±12.0	LSB	-

Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Table 2.44 A/D conversion characteristics (4) in low-power A/D conversion mode (1 of 2)

Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter			Min	Тур	Мах	Unit	Test Conditions
Frequency			1	-	24	MHz	-
Analog input capacitance		Cs	-	-	15	pF	High-precision channel
			-	-	30	pF	Normal-precision channel
Analog input resistance		Rs	-	-	2.5	kΩ	-
Analog input voltage rang	е	Ain	0	-	VREFH0	V	-
12-bit mode							·
Resolution			-	-	12	Bit	-
Conversion time*1 (Operation at PCLKD = 24 MHz)	Permissible source imp Max. = 1.1	e signal edance kΩ	2.25	-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh
			3.38	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h
Offset error			-	±0.5	±4.5	LSB	High-precision channel
					±6.0	LSB	Other than above
Full-scale error			-	±0.75	±4.5	LSB	High-precision channel
					±6.0	LSB	Other than above
Quantization error			-	±0.5	-	LSB	-
Absolute accuracy			-	±1.25	±5.0	LSB	High-precision channel
					±8.0	LSB	Other than above
DNL differential nonlinear	ity error		-	±1.0	-	LSB	-
INL integral nonlinearity e	rror		-	±1.0	±3.0	LSB	-
14-bit mode							
Resolution			-	-	14	Bit	-
Conversion time*1 (Operation at PCLKD = 24 MHz)	Permissible source imp Max. = 1.1	e signal edance kΩ	2.50	-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh
			3.63	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h

Table 2.44 A/D conversion characteristics (4) in low-power A/D conversion mode (2 of 2)

Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter	Min	Тур	Max	Unit	Test Conditions
Offset error	-	±2.0	±18	LSB	High-precision channel
			±24.0	LSB	Other than above
Full-scale error	-	±3.0	±18	LSB	High-precision channel
			±24.0	LSB	Other than above
Quantization error	-	±0.5	-	LSB	-
Absolute accuracy	-	±5.0	±20	LSB	High-precision channel
			±32.0	LSB	Other than above
DNL differential nonlinearity error	-	±4.0	-	LSB	-
INL integral nonlinearity error	-	±4.0	±12.0	LSB	-

Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Table 2.45 A/D conversion characteristics (5) in low-power A/D conversion mode (1 of 2)

Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V, VSS = AVSS0 = VREFL0 = 0V Reference voltage range applied to the VREFH0 and VREFL0.

Parameter		Min	Тур	Max	Unit	Test Conditions	
Frequency			1	-	16	MHz	-
Analog input capacitance		Cs	-	-	15	pF	High-precision channel
			-	-	30	pF	Normal-precision channel
Analog input resistance		Rs	-	-	2.5	kΩ	-
Analog input voltage rang	е	Ain	0	-	VREFH0	V	-
12-bit mode							•
Resolution			-	-	12	Bit	-
Conversion time*1 (Operation at PCLKD = 16 MHz)	Conversion time*1 Permissible signation (Operation at source impedat PCLKD = 16 MHz) Max. = 2.2 kΩ		3.38	-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh
			5.06	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h
Offset error			-	±0.5	±4.5	LSB	High-precision channel
					±6.0	LSB	Other than above
Full-scale error			-	±0.75	±4.5	LSB	High-precision channel
					±6.0	LSB	Other than above
Quantization error			-	±0.5	-	LSB	-
Absolute accuracy			-	±1.25	±5.0	LSB	High-precision channel
					±8.0	LSB	Other than above
DNL differential nonlinear	ity error		-	±1.0	-	LSB	-
INL integral nonlinearity e	rror		-	±1.0	±3.0	LSB	-
14-bit mode							
Resolution			-	-	14	Bit	-
Conversion time*1 (Operation at PCLKD = 16 MHz)	Permissible source imp Max. = 2.2	e signal edance kΩ	3.75	-	-	μs	High-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 0Dh
			5.44	-	-	μs	Normal-precision channel ADCSR.ADHSC = 1 ADSSTRn.SST[7:0] = 28h

Table 2.47 A/D conversion characteristics (7) in low-power A/D conversion mode (2 of 2)

Conditions: VCC = AVCC0 = 1.6 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.6 to 5.5 V, VSS = AVSS0 = VREFL0 = 0 Reference voltage range applied to the VREFH0 and VREFL0.

Parameter	Min	Тур	Max	Unit	Test Conditions
Offset error	-	±4.0	±30.0	LSB	High-precision channel
			±40.0	LSB	Other than above
Full-scale error	-	±6.0	±30.0	LSB	High-precision channel
			±40.0	LSB	Other than above
Quantization error	-	±0.5	-	LSB	-
Absolute accuracy	-	±12.0	±32.0	LSB	High-precision channel
			±48.0	LSB	Other than above
DNL differential nonlinearity error	-	±4.0	-	LSB	-
INL integral nonlinearity error	-	±4.0	±12.0	LSB	-

Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for the test conditions.

Table 2.48 14-bit A/D converter channel classification
--

Classification	Channel	Conditions	Remarks	
High-precision channel	AN000 to AN013	AVCC0 = 1.6 to 5.5 V	Pins AN000 to AN013 cannot be used as general I/O, IRQ2 input, or for TS transmission when the A/D converter is in use.	
Normal-precision channel	AN016 to AN022		-	
Internal reference voltage input channel	Internal reference voltage	AVCC0 = 2.0 to 5.5 V	-	
Temperature sensor input channel	Temperature sensor output	AVCC0 = 2.0 to 5.5 V	-	

Table 2.49 A/D internal reference voltage characteristics

Conditions: VCC = AVCC0 = VREFH0 = 2.0 to 5.5 V*1

Parameter	Min	Тур	Max	Unit	Test conditions
Internal reference voltage input channel* ²	1.36	1.43	1.50	V	-
Sampling time	5.0	-	-	μs	-

Note 1. The internal reference voltage cannot be selected for input channels when AVCC0 < 2.0 V.

Note 2. The 14-bit A/D internal reference voltage indicates the voltage when the internal reference voltage is input to the 14-bit A/D converter.

Table 2.61 Code flash characteristics (3)

Middle-speed operating mode

Conditions: VCC = AVCC0 = 1.8 to 5.5 V, Ta = -40 to $+85^{\circ}$ C

			ICLK = 1 MHz			ICLK = 8 MHz			
Parameter		Symbol	Min	Тур	Max	Min	Тур	Max	Unit
Programming time	4 bytes	t _{P4}	-	157	1411	-	101	966	μs
Erasure time	1 KB	t _{E1K}	-	9.10	289	-	6.10	228	ms
Blank check time	2 bytes	t _{BC4}	-	-	87.7	-	-	52.5	μs
	1 KB	t _{BC1K}	-	-	1930	-	-	414	μs
Erase suspended time		t _{SED}	-	-	32.7	-	-	21.6	μs
Startup area switching setting time		t _{SAS}	-	22.8	592	-	14.2	465	ms
Access window time		t _{AWS}	-	22.8	592	-	14.2	465	ms
OCD/serial programmer	ID setting time	t _{OSIS}	-	22.8	592	-	14.2	465	ms
Flash memory mode transition wait time 1		t _{DIS}	2	-	-	2	-	-	μs
Flash memory mode tra time 2	nsition wait	t _{MS}	720	-	-	720	-	-	ns

Note 1. Does not include the time until each operation of the flash memory is started after instructions are executed by the software.

Note 2. The lower-limit frequency of ICLK is 1 MHz during programming or erasing the flash memory. When using ICLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note 3. The frequency accuracy of ICLK must be ±3.5% during programming or erasing the flash memory. Confirm the frequency accuracy of the clock source.

2.13.2 Data Flash Memory Characteristics

Table 2.62Data flash characteristics (1)

Parameter		Symbol	Min	Тур	Max	Unit	Conditions
Reprogramming/erasure cycle*1		N _{DPEC}	100000	1000000	-	Times	-
Data hold time	me After 10000 times of N _{DPEC}		20*2, *3	-	-	Year	Ta = +85°C
	After 100000 times of N _{DPEC}		5* ^{2, *3}	-	-	Year	
	After 1000000 times of N _{DPEC}		-	1* ^{2, *3}	-	Year	Ta = +25°C

Note 1. The reprogram/erase cycle is the number of erasure for each block. When the reprogram/erase cycle is n times (n = 100,000), erasing can be performed n times for each block. For instance, when 1-byte programming is performed 1,000 times for different addresses in 1-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasure is not enabled. (overwriting is prohibited.)

Note 2. Characteristics when using the flash memory programmer and the self-programming library provided by Renesas Electronics.

Note 3. These results are obtained from reliability testing.

Table 2.65SWD characteristics (1) (2 of 2)Conditions: VCC = AVCC0 = 2.4 to 5.5 V

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
SWDIO setup time	t _{SWDS}	16	-	-	ns	Figure 2.70
SWDIO hold time	t _{SWDH}	16	-	-	ns	
SWDIO data delay time	t _{SWDD}	2	-	70	ns	

Table 2.66 SWD characteristics (2)

Conditions: VCC	= AVCC0 =	= 1.6 to 2.4 V	

Parameter	Symbol	Min	Тур	Max	Unit	Test conditions
SWCLK clock cycle time	t _{SWCKcyc}	250	-	-	ns	Figure 2.69
SWCLK clock high pulse width	t _{SWCKH}	120	-	-	ns	
SWCLK clock low pulse width	t _{SWCKL}	120	-	-	ns	
SWCLK clock rise time	t _{SWCKr}	-	-	5	ns	
SWCLK clock fall time	t _{SWCKf}	-	-	5	ns	
SWDIO setup time	t _{SWDS}	50	-	-	ns	Figure 2.70
SWDIO hold time	t _{SWDH}	50	-	-	ns	
SWDIO data delay time	t _{SWDD}	2	-	150	ns	

Figure 2.69 SWD SWCLK timing

S128 Microcontroller Datasheet

Publication Date: Rev.1.00 Mar 10, 2017

Published by: Renesas Electronics Corporation