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ProASIC3L FPGA Fabric User’s Guide
IGLOO nano and IGLOO PLUS I/O State in Flash*Freeze Mode
In IGLOO nano and IGLOO PLUS devices, users have multiple options in how to configure I/Os during 
Flash*Freeze mode:

1. Hold the previous state
2. Set I/O pad to weak pull-up or pull-down
3. Tristate I/O pads

The I/O configuration must be configured by the user in the I/O Attribute Editor or in a PDC constraint file,
and can be done on a pin-by-pin basis. The output hold feature will hold the output in the last registered
state, using the I/O pad weak pull-up or pull-down resistor when the FF pin is asserted. When inputs are
configured with the hold feature enabled, the FPGA core side of the input will hold the last valid state of
the input pad before the device entered Flash*Freeze mode. The input pad can be driven to any value,
configured as tristate, or configured with the weak pull-up or pull-down I/O pad feature during
Flash*Freeze mode without affecting the hold state. If the weak pull-up or pull-down feature is used
without the output hold feature, the input and output pads will maintain the configured weak pull-up or
pull-down status during Flash*Freeze mode and normal operation. If a fixed weak pull-up or pull-down is
defined on an output buffer or as bidirectional in output mode, and a hold state is also defined for the
same pin, the pin will be configured in hold state mode during Flash*Freeze mode. During normal
operation, the pin will be configured with the predefined weak pull-up or pull-down. Any I/Os that do not
use the hold state or I/O pad weak pull-up or pull-down features will be tristated during Flash*Freeze
mode and the FPGA core will be driven High by inputs. Inputs that are tristated during Flash*Freeze
mode may be left floating without any reliability concern or impact to power consumption.
Table 2-6 shows the I/O pad state based on the configuration and buffer type.
Note that configuring weak pull-up or pull-down for the FF pin is not allowed.

Table 2-6 • IGLOO nano and IGLOO PLUS Flash*Freeze Mode (type 1 and type 2)—I/O Pad State 

Buffer Type Hold State
I/O Pad Weak 
Pull-Up/-Down

I/O Pad State in 
Flash*Freeze Mode

Input Enabled Enabled Weak pull-up/pull-down 1

Disabled Enabled Weak pull-up/pull-down 2

Enabled Disabled Tristate 1

Disabled Disabled Tristate 2

Output Enabled "Don't care" Weak pull to hold state

Disabled Enabled Weak pull-up/pull-down

Disabled Disabled Tristate

Bidirectional / Tristate
Buffer

E = 0
(input/tristate)

Enabled Enabled Weak pull-up/pull-down 1

Disabled Enabled Weak pull-up/pull-down 2

Enabled Disabled Tristate 1

Disabled Disabled Tristate 2

E = 1 (output) Enabled "Don't care" Weak pull to hold state 3

Disabled Enabled Weak pull-up/pull-down

Disabled Disabled Tristate

Notes:
1. Internal core logic driven by this input buffer will be set to the value this I/O had when entering

Flash*Freeze mode.
2. Internal core logic driven by this input buffer will be tied High as long as the device is in Flash*Freeze

mode.
3. For bidirectional buffers: Internal core logic driven by the input portion of the bidirectional buffer will

be set to the hold state.
Revision 4 29



ProASIC3L FPGA Fabric User’s Guide
Flash*Freeze management IP. Additional information on this IP core can be found in the Libero online
help.
The Flash*Freeze management IP is comprised of three blocks: the Flash*Freeze finite state machine
(FSM), the clock gating (filter) block, and the ULSICC macro, as shown in Figure 2-10. 

Flash*Freeze Management FSM
The Flash*Freeze FSM block is a simple, robust, fully encoded 3-bit state machine that ensures clean
entrance to and exit from Flash*Freeze mode by controlling activities of the clock gating, ULSICC, and
optional housekeeping blocks. The state diagram for the FSM is shown in Figure 2-11 on page 38. In
normal operation, the state machine waits for Flash*Freeze pin assertion, and upon detection of a
request, it waits for a short period of time to ensure the assertion persists; then it asserts
WAIT_HOUSEKEEPING (active High) synchronous to the user’s designated system clock. This flag can
be used by user logic to perform any needed shutdown processes prior to entering Flash*Freeze mode,
such as storing data into SRAM, notifying other system components of the request, or timing/validating
the Flash*Freeze request. The FSM also asserts Flash_Freeze_Enabled whenever the device enters
Flash*Freeze mode. This occurs after all housekeeping and clock gating functions have completed. The
Flash_Freeze_Enabled signal remains asserted, even during Flash*Freeze mode, until the Flash*Freeze
pin is deasserted. Use the Flash_Freeze_Enabled signal to drive any logic in the design that needs to be
in a particular state during Flash*Freeze mode. The DONE_HOUSEKEEPING (active High) signal
should be asserted to notify the FSM when all the housekeeping tasks are completed. If the user
chooses not to use housekeeping, the Flash*Freeze management IP core generator in Libero SoC will
connect WAIT_HOUSEKEEPING to DONE_HOUSEKEEPING.

Figure 2-10 • Flash*Freeze Management IP Block Diagram
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You can control the maximum number of shared instances allowed for the legalization to take place using
the Compile Option dialog box shown in Figure 3-17. Refer to Libero SoC / Designer online help for
details on the Compile Option dialog box. A large number of shared instances most likely indicates a
floorplanning problem that you should address. 

Designer Flow for Global Assignment 
To achieve the desired result, pay special attention to global management during synthesis and place-
and-route. The current Synplify tool does not insert more than six global buffers in the netlist by default.
Thus, the default flow will not assign any signal to the quadrant global network. However, you can use
attributes in Synplify and increase the default global macro assignment in the netlist. Designer v6.2
supports automatic quadrant global assignment, which was not available in Designer v6.1. Layout will
make the choice to assign the correct signals to global. However, you can also utilize PDC and perform
manual global assignment to overwrite any automatic assignment. The following step-by-step
suggestions guide you in the layout of your design and help you improve timing in Designer:

1. Run Compile and check the Compile report. The Compile report has global information in the
"Device Utilization" section that describes the number of chip and quadrant signals in the design.
A "Net Report" section describes chip global nets, quadrant global nets, local clock nets, a list of
nets listed by fanout, and net candidates for local clock assignment. Review this information. Note
that YB or YC are counted as global only when they are used in isolation; if you use YB only and
not GLB, this net is not shown in the global/quadrant nets report. Instead, it appears in the Global
Utilization report. 

2. If some signals have a very high fanout and are candidates for global promotion, promote those
signals to global using the compile options or PDC commands. Figure 3-18 on page 70 shows the
Globals Management section of the compile options. Select Promote regular nets whose
fanout is greater than and enter a reasonable value for fanouts. 

Figure 3-17 • Shared Instances in the Compile Option Dialog Box
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Phase Adjustment
The four phases available (0, 90, 180, 270) are phases with respect to VCO (PLL output). The 
VCO is divided to achieve the user's CCC required output frequency (GLA, YB/GLB, YC/GLC). The 
division happens after the selection of the VCO phase. The effective phase shift is actually the VCO 
phase shift divided by the output divider. This is why the visual CCC shows both the actual achievable 
phase and more importantly the actual delay that is equivalent to the phase shift that can be 
achieved.

Dynamic PLL Configuration
The CCCs can be configured both statically and dynamically.
In addition to the ports available in the Static CCC, the Dynamic CCC has the dynamic shift register 
signals that enable dynamic reconfiguration of the CCC. With the Dynamic CCC, the ports CLKB and 
CLKC are also exposed. All three clocks (CLKA, CLKB, and CLKC) can be configured independently.
The CCC block is fully configurable. The following two sources can act as the CCC configuration bits.

Flash Configuration Bits 
The flash configuration bits are the configuration bits associated with programmed flash switches. These 
bits are used when the CCC is in static configuration mode. Once the device is programmed, these bits 
cannot be modified. They provide the default operating state of the CCC.

Dynamic Shift Register Outputs
This source does not require core reprogramming and allows core-driven dynamic CCC reconfiguration. 
When the dynamic register drives the configuration bits, the user-defined core circuit takes full control 
over SDIN, SDOUT, SCLK, SSHIFT, and SUPDATE. The configuration bits can consequently be 
dynamically changed through shift and update operations in the serial register interface. Access to the 
logic core is accomplished via the dynamic bits in the specific tiles assigned to the PLLs. 
Figure 4-21 illustrates a simplified block diagram of the MUX architecture in the CCCs. 

The selection between the flash configuration bits and the bits from the configuration register is made 
using the MODE signal shown in Figure 4-21. If the MODE signal is logic HIGH, the dynamic shift 
register configuration bits are selected. There are 81 control bits to configure the different functions of the 
CCC.

Note: *For Fusion, bit <88:81> is also needed. 
Figure 4-21 • The CCC Configuration MUX Architecture
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Table 4-18 • Fusion Dynamic CCC Division by Half Configuration

OADIVHALF / 
OBDIVHALF / 
OCDIVHALF

OADIV<4:0> / 
OBDIV<4:0> / 
OCDIV<4:0> 
(in decimal) Divider Factor

Input Clock 
Frequency

Output Clock 
Frequency (MHz)

1 2 1.5  100 MHz RC 
Oscillator

66.7

4 2.5 40.0

6 3.5 28.6

8 4.5 22.2

10 5.5 18.2

12 6.5 15.4

14 7.5 13.3

16 8.5 11.8

18 9.5 10.5

20 10.5 9.5

22 11.5 8.7

24 12.5 8.0

26 13.5 7.4

28 14.5 6.9

0 0–31 1–32 Other Clock Sources Depends on other 
divider settings

Table 4-19 • Configuration Bit <76:75> / VCOSEL<2:1> Selection for All Families

Voltage

VCOSEL[2:1]

00 01 10 11

Min. 
(MHz)

Max. 
(MHz)

Min. 
(MHz)

Max. 
(MHz)

Min. 
(MHz)

Max. 
(MHz)

Min. 
(MHz)

Max. 
(MHz)

IGLOO and IGLOO PLUS

1.2 V ± 5% 24 35 30 70 60 140 135 160

1.5 V ± 5% 24 43.75 30 87.5 60 175 135 250

ProASIC3L, RT ProASIC3, and Military ProASIC3/L

1.2 V ± 5% 24 35 30 70 60 140 135 250

1.5 V ± 5% 24 43.75 30 70 60 175 135 350

ProASIC3 and Fusion

1.5 V ± 5% 24 43.75 33.75 87.5 67.5 175 135 350

Table 4-20 • Configuration Bit <74> / VCOSEL<0> Selection for All Families

VCOSEL[0] Description

0 Fast PLL lock acquisition time with high tracking jitter. Refer to the corresponding datasheet for specific 
value and definition.

1 Slow PLL lock acquisition time with low tracking jitter. Refer to the corresponding datasheet for specific 
value and definition.
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DYNCCC Core(.CLKA(CLKA), .EXTFB(GND), .POWERDOWN(POWERDOWN), .GLA(GLA), .LOCK(LOCK),
.CLKB(CLKB), .GLB(GLB), .YB(), .CLKC(CLKC), .GLC(GLC), .YC(), .SDIN(SDIN),
.SCLK(SCLK), .SSHIFT(SSHIFT), .SUPDATE(SUPDATE), .MODE(MODE), .SDOUT(SDOUT),
.OADIV0(GND), .OADIV1(GND), .OADIV2(VCC), .OADIV3(GND), .OADIV4(GND), .OAMUX0(GND),
.OAMUX1(GND), .OAMUX2(VCC), .DLYGLA0(GND), .DLYGLA1(GND), .DLYGLA2(GND),
.DLYGLA3(GND), .DLYGLA4(GND), .OBDIV0(GND), .OBDIV1(GND), .OBDIV2(GND),
.OBDIV3(GND), .OBDIV4(GND), .OBMUX0(GND), .OBMUX1(GND), .OBMUX2(GND), .DLYYB0(GND),
.DLYYB1(GND), .DLYYB2(GND), .DLYYB3(GND), .DLYYB4(GND), .DLYGLB0(GND),
.DLYGLB1(GND), .DLYGLB2(GND), .DLYGLB3(GND), .DLYGLB4(GND), .OCDIV0(GND),
.OCDIV1(GND), .OCDIV2(GND), .OCDIV3(GND), .OCDIV4(GND), .OCMUX0(GND), .OCMUX1(GND),
.OCMUX2(GND), .DLYYC0(GND), .DLYYC1(GND), .DLYYC2(GND), .DLYYC3(GND), .DLYYC4(GND),
.DLYGLC0(GND), .DLYGLC1(GND), .DLYGLC2(GND), .DLYGLC3(GND), .DLYGLC4(GND),
.FINDIV0(VCC), .FINDIV1(GND), .FINDIV2(VCC), .FINDIV3(GND), .FINDIV4(GND),
.FINDIV5(GND), .FINDIV6(GND), .FBDIV0(GND), .FBDIV1(GND), .FBDIV2(GND),
.FBDIV3(GND), .FBDIV4(GND), .FBDIV5(VCC), .FBDIV6(GND), .FBDLY0(GND), .FBDLY1(GND),
.FBDLY2(GND), .FBDLY3(GND), .FBDLY4(GND), .FBSEL0(VCC), .FBSEL1(GND), 
.XDLYSEL(GND), .VCOSEL0(GND), .VCOSEL1(GND), .VCOSEL2(VCC));

defparam Core.VCOFREQUENCY = 165.000; 

endmodule

Delayed Clock Configuration
The CLKDLY macro can be generated with the desired delay and input clock source (Hardwired I/O, 
External I/O, or Core Logic), as in Figure 4-28. 

After setting all the required parameters, users can generate one or more PLL configurations with HDL or 
EDIF descriptions by clicking the Generate button. SmartGen gives the option of saving session results 
and messages in a log file:
****************
Macro Parameters
****************

Name                            : delay_macro
Family                          : ProASIC3
Output Format                   : Verilog
Type                            : Delayed Clock
Delay Index                     : 2
CLKA Source                     : Hardwired I/O

Total Clock Delay = 0.935 ns.

The resultant CLKDLY macro Verilog netlist is as follows:

module delay_macro(GL,CLK);

output GL;
input  CLK;

Figure 4-28 • Delayed Clock Configuration Dialog Box
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v1.2
(June 2008)

The following changes were made to the family descriptions in Figure 4-1 • Overview 
of the CCCs Offered in Fusion, IGLOO, and ProASIC3:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

77

v1.1
(March 2008)

Table 4-1 • Flash-Based FPGAs and the associated text were updated to include the 
IGLOO PLUS family. The "IGLOO Terminology" section and "ProASIC3 Terminology" 
section are new.

79

The "Global Input Selections" section was updated to include 15 k gate devices as 
supported I/O types for globals, for CCC only.

87

Table 4-5 • Number of CCCs by Device Size and Package was revised to include 
ProASIC3L, IGLOO PLUS, A3P015, AGL015, AGLP030, AGLP060, and AGLP125.

94

The "IGLOO and ProASIC3 CCC Locations" section was revised to include 15 k gate 
devices in the exception statements, as they do not contain PLLs.

97

v1.0
(January 2008)

Information about unlocking the PLL was removed from the "Dynamic PLL 
Configuration" section. 

103

In the "Dynamic PLL Configuration" section, information was added about running 
Layout and determining the exact setting of the ports.

116

In Table 4-8 • Configuration Bit Descriptions for the CCC Blocks, the following bits 
were updated to delete "transport to the user" and reference the footnote at the bottom 
of the table: 79 to 71.

106

Date Changes Page
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The ROM emulation application is based on RAM block initialization. If the user's main design has
access only to the read ports of the RAM block (RADDR, RD, RCLK, and REN), and the contents of the
RAM are already initialized through the TAP, then the memory blocks will emulate ROM functionality for
the core design. In this case, the write ports of the RAM blocks are accessed only by the user interface
block, and the interface is activated only by the TAP Instruction Register contents.
Users should note that the contents of the RAM blocks are lost in the absence of applied power.
However, the 1 kbit of flash memory, FlashROM, in low power flash devices can be used to retain data
after power is removed from the device. Refer to the "SRAM and FIFO Memories in Microsemi's Low
Power Flash Devices" section on page 147 for more information.

Sample Verilog Code
Interface Block
`define Initialize_start 8'h22 //INITIALIZATION START COMMAND VALUE
`define Initialize_stop 8'h23 //INITIALIZATION START COMMAND VALUE

module interface(IR, rst_n, data_shift, clk_in, data_update, din_ser, dout_ser, test,
test_out,test_clk,clk_out,wr_en,rd_en,write_word,read_word,rd_addr, wr_addr);

input [7:0] IR;
input [3:0] read_word; //RAM DATA READ BACK
input rst_n, data_shift, clk_in, data_update, din_ser; //INITIALIZATION SIGNALS
input test, test_clk; //TEST PROCEDURE CLOCK AND COMMAND INPUT
output [3:0] test_out; //READ DATA
output [3:0] write_word; //WRITE DATA
output [1:0] rd_addr; //READ ADDRESS
output [1:0] wr_addr; //WRITE ADDRESS
output dout_ser; //TDO DRIVER
output clk_out, wr_en, rd_en;

wire [3:0] write_word;
wire [1:0] rd_addr;
wire [1:0] wr_addr;
wire [3:0] Q_out;
wire enable, test_active;

reg clk_out;

//SELECT CLOCK FOR INITIALIZATION OR READBACK TEST
always @(enable or test_clk or data_update)
begin

case ({test_active})
1 : clk_out = test_clk ;
0 : clk_out = !data_update;
default : clk_out = 1'b1;

endcase
end

assign test_active = test && (IR == 8'h23);
assign enable = (IR == 8'h22);
assign wr_en = !enable;
assign rd_en = !test_active;
assign test_out = read_word;
assign dout_ser = Q_out[3];

//4-bit SIN/POUT SHIFT REGISTER
shift_reg data_shift_reg (.Shiften(data_shift), .Shiftin(din_ser), .Clock(clk_in),

.Q(Q_out));

//4-bit PIPELINE REGISTER
D_pipeline pipeline_reg (.Data(Q_out), .Clock(data_update), .Q(write_word));
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7 – I/O Structures in IGLOO and ProASIC3 Devices 

Introduction
Low power flash devices feature a flexible I/O structure, supporting a range of mixed voltages (1.2 V, 1.5 V,
1.8 V, 2.5 V, and 3.3 V) through bank-selectable voltages. IGLOO,® ProASIC3®L, and ProASIC3 families
support Standard, Standard Plus, and Advanced I/Os.
Users designing I/O solutions are faced with a number of implementation decisions and configuration
choices that can directly impact the efficiency and effectiveness of their final design. The flexible I/O
structure, supporting a wide variety of voltages and I/O standards, enables users to meet the growing
challenges of their many diverse applications. Libero SoC software provides an easy way to implement
I/Os that will result in robust I/O design. 
This document first describes the two different I/O types in terms of the standards and features they
support. It then explains the individual features and how to implement them in Libero SoC.

Figure 7-1 • DDR Configured I/O Block Logical Representation
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8 – I/O Structures in IGLOOe and ProASIC3E 
Devices 

Introduction
Low power flash devices feature a flexible I/O structure, supporting a range of mixed voltages (1.2 V, 1.5 V, 
1.8 V, 2.5 V, and 3.3 V) through bank-selectable voltages. IGLOO®e, ProASIC®3EL, and ProASIC3E 
families support Pro I/Os. 
Users designing I/O solutions are faced with a number of implementation decisions and configuration 
choices that can directly impact the efficiency and effectiveness of their final design. The flexible I/O 
structure, supporting a wide variety of voltages and I/O standards, enables users to meet the growing 
challenges of their many diverse applications. The Libero SoC software provides an easy way to 
implement I/O that will result in robust I/O design. 
This document first describes the two different I/O types in terms of the standards and features they 
support. It then explains the individual features and how to implement them in Libero SoC.

Figure 8-1 • DDR Configured I/O Block Logical Representation
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I/O Structures in IGLOOe and ProASIC3E Devices
B-LVDS/M-LVDS
Bus LVDS (B-LVDS) refers to bus interface circuits based on LVDS technology. Multipoint LVDS 
(M-LVDS) specifications extend the LVDS standard to high-performance multipoint bus applications. 
Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and 
transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS 
to accommodate the loading. The driver requires series terminations for better signal quality and to 
control voltage swing. Termination is also required at both ends of the bus, since the driver can be 
located anywhere on the bus. These configurations can be implemented using TRIBUF_LVDS and 
BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS 
macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in 
Figure 8-9. The input and output buffer delays are available in the LVDS sections in the datasheet. 
Example: For a bus consisting of 20 equidistant loads, the terminations given in EQ 8-1 provide the 
required differential voltage, in worst case industrial operating conditions, at the farthest receiver:

RS = 60 Ω, RT = 70 Ω, given ZO = 50 Ω (2") and Zstub = 50 Ω (~1.5").

EQ 8-1

Figure 8-9 • A B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers
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I/O Structures in IGLOOe and ProASIC3E Devices
IGLOOe and ProASIC3E
For devices requiring Level 3 and/or Level 4 compliance, the board drivers connected to the I/Os must 
have 10 kΩ (or lower) output drive resistance at hot insertion, and 1 kΩ (or lower) output drive resistance 
at hot removal. This resistance is the transmitter resistance sending a signal toward the I/O, and no 
additional resistance is needed on the board. If that cannot be assured, three levels of staging can be 
used to achieve Level 3 and/or Level 4 compliance. Cards with two levels of staging should have the 
following sequence: 

• Grounds
• Powers, I/Os, and other pins

Cold-Sparing Support
Cold-sparing refers to the ability of a device to leave system data undisturbed when the system is 
powered up, while the component itself is powered down, or when power supplies are floating.
Cold-sparing is supported on ProASIC3E devices only when the user provides resistors from each power 
supply to ground. The resistor value is calculated based on the decoupling capacitance on a given power 
supply. The RC constant should be greater than 3 µs.
To remove resistor current during operation, it is suggested that the resistor be disconnected (e.g., with 
an NMOS switch) from the power supply after the supply has reached its final value. Refer to the "Power-
Up/-Down Behavior of Low Power Flash Devices" section on page 373 for details on cold-sparing. 
Cold-sparing means that a subsystem with no power applied (usually a circuit board) is electrically 
connected to the system that is in operation. This means that all input buffers of the subsystem must 
present very high input impedance with no power applied so as not to disturb the operating portion of the 
system.
The 30 k gate devices fully support cold-sparing, since the I/O clamp diode is always off (see Table 8-13 on 
page 231). If the 30 k gate device is used in applications requiring cold-sparing, a discharge path from 
the power supply to ground should be provided. This can be done with a discharge resistor or a switched 
resistor. This is necessary because the 30 k gate devices do not have built-in I/O clamp diodes. 
For other IGLOOe and ProASIC3E devices, since the I/O clamp diode is always active, cold-sparing can 
be accomplished either by employing a bus switch to isolate the device I/Os from the rest of the system 
or by driving each I/O pin to 0 V. If the resistor is chosen, the resistor value must be calculated based on 
decoupling capacitance on a given power supply on the board (this decoupling capacitance is in parallel 
with the resistor). The RC time constant should ensure full discharge of supplies before cold-sparing 
functionality is required. The resistor is necessary to ensure that the power pins are discharged to ground 
every time there is an interruption of power to the device.
IGLOOe and ProASIC3E devices support cold-sparing for all I/O configurations. Standards, such as PCI, 
that require I/O clamp diodes can also achieve cold-sparing compliance, since clamp diodes get 
disconnected internally when the supplies are at 0 V.
When targeting low power applications, I/O cold-sparing may add additional current if a pin is configured 
with either a pull-up or pull-down resistor and driven in the opposite direction. A small static current is 
induced on each I/O pin when the pin is driven to a voltage opposite to the weak pull resistor. The current 
is equal to the voltage drop across the input pin divided by the pull resistor. Refer to the "Detailed I/O DC 
Characteristics" section of the appropriate family datasheet for the specific pull resistor value for the 
corresponding I/O standard.
For example, assuming an LVTTL 3.3 V input pin is configured with a weak pull-up resistor, a current will 
flow through the pull-up resistor if the input pin is driven LOW. For LVTTL 3.3 V, the pull-up resistor is 
~45 kΩ, and the resulting current is equal to 3.3 V / 45 kΩ = 73 µA for the I/O pin. This is true also when 
a weak pull-down is chosen and the input pin is driven High. This current can be avoided by driving the 
input Low when a weak pull-down resistor is used and driving it High when a weak pull-up resistor is 
used.
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I/O Software Control in Low Power Flash Devices
I/O Attribute Constraint

set_io Sets the attributes of an
I/O

set_io portname
[-pinname value]
[-fixed value]
[-iostd value]
[-out_drive value]
[-slew value]
[-res_pull value]
[-schmitt_trigger value]
[-in_delay value]
[-skew value]
[-out_load value]
[-register value]

set_io IN2 -pinname 28
-fixed yes -iostd LVCMOS15
-out_drive 12 -slew high
-RES_PULL None
-SCHMITT_TRIGGER Off
-IN_DELAY Off –skew off
-REGISTER No 

If the I/O macro is generic
(e.g., INBUF) or technology-
specific (INBUF_LVCMOS25),
then all I/O attributes can be
assigned using this constraint.
If the netlist has an I/O macro
that specifies one of its
attributes, that attribute
cannot be changed using this
constraint, though other
attributes can be changed. 
Example: OUTBUF_S_24
(low slew, output drive 24 mA)
Slew and output drive cannot
be changed.

I/O Region Placement Constraints

define_region Defines either a
rectangular region or a
rectilinear region

define_region
-name [region_name]
-type [region_type] x1 y1 x2 y2

define_region -name test
-type inclusive 0 15 2 29

If any number of I/Os must be
assigned to a particular I/O
region, such a region can be
created with this constraint. 

assign_region Assigns a set of macros
to a specified region

assign_region [region name]
[macro_name...]

assign_region test U12

This constraint assigns I/O
macros to the I/O regions.
When assigning an I/O macro,
PDC naming conventions
must be followed if the macro
name contains special
characters; e.g., if the macro
name is \\$1I19\\, the correct
use of escape characters is
\\\\\$1I19\\\\.

Table 9-3 • PDC I/O Constraints (continued)

Command Action Example Comment

Note: Refer to the Libero SoC User’s Guide for detailed rules on PDC naming and syntax conventions.
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ProASIC3L FPGA Fabric User’s Guide
If the assignment is not successful, an error message appears in the Output window.
To undo the I/O bank assignments, choose Undo from the Edit menu. Undo removes the I/O
technologies assigned by the IOBA. It does not remove the I/O technologies previously assigned.
To redo the changes undone by the Undo command, choose Redo from the Edit menu.
To clear I/O bank assignments made before using the Undo command, manually unassign or reassign
I/O technologies to banks. To do so, choose I/O Bank Settings from the Edit menu to display the I/O
Bank Settings dialog box.

Conclusion
Fusion, IGLOO, and ProASIC3 support for multiple I/O standards minimizes board-level components and
makes possible a wide variety of applications. The Microsemi Designer software, integrated with Libero
SoC, presents a clear visual display of I/O assignments, allowing users to verify I/O and board-level
design requirements before programming the device. The device I/O features and functionalities ensure
board designers can produce low-cost and low power FPGA applications fulfilling the complexities of
contemporary design needs. 

Related Documents

User’s Guides
Libero SoC User’s Guide
http://www.microsemi.com/soc/documents/libero_ug.pdf
IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
SmartGen Core Reference Guide
http://www.microsemi.com/soc/documents/genguide_ug.pdf
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Input Support for DDR
The basic structure to support a DDR input is shown in Figure 10-2. Three input registers are used to
capture incoming data, which is presented to the core on each rising edge of the I/O register clock. Each
I/O tile supports DDR inputs.

Output Support for DDR
The basic DDR output structure is shown in Figure 10-1 on page 271. New data is presented to the
output every half clock cycle. 
Note: DDR macros and I/O registers do not require additional routing. The combiner automatically

recognizes the DDR macro and pushes its registers to the I/O register area at the edge of the chip.
The routing delay from the I/O registers to the I/O buffers is already taken into account in the DDR
macro.

Figure 10-2 • DDR Input Register Support in Low Power Flash Devices
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Programming Flash Devices
List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 FlashPro4 is a replacement for FlashPro3 and has been added to this chapter. 
FlashPro is no longer available.

N/A

The chapter was updated to include SmartFusion devices. N/A

The following were deleted: 
"Live at Power-Up (LAPU) or Boot PROM" section
"Design Security" section
Table 14-2 • Programming Features for Actel Devices and much of the text in the 
"Programming Features for Microsemi Devices" section
"Programming Flash FPGAs" section
"Return Material Authorization (RMA) Policies" section

N/A

The "Device Programmers" section was revised. 291

The Independent Programming Centers information was removed from the "Volume 
Programming Services" section.

292

Table 11-3 • Programming Solutions was revised to add FlashPro4 and note that 
FlashPro is discontinued. A note was added for FlashPro Lite regarding power 
supply requirements.

293

Most items were removed from Table 11-4 • Programming Ordering Codes, 
including FlashPro3 and FlashPro.

294

The "Programmer Device Support" section was deleted and replaced with a 
reference to the Microsemi SoC Products Group website for the latest information.

294

The "Certified Programming Solutions" section was revised to add FlashPro4 and 
remove Silicon Sculptor I and Silicon Sculptor 6X. Reference to Programming and 
Functional Failure Guidelines was added.

294

The file type *.pdb was added to the "Use the Latest Version of the Designer 
Software to Generate Your Programming File (recommended)" section.

295

Instructions on cleaning and careful insertion were added to the "Perform Routine 
Hardware Self-Diagnostic Test" section. Information was added regarding testing 
Silicon Sculptor programmers with an adapter module installed before every 
programming session verifying their calibration annually.

295

The "Signal Integrity While Using ISP" section is new. 296

The "Programming Failure Allowances" section was revised. 296
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Figure 18-4 • I/O State as a Function of VCCI and VCC Voltage Levels for IGLOO V5, IGLOO nano V5, 
IGLOO PLUS V5, ProASIC3L, and ProASIC3 Devices Running at VCC = 1.5 V ± 0.075 V

Region 1: I/O buffers are OFF

Region 2: I/O buffers are ON.
I/Os are functional (except differential inputs) 
but slower because VCCI / VCC are below 
specification. For the same reason, input 
 buffers do not meet VIH / VIL levels, and 
output buffers do not meet VOH / VOL levels.

Min VCCI datasheet specification
voltage at a selected I/O

standard; i.e., 1.425 V or 1.7 V
or 2.3 V or 3.0 V 

VCC

VCC = 1.425 V

Region 1: I/O Buffers are OFF

Activation trip point:
Va = 0.85 V ± 0.25 V

Deactivation trip point:
Vd = 0.75 V ± 0.25 V

Activation trip point:
Va = 0.9 V ± 0.3 V

Deactivation trip point:
Vd = 0.8 V ± 0.3 V

VCC = 1.575 V

Region 5: I/O buffers are ON 
and power supplies are within 
specification.
I/Os meet the entire datasheet 
and timer specifications for 
speed, VIH/VIL , VOH /VOL , etc. 

 but slower because VCCI is
below specifcation. For the 

same reason, input buffers do not 
meet VIH/VIL levels, and output

buffers do not meet VOH/VOL levels.    

Region 4: I/O 
buffers are ON.

I/Os are functional
(except differential inputs) 

Where VT can be from 0.58 V to 0.9 V (typically 0.75 V)
VCC = VCCI + VT 

VCCI

Region 3: I/O buffers are ON.
I/Os are functional; I/O DC 
specifications are met, 
but I/Os are slower because 
the VCC is below specification
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