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Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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FPGA Array Architecture in Low Power Flash Devices
Array Coordinates
During many place-and-route operations in the Microsemi Designer software tool, it is possible to set
constraints that require array coordinates. Table 1-2 provides array coordinates of core cells and memory
blocks for IGLOO and ProASIC3 devices. Table 1-3 provides the information for IGLOO PLUS devices.
Table 1-4 on page 17 provides the information for IGLOO nano and ProASIC3 nano devices. The array
coordinates are measured from the lower left (0, 0). They can be used in region constraints for specific
logic groups/blocks, designated by a wildcard, and can contain core cells, memories, and I/Os.
I/O and cell coordinates are used for placement constraints. Two coordinate systems are needed
because there is not a one-to-one correspondence between I/O cells and core cells. In addition, the I/O
coordinate system changes depending on the die/package combination. It is not listed in Table 1-2. The
Designer ChipPlanner tool provides the array coordinates of all I/O locations. I/O and cell coordinates are
used for placement constraints. However, I/O placement is easier by package pin assignment. 
Figure 1-9 on page 17 illustrates the array coordinates of a 600 k gate device. For more information on
how to use array coordinates for region/placement constraints, see the Designer User's Guide or online
help (available in the software) for software tools.

Table 1-2 • IGLOO and ProASIC3 Array Coordinates

Device

VersaTiles Memory Rows Entire Die

Min. Max. Bottom Top Min. Max.

IGLOO
ProASIC3/
ProASIC3L x y x y (x, y) (x, y) (x, y) (x, y)

AGL015 A3P015 3 2 34 13 None None (0, 0) (37, 15)

AGL030 A3P030 3 3 66 13 None None (0, 0) (69, 15)

AGL060 A3P060 3 2 66 25 None (3, 26) (0, 0) (69, 29)

AGL125 A3P125 3 2 130 25 None (3, 26) (0, 0) (133, 29)

AGL250 A3P250/L 3 2 130 49 None (3, 50) (0, 0) (133, 53)

AGL400 A3P400 3 2 194 49 None (3, 50) (0, 0) (197, 53)

AGL600 A3P600/L 3 4 194 75 (3, 2) (3, 76) (0, 0) (197, 79)

AGL1000 A3P1000/L 3 4 258 99 (3, 2) (3, 100) (0, 0) (261, 103)

AGLE600 A3PE600/L,
RT3PE600L

3 4 194 75 (3, 2) (3, 76) (0, 0) (197, 79)

A3PE1500 3 4 322 123 (3, 2) (3, 124) (0, 0) (325, 127)

AGLE3000 A3PE3000/L,
RT3PE3000L

3 6 450 173 (3, 2) 
or 

(3, 4) 

(3, 174) 
or 

(3, 176)

(0, 0) (453, 179)

Table 1-3 • IGLOO PLUS Array Coordinates

Device

VersaTiles Memory Rows Entire Die

Min. Max. Bottom Top Min. Max.

IGLOO PLUS x y x y (x, y) (x, y) (x, y) (x, y)

AGLP030 2 3 67 13 None None (0, 0) (69, 15)

AGLP060 2 2 67 25 None (3, 26) (0, 0) (69, 29)

AGLP125 2 2 131 25 None (3, 26) (0, 0) (133, 29)
16 Revision 4
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List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

August 2012 The "I/O State of Newly Shipped Devices" section is new (SAR 39542). 14

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 1-1 • Flash-Based
FPGAs.

10

Figure 1-2 • IGLOO and ProASIC3 nano Device Architecture Overview with Two I/O
Banks (applies to 10 k and 30 k device densities, excluding IGLOO PLUS devices)
through Figure 1-5 • IGLOO, IGLOO nano, ProASIC3 nano, and ProASIC3/L Device
Architecture Overview with Four I/O Banks (AGL600 device is shown) are new.

11, 12

Table 1-4 • IGLOO nano and ProASIC3 nano Array Coordinates is new. 17

v1.3
(October 2008)

The title of this document was changed from "Core Architecture of IGLOO and
ProASIC3 Devices" to "FPGA Array Architecture in Low Power Flash Devices."

9

The "FPGA Array Architecture Support" section was revised to include new families
and make the information more concise.

10

Table 1-2 • IGLOO and ProASIC3 Array Coordinates was updated to include Military
ProASIC3/EL and RT ProASIC3 devices.

16

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 1-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V. 
• The number of PLLs for ProASIC3E was changed from five to six.

10

v1.1
(March 2008)

Table 1-1 • Flash-Based FPGAs and the accompanying text was updated to include
the IGLOO PLUS family. The "IGLOO Terminology" section and "Device Overview"
section are new.

10

The "Device Overview" section was updated to note that 15 k devices do not
support SRAM or FIFO.

11

Figure 1-6 • IGLOO PLUS Device Architecture Overview with Four I/O Banks is
new.

13

Table 1-2 • IGLOO and ProASIC3 Array Coordinates was updated to add A3P015
and AGL015.

16

Table 1-3 • IGLOO PLUS Array Coordinates is new. 16
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Flash*Freeze Technology and Low Power Modes
Table 2-4 summarizes the Flash*Freeze mode implementations.

IGLOO, ProASIC3L, and RT ProASIC3 I/O State in Flash*Freeze 
Mode
In IGLOO and ProASIC3L devices, when the device enters Flash*Freeze mode, I/Os become tristated. If
the weak pull-up or pull-down feature is used, the I/Os will maintain the configured weak pull-up or pull-
down status. This feature enables the design to set the I/O state to a certain level that is determined by
the pull-up/-down configuration. 
Table 2-5 shows the I/O pad state based on the configuration and buffer type.
Note that configuring weak pull-up or pull-down for the FF pin is not allowed. The FF pin can be
configured as a Schmitt trigger input in IGLOOe, IGLOO nano, IGLOO PLUS, and ProASIC3EL devices.

Table 2-4 • Flash*Freeze Mode Usage

Flash*Freeze 
Mode Type Description

Flash*Freeze 
Pin State

Instantiate 
ULSICC Macro 

LSICC 
Signal Operating Mode

1 Flash*Freeze mode is
controlled only by the
FF pin.

Deasserted No N/A Normal operation

Asserted No N/A Flash*Freeze mode

2 Flash*Freeze mode is
controlled by the FF
pin and LSICC signal.

"Don’t care" Yes Deasserted Normal operation

Deasserted Yes "Don’t care" Normal operation

Asserted Yes Asserted Flash*Freeze mode

Note: Refer to Table 2-3 on page 26 for Flash*Freeze pin and LSICC signal assertion and deassertion
values.

Table 2-5 • IGLOO, ProASIC3L, and RT ProASIC3 Flash*Freeze Mode (type 1 and type 2)—I/O 
Pad State

Buffer Type
I/O Pad Weak 
Pull-Up/-Down I/O Pad State in Flash*Freeze Mode

Input/Global Enabled Weak pull-up/pull-down*

Disabled Tristate*

Output Enabled Weak pull-up/pull-down

Disabled Tristate

Bidirectional / Tristate
Buffer 

E = 0
(input/tristate)

Enabled Weak pull-up/pull-down*

Disabled Tristate*

E = 1 (output) Enabled Weak pull-up/pull-down

Disabled Tristate

* Internal core logic driven by this input/global buffer will be tied High as long as the device is in
Flash*Freeze mode.
28 Revision 4



ProASIC3L FPGA Fabric User’s Guide
• The device is reset upon exiting Flash*Freeze mode or internal state saving is not required.
• State saving is required, but data and clock management is performed external to the FPGA. In

other words, incoming data is externally guaranteed and held valid prior to entering Flash*Freeze
mode.

Type 2 Flash*Freeze mode is ideally suited for applications with the following design criteria:
• Entering Flash*Freeze mode is dependent on an internal or external signal in addition to the

external FF pin.
• State saving is required and incoming data is not externally guaranteed valid.
• The designer wants to use his/her own Flash*Freeze management IP for clock and data

management.
• The designer wants to use his/her own Flash*Freeze management logic for clock and data

management.
• Internal housekeeping is required prior to entering Flash*Freeze mode. Housekeeping activities

may include loading data to SRAM, system shutdown, completion of current task, or ensuring
valid Flash*Freeze pin assertion.

There is no downside to type 2 mode, and Microsemi's Flash*Freeze management IP offers a very low
tile count clock and data management solution. Microsemi's recommendation for most designs is to use
type 2 Flash*Freeze mode with Flash*Freeze management IP. 

Design Solutions
Clocks

• Microsemi recommends using a completely synchronous design in Type 2 mode with
Flash*Freeze management IP cleanly gating all internal and external clocks. This will prevent
narrow pulses upon entrance and exit from Flash*Freeze mode (Figure 2-5 on page 30).

• Upon entering Flash*Freeze mode, external clocks become tied off High, internal to the clock pin
(unless hold state is used on IGLOO nano or IGLOO PLUS), and PLLs are turned off. Any clock
that is externally Low will realize a Low to High transition internal to the device while entering
Flash*Freeze. If clocks will float during Flash*Freeze mode, Microsemi recommends using the
weak pull-up feature. If clocks will continue to drive the device during Flash*Freeze mode, the
clock gating (filter) available in Flash*Freeze management IP can help to filter unwanted narrow
clock pulses upon Flash*Freeze mode entry and exit.

• Clocks may continue to drive FPGA pins while the device is in Flash*Freeze mode, with virtually
no power consumption. The weak pull-up/-down configuration will result in unnecessary power
consumption if used in this scenario.

• Floating clocks can cause totem pole currents on the input I/O circuitry when the device is in
active mode. If clocks are externally gated prior to entering Flash*Freeze mode, Microsemi
recommends gating them to a known value (preferably '1', to avoid a possible narrow pulse upon
Flash*Freeze mode exit), and not leaving them floating. However, during Flash*Freeze mode, all
inputs and clocks are internally tied off to prevent totem pole currents, so they can be left floating. 

• Upon exiting Flash*Freeze mode, the design must allow maximum acquisition time for the PLL to
acquire the lock signal, and for a PLL clock to become active.  If a PLL output clock is used as the
primary clock for Flash*Freeze management IP, it is important to note that the clock gating circuit
will only release other clocks after the primary PLL output clock becomes available. 
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ProASIC3L FPGA Fabric User’s Guide
51900147-2/5.07 In the following sentence, located in the "Flash*Freeze Mode" section, the bold text
was changed from active high to active Low.
The Flash*Freeze pin (active low) is a dedicated pin used to enter or exit
Flash*Freeze mode directly, or alternatively the pin can be routed internally to the
FPGA core to allow the user's logic to decide if it is safe to transition to this mode.

24

Figure 2-2 • Flash*Freeze Mode Type 1 – Timing Diagram was updated. 25

Information about ULSICC was added to the "Prototyping for IGLOO and
ProASIC3L Devices Using ProASIC3" section.

2-21

51900147-1/3.07 In the "Flash*Freeze Mode" section, "active high" was changed to "active low." 24

The "Prototyping for IGLOO and ProASIC3L Devices Using ProASIC3" section was
updated with information concerning the Flash*Freeze pin.

2-21

Date Changes Page
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Global Resources in Low Power Flash Devices
Figure 3-2 • Simplified VersaNet Global Network (30 k gates and below)

Figure 3-3 • Simplified VersaNet Global Network (60 k gates and above)
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Global Resources in Low Power Flash Devices
Global Macro and Placement Selections
Low power flash devices provide the flexibility of choosing one of the three global input pad locations
available to connect to a global / quadrant global network. For 60K gate devices and above, if the
single-ended I/O standard is chosen, there is flexibility to choose one of the global input pads (the first,
second, and fourth input). Once chosen, the other I/O locations are used as regular I/Os. If the differential
I/O standard is chosen, the first and second inputs are considered as paired, and the third input is paired
with a regular I/O. The user then has the choice of selecting one of the two sets to be used as the global
input source. There is also the option to allow an internal clock signal to feed the global network. A
multiplexer tree selects the appropriate global input for routing to the desired location. Note that the
global I/O pads do not need to feed the global network; they can also be used as regular I/O pads.

Hardwired I/O Clock Source
Hardwired I/O refers to global input pins that are hardwired to the multiplexer tree, which directly
accesses the global network. These global input pins have designated pin locations and are indicated
with the I/O naming convention Gmn (m refers to any one of the positions where the global buffers is
available, and n refers to any one of the three global input MUXes and the pin number of the associated
global location, m). Choosing this option provides the benefit of directly connecting to the global buffers,
which provides less delay. See Figure 3-11 for an example illustration of the connections, shown in red. If
a CLKBUF macro is initiated, the clock input can be placed at one of nine dedicated global input pin
locations: GmA0, GmA1, GmA2, GmB0, GmB1, GmB2, GmC0, GmC1, or GmC2. Note that the
placement of the global will determine whether you are using chip global or quadrant global. For
example, if the CLKBIF is placed in one of the GF pin locations, it will use the chip global network; if the
CLKBIF is placed in one of the GA pin locations, it will use quadrant global network. This is shown in
Figure 3-12 on page 65 and Figure 3-13 on page 65.

Figure 3-11 • CLKBUF Macro
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YB and YC are identical to GLB and GLC, respectively, with the exception of a higher selectable final 
output delay. The SmartGen PLL Wizard will configure these outputs according to user specifications and 
can enable these signals with or without the enabling of Global Output Clocks.
The above signals can be enabled in the following output groupings in both internal and external 
feedback configurations of the static PLL:

• One output – GLA only
• Two outputs – GLA + (GLB and/or YB)
• Three outputs – GLA + (GLB and/or YB) + (GLC and/or YC)

PLL Macro Block Diagram 
As illustrated, the PLL supports three distinct output frequencies from a given input clock. Two of these 
(GLB and GLC) can be routed to the B and C global network access, respectively, and/or routed to the 
device core (YB and YC).
There are five delay elements to support phase control on all five outputs (GLA, GLB, GLC, YB, and YC).
There are delay elements in the feedback loop that can be used to advance the clock relative to the 
reference clock. 
The PLL macro reference clock can be driven in the following ways:

1. By an INBUF* macro to create a composite macro, where the I/O macro drives the global buffer 
(with programmable delay) using a hardwired connection. In this case, the I/O must be placed in 
one of the dedicated global I/O locations.

2. Directly from the FPGA core.
3. From an I/O that is routed through the FPGA regular routing fabric. In this case, users must 

instantiate a special macro, PLLINT, to differentiate from the hardwired I/O connection described 
earlier.

During power-up, the PLL outputs will toggle around the maximum frequency of the voltage-controlled 
oscillator (VCO) gear selected. Toggle frequencies can range from 40 MHz to 250 MHz. This will 
continue as long as the clock input (CLKA) is constant (HIGH or LOW). This can be prevented by LOW 
assertion of the POWERDOWN signal. 
The visual PLL configuration in SmartGen, a component of the Libero SoC and Designer tools, will derive 
the necessary internal divider ratios based on the input frequency and desired output frequencies 
selected by the user.
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PLL Core Specifications
PLL core specifications can be found in the DC and Switching Characteristics chapter of the appropriate 
family datasheet.

Loop Bandwidth
Common design practice for systems with a low-noise input clock is to have PLLs with small loop 
bandwidths to reduce the effects of noise sources at the output. Table 4-6 shows the PLL loop 
bandwidth, providing a measure of the PLL's ability to track the input clock and jitter.  

PLL Core Operating Principles
This section briefly describes the basic principles of PLL operation. The PLL core is composed of a 
phase detector (PD), a low-pass filter (LPF), and a four-phase voltage-controlled oscillator (VCO). 
Figure 4-19 illustrates a basic single-phase PLL core with a divider and delay in the feedback path. 

The PLL is an electronic servo loop that phase-aligns the PD feedback signal with the reference input. To 
achieve this, the PLL dynamically adjusts the VCO output signal according to the average phase 
difference between the input and feedback signals. 
The first element is the PD, which produces a voltage proportional to the phase difference between its 
inputs. A simple example of a digital phase detector is an Exclusive-OR gate. The second element, the 
LPF, extracts the average voltage from the phase detector and applies it to the VCO. This applied voltage 
alters the resonant frequency of the VCO, thus adjusting its output frequency. 
Consider Figure 4-19 with the feedback path bypassing the divider and delay elements. If the LPF 
steadily applies a voltage to the VCO such that the output frequency is identical to the input frequency, 
this steady-state condition is known as lock. Note that the input and output phases are also identical. The 
PLL core sets a LOCK output signal HIGH to indicate this condition.
Should the input frequency increase slightly, the PD detects the frequency/phase difference between its 
reference and feedback input signals. Since the PD output is proportional to the phase difference, the 
change causes the output from the LPF to increase. This voltage change increases the resonant 
frequency of the VCO and increases the feedback frequency as a result. The PLL dynamically adjusts in 
this manner until the PD senses two phase-identical signals and steady-state lock is achieved. The 
opposite (decreasing PD output signal) occurs when the input frequency decreases.
Now suppose the feedback divider is inserted in the feedback path. As the division factor M (shown in 
Figure 4-20 on page 101) is increased, the average phase difference increases. The average phase 

Table 4-6 • –3 dB Frequency of the PLL
Minimum

(Ta = +125°C, VCCA = 1.4 V)
Typical

(Ta = +25°C, VCCA = 1.5 V)
Maximum

(Ta = –55°C, VCCA = 1.6 V)
–3 dB 
Frequency

15 kHz 25 kHz 45 kHz

Figure 4-19 • Simplified PLL Core with Feedback Divider and Delay
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
v1.4
(December 2008)

The"CCC Support in Microsemi’s Flash Devices" section was updated to include 
IGLOO nano and ProASIC3 nano devices.

79

Figure 4-2 • CCC Options: Global Buffers with No Programmable Delay was revised to 
add the CLKBIBUF macro.

80

The description of the reference clock was revised in Table 4-2 • Input and Output 
Description of the CLKDLY Macro.

81

Figure 4-7 • Clock Input Sources (30 k gates devices and below) is new. Figure 4-8 • 
Clock Input Sources Including CLKBUF, CLKBUF_LVDS/LVPECL, and CLKINT (60 k 
gates devices and above) applies to 60 k gate devices and above.

88

The "IGLOO and ProASIC3" section was updated to include information for IGLOO 
nano devices.

89

A note regarding Fusion CCCs was added to Figure 4-9 • Illustration of Hardwired I/O 
(global input pins) Usage for IGLOO and ProASIC3 devices 60 k Gates and Larger 
and the name of the figure was changed from Figure 4-8 • Illustration of Hardwired I/O 
(global input pins) Usage. Figure 4-10 • Illustration of Hardwired I/O (global input pins) 
Usage for IGLOO and ProASIC3 devices 30 k Gates and Smaller is new.

90

Table 4-5 • Number of CCCs by Device Size and Package was updated to include 
IGLOO nano and ProASIC3 nano devices. Entries were added to note differences for 
the CS81, CS121, and CS201 packages.

94

The "Clock Conditioning Circuits without Integrated PLLs" section was rewritten. 95

The "IGLOO and ProASIC3 CCC Locations" section was updated for nano devices. 97

Figure 4-13 • CCC Locations in the 15 k and 30 k Gate Devices was deleted. 4-20

v1.3
(October 2008)

This document was updated to include Fusion and RT ProASIC3 device information. 
Please review the document very carefully.

N/A

The "CCC Support in Microsemi’s Flash Devices" section was updated. 79

In the "Global Buffer with Programmable Delay" section, the following sentence was 
changed from: 
"In this case, the I/O must be placed in one of the dedicated global I/O locations."
To
"In this case, the software will automatically place the dedicated global I/O in the 
appropriate locations."

80

Figure 4-4 • CCC Options: Global Buffers with PLL was updated to include OADIVRST 
and OADIVHALF.

83

In Figure 4-6 • CCC with PLL Block "fixed delay" was changed to "programmable 
delay".

83

Table 4-3 • Input and Output Signals of the PLL Block was updated to include 
OADIVRST and OADIVHALF descriptions.

84

Table 4-8 • Configuration Bit Descriptions for the CCC Blocks was updated to include 
configuration bits 88 to 81. Note 2 is new. In addition, the description for bit <76:74> 
was updated.

106

Table 4-16 • Fusion Dynamic CCC Clock Source Selection and Table 4-17 • Fusion 
Dynamic CCC NGMUX Configuration are new.

110

Table 4-18 • Fusion Dynamic CCC Division by Half Configuration and Table 4-19 • 
Configuration Bit <76:75> / VCOSEL<2:1> Selection for All Families are new.

111

Date Changes Page
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FlashROM Security
Low power flash devices have an on-chip Advanced Encryption Standard (AES) decryption core,
combined with an enhanced version of the Microsemi flash-based lock technology (FlashLock®).
Together, they provide unmatched levels of security in a programmable logic device. This security
applies to both the FPGA core and FlashROM content. These devices use the 128-bit AES (Rijndael)
algorithm to encrypt programming files for secure transmission to the on-chip AES decryption core. The
same algorithm is then used to decrypt the programming file. This key size provides approximately 3.4 ×
1038 possible 128-bit keys. A computing system that could find a DES key in a second would take
approximately 149 trillion years to crack a 128-bit AES key. The 128-bit FlashLock feature in low power
flash devices works via a FlashLock security Pass Key mechanism, where the user locks or unlocks the
device with a user-defined key. Refer to the "Security in Low Power Flash Devices" section on page 301. 
If the device is locked with certain security settings, functions such as device read, write, and erase are
disabled. This unique feature helps to protect against invasive and noninvasive attacks. Without the
correct Pass Key, access to the FPGA is denied. To gain access to the FPGA, the device first must be
unlocked using the correct Pass Key. During programming of the FlashROM or the FPGA core, you can
generate the security header programming file, which is used to program the AES key and/or FlashLock
Pass Key. The security header programming file can also be generated independently of the FlashROM
and FPGA core content. The FlashLock Pass Key is not stored in the FlashROM. 
Low power flash devices with AES-based security allow for secure remote field updates over public
networks such as the Internet, and ensure that valuable intellectual property (IP) remains out of the
hands of IP thieves. Figure 5-5 shows this flow diagram.  

Figure 5-5 • Programming FlashROM Using AES

Flash Device

AES
Encryption

Encrypted Data

AES-128
Decryption

Core

Encrypted Data

FlashROM

FPGA Core

Programming
Data

Untrusted
Medium

Same AES Key
Revision 4 137



SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
Notes:
1. Automotive ProASIC3 devices restrict RAM4K9 to a single port or to dual ports with the same clock 180° out of

phase (inverted) between clock pins. In single-port mode, inputs to port B should be tied to ground to prevent
errors during compile. This warning applies only to automotive ProASIC3 parts of certain revisions and earlier.
Contact Technical Support at soc_tech@microsemi.com for information on the revision number for a particular lot
and date code.

2. For FIFO4K18, the same clock 180° out of phase (inverted) between clock pins should be used.
Figure 6-3 • Supported Basic RAM Macros
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I/O Structures in IGLOO and ProASIC3 Devices
GTL+ (Gunning Transceiver Logic Plus)
This is an enhanced version of GTL that has defined slew rates and higher voltage levels. It requires a
differential amplifier input buffer and an open-drain output buffer. Even though the output is open-drain,
VCCI must be connected to either 2.5 V or 3.3 V. The reference voltage (VREF) is 1 V.

Differential Standards
These standards require two I/Os per signal (called a “signal pair”). Logic values are determined by the
potential difference between the lines, not with respect to ground. This is why differential drivers and
receivers have much better noise immunity than single-ended standards. The differential interface
standards offer higher performance and lower power consumption than their single-ended counterparts.
Two I/O pins are used for each data transfer channel. Both differential standards require resistor
termination.

LVPECL (Low-Voltage Positive Emitter Coupled Logic)
LVPECL requires that one data bit be carried through two signal lines; therefore, two pins are needed per
input or output. It also requires external resistor termination. The voltage swing between the two signal
lines is approximately 850 mV. When the power supply is +3.3 V, it is commonly referred to as Low-
Voltage PECL (LVPECL). Refer to the device datasheet for the full implementation of the LVPECL
transmitter and receiver.

LVDS (Low-Voltage Differential Signal)
LVDS is a moderate-speed differential signaling system, in which the transmitter generates two different
voltages that are compared at the receiver. LVDS uses a differential driver connected to a terminated
receiver through a constant-impedance transmission line. It requires that one data bit be carried through
two signal lines; therefore, the user will need two pins per input or output. It also requires external resistor
termination. The voltage swing between the two signal lines is approximately 350 mV. VCCI is 2.5 V. Low
power flash devices contain dedicated circuitry supporting a high-speed LVDS standard that has its own
user specification. Refer to the device datasheet for the full implementation of the LVDS transmitter and
receiver.

B-LVDS/M-LVDS
Bus LVDS (B-LVDS) refers to bus interface circuits based on LVDS technology. Multipoint LVDS
(M-LVDS) specifications extend the LVDS standard to high-performance multipoint bus applications.
Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and
transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS
to accommodate the loading. The driver requires series terminations for better signal quality and to
control voltage swing. Termination is also required at both ends of the bus, since the driver can be
located anywhere on the bus. These configurations can be implemented using TRIBUF_LVDS and
BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS
macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in
Figure 7-8. The input and output buffer delays are available in the LVDS sections in the datasheet. 

Figure 7-7 • Differential Topology
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Programming Flash Devices
Volume Programming Services
Device Type Supported: Flash and Antifuse
Once the design is stable for applications with large production volumes, preprogrammed devices can be 
purchased. Table 11-2 describes the volume programming services.

Advantages: As programming is outsourced, this solution is easier to implement than creating a 
substantial in-house programming capability. As programming houses specialize in large-volume 
programming, this is often the most cost-effective solution.
Limitations: There are some logistical issues with the use of a programming service provider, such as the 
transfer of programming files and the approval of First Articles. By definition, the programming file must 
be released to a third-party programming house. Nondisclosure agreements (NDAs) can be signed to 
help ensure data protection; however, for extremely security-conscious designs, this may not be an 
option.

• Microsemi In-House Programming
When purchasing Microsemi devices in volume, IHP can be requested as part of the purchase. If 
this option is chosen, there is a small cost adder for each device programmed. Each device is 
marked with a special mark to distinguish it from blank parts. Programming files for the design will 
be sent to Microsemi. Sample parts with the design programmed, First Articles, will be returned 
for customer approval. Once approval of First Articles has been received, Microsemi will proceed 
with programming the remainder of the order. To request Microsemi IHP, contact your local 
Microsemi representative. 

• Distributor Programming Centers 
If purchases are made through a distributor, many distributors will provide programming for their 
customers. Consult with your preferred distributor about this option. 

Table 11-2 • Volume Programming Services
Programmer Vendor Availability 
In-House Programming Microsemi Contact Microsemi Sales 
Distributor Programming Centers Memec Unique Contact Distribution
Independent Programming Centers Various Contact Vendor
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Security in Low Power Flash Devices
Note: If programming the Security Header only, just perform sub-flow 1. 
If programming design content only, just perform sub-flow 2.

Figure 12-9 • Security Programming Flows
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Generating Programming Files

Generation of the Programming File in a Trusted Environment—
Application 1
As discussed in the "Application 1: Trusted Environment" section on page 309, in a trusted environment,
the user can choose to program the device with plaintext bitstream content. It is possible to use plaintext
for programming even when the FlashLock Pass Key option has been selected. In this application, it is
not necessary to employ AES encryption protection. For AES encryption settings, refer to the next
sections.
The generated programming file will include the security setting (if selected) and the plaintext
programming file content for the FPGA array, FlashROM, and/or FBs. These options are indicated in
Table 12-2 and Table 12-3.

For this scenario, generate the programming file as follows:
1. Select the Silicon features to be programmed (Security Settings, FPGA Array, FlashROM,

Flash Memory Blocks), as shown in Figure 12-10 on page 314 and Figure 12-11 on page 314.
Click Next.
If Security Settings is selected (i.e., the FlashLock security Pass Key feature), an additional
dialog will be displayed to prompt you to select the security level setting. If no security setting is
selected, you will be directed to Step 3.

Table 12-2 • IGLOO and ProASIC3 Plaintext Security Options, No AES 

Security Protection FlashROM Only FPGA Core Only
Both FlashROM 

and FPGA
No AES / no FlashLock ✓ ✓ ✓

FlashLock only ✓ ✓ ✓

AES and FlashLock – – –

Table 12-3 • Fusion Plaintext Security Options
Security Protection FlashROM Only FPGA Core Only FB Core Only All
No AES / no FlashLock ✓ ✓ ✓ ✓

FlashLock ✓ ✓ ✓ ✓

AES and FlashLock – – – –

Note: For all instructions, the programming of Flash Blocks refers to Fusion only.
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Related Documents

User’s Guides
FlashPro User's Guide
http://www.microsemi.com/soc/documents/flashpro_ug.pdf

List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

v1.5
(August 2009)

The "CoreMP7 Device Security" section was removed from "Security in ARM-
Enabled Low Power Flash Devices", since M7-enabled devices are no longer
supported.

304

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 12-1 • Flash-Based
FPGAs.

302

v1.3
(October 2008)

The "Security Support in Flash-Based Devices" section was revised to include new
families and make the information more concise.

302

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 12-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V. 
• The number of PLLs for ProASIC3E was changed from five to six.

302

v1.1
(March 2008)

The chapter was updated to include the IGLOO PLUS family and information
regarding 15 k gate devices. 

N/A

The "IGLOO Terminology" section and "ProASIC3 Terminology" section are new. 302
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Microprocessor Programming of Microsemi’s Low Power Flash Devices
FlashROM
Microsemi low power flash devices have 1 kbit of user-accessible, nonvolatile, FlashROM on-chip. This
nonvolatile FlashROM can be programmed along with the core or on its own using the standard IEEE
1532 JTAG programming interface. 
The FlashROM is architected as eight pages of 128 bits. Each page can be individually programmed
(erased and written). Additionally, on-chip AES security decryption can be used selectively to load data
securely into the FlashROM (e.g., over public or private networks, such as the Internet). Refer to the
"FlashROM in Microsemi’s Low Power Flash Devices" section on page 133.

Figure 15-3 • MCU FPGA Programming Model
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Boundary Scan in Low Power Flash Devices
List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

August 2012 In the "Boundary Scan Chain" section, the reference made to the datasheet for
pull-up/-down recommendations was changed to mention TCK and TRST pins
rather than TDO and TCK pins. TDO is an output, so no pull resistor is needed
(SAR 35937).

359

The "Advanced Boundary Scan Register Settings" section is new (SAR 38432). 361

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

Table 16-3 • TRST and TCK Pull-Down Recommendations was revised to add
VJTAG at 1.2 V.

360

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 16-1 • Flash-Based
FPGAs.

358

v1.3
(October 2008)

The "Boundary Scan Support in Low Power Devices" section was revised to include
new families and make the information more concise.

359

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 16-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V. 
• The number of PLLs for ProASIC3E was changed from five to six.

358

v1.1
(March 2008)

The chapter was updated to include the IGLOO PLUS family and information
regarding 15 k gate devices.

N/A

The "IGLOO Terminology" section and "ProASIC3 Terminology" section are new. 358
362 Revision 4


