
Microchip Technology - A3P1000L-FG144 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Active

Number of LABs/CLBs -

Number of Logic Elements/Cells -

Total RAM Bits 147456

Number of I/O 97

Number of Gates 1000000

Voltage - Supply 1.14V ~ 1.575V

Mounting Type Surface Mount

Operating Temperature 0°C ~ 85°C (TJ)

Package / Case 144-LBGA

Supplier Device Package 144-FPBGA (13x13)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/a3p1000l-fg144

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/a3p1000l-fg144-4484570
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array

1 – FPGA Array Architecture in Low Power Flash
Devices

Device Architecture

Advanced Flash Switch
Unlike SRAM FPGAs, the low power flash devices use a live-at-power-up ISP flash switch as their
programming element. Flash cells are distributed throughout the device to provide nonvolatile,
reconfigurable programming to connect signal lines to the appropriate VersaTile inputs and outputs. In
the flash switch, two transistors share the floating gate, which stores the programming information
(Figure 1-1). One is the sensing transistor, which is only used for writing and verification of the floating
gate voltage. The other is the switching transistor. The latter is used to connect or separate routing nets,
or to configure VersaTile logic. It is also used to erase the floating gate. Dedicated high-performance
lines are connected as required using the flash switch for fast, low-skew, global signal distribution
throughout the device core. Maximum core utilization is possible for virtually any design. The use of the
flash switch technology also removes the possibility of firm errors, which are increasingly common in
SRAM-based FPGAs.

Figure 1-1 • Flash-Based Switch

Sensing Switching

Switch In

Switch Out

Word

Floating Gate
Revision 4 9

Flash*Freeze Technology and Low Power Modes
Flash*Freeze Type 2: Control by Dedicated Flash*Freeze Pin and
Internal Logic
The device can be made to enter Flash*Freeze mode by activating the FF pin together with Microsemi's
Flash*Freeze management IP core (refer to the "Flash*Freeze Management IP" section on page 36 for
more information) or user-defined control logic (Figure 2-3 on page 27) within the FPGA core. This method
enables the design to perform important activities before allowing the device to enter Flash*Freeze mode,
such as transitioning into a safe state, completing the processing of a critical event. Designers are
encouraged to take advantage of Microsemi's Flash*Freeze Management IP to handle clean entry and exit
of Flash*Freeze mode (described later in this document). The device will only enter Flash*Freeze mode
when the Flash*Freeze pin is asserted (active Low) and the User Low Static ICC (ULSICC) macro input
signal, called the LSICC signal, is asserted (High). One condition is not sufficient to enter Flash*Freeze
mode type 2; both the FF pin and LSICC signal must be asserted.
When Flash*Freeze type 2 is implemented in the design, the ULSICC macro needs to be instantiated by
the user. There are no functional differences in the device whether the ULSICC macro is instantiated or
not, and whether the LSICC signal is asserted or deasserted. The LSICC signal is used only to control
entering Flash*Freeze mode. Figure 2-4 on page 27 shows the timing diagram for entering and exiting
Flash*Freeze mode type 2.
After exiting Flash*Freeze mode type 2 by deasserting the Flash*Freeze pin, the LSICC signal must be
deasserted by the user design. This will prevent entering Flash*Freeze mode by asserting the
Flash*Freeze pin only.
Refer to Table 2-3 for Flash*Freeze (FF) pin and LSICC signal assertion and deassertion values.

Table 2-3 • Flash*Freeze Mode Type 1 and Type 2 – Signal Assertion and Deassertion Values
Signal Assertion Value Deassertion Value
Flash*Freeze (FF) pin Low High

LSICC signal High Low

Notes:
1. The Flash*Freeze (FF) pin is an active-Low signal, and LSICC is an active-High signal.
2. The LSICC signal is used only in Flash*Freeze mode type 2.
26 Revision 4

Flash*Freeze Technology and Low Power Modes
power supply and board-level configurations, the user can easily calculate how long it will take for the
core to become inactive or active. For more information, refer to the "Power-Up/-Down Behavior of Low
Power Flash Devices" section on page 373.

Context Save and Restore in Sleep or Shutdown Mode
In Sleep mode or Shutdown mode, the contents of the SRAM, state of the I/Os, and state of the registers
are lost when the device is powered off, if no other measure is taken. A low-cost external serial EEPROM
can be used to save and restore the contents of the device when entering and exiting Sleep mode or
Shutdown mode. In the Embedded SRAM Initialization Using External Serial EEPROM application note,
detailed information and a reference design are provided for initializing the embedded SRAM using an
external serial EEPROM. The user can easily customize the reference design to save and restore the
FPGA state when entering and exiting Sleep mode or Shutdown mode. The microcontroller will need to
manage this activity; hence, before powering down VCC, the data will be read from the FPGA and stored
externally. In a similar way, after the FPGA is powered up, the microcontroller will allow the FPGA to load
the data from external memory and restore its original state.

Flash*Freeze Design Guide
This section describes how designers can create reliable designs that use ultra-low power Flash*Freeze
modes optimally. The section below provides guidance on how to select the best Flash*Freeze mode for
any application. The "Design Solutions" section on page 35 gives specific recommendations on how to
design and configure clocks, set/reset signals, and I/Os. This section also gives an overview of the
design flow and provides details concerning Microsemi's Flash*Freeze Management IP, which enables
clean clock gating and housekeeping. The "Additional Power Conservation Techniques" section on
page 41 describes board-level considerations for entering and exiting Flash*Freeze mode.

Selecting the Right Flash*Freeze Mode
Both Flash*Freeze modes will bring an FPGA into an ultra-low power static mode that retains register
and SRAM content and sets I/Os to a predetermined configuration. There are two primary differences
that distinguish type 2 mode from type 1, and they must be considered when creating a design using
Flash*Freeze technology.
First, with type 2 mode, the device has an opportunity to wait for a second signal to enable activation of
Flash*Freeze mode. This allows processes to complete prior to deactivating the device, and can be
useful to control task completion, data preservation, accidental Flash*Freeze activation, system
shutdown, or any other housekeeping function. The second signal may be derived from an external or in-
to-out internal source. The second difference between type 1 and type 2 modes is that a design for type
2 mode has an opportunity to cleanly manage clocks and data activity before entering and exiting
Flash*Freeze mode. This is particularly important when data preservation is needed, as it ensures valid
data is stored prior to entering, and upon exiting, Flash*Freeze mode.
Type 1 Flash*Freeze mode is ideally suited for applications with the following design criteria:

• Entering Flash*Freeze mode is not dependent on any signal other than the external FF pin.
• Internal housekeeping is not required prior to entering Flash*Freeze.

Figure 2-8 • Entering and Exiting Sleep Mode, Typical Timing Diagram

Activation Trip Point
Va = 0.85 ± 0.25 V

Deactivation Trip Point
Vd = 0.75 ± 0.25 V

VCC = 1.5 V

VCC

Sleep Modet = 50 μs t = 56.6 μs
34 Revision 4

http://www.microsemi.com/soc/documents/EmbeddedSRAMInit_AN.pdf

ProASIC3L FPGA Fabric User’s Guide
Clock Aggregation Architecture
This clock aggregation feature allows a balanced clock tree, which improves clock skew. The physical
regions for clock aggregation are defined from left to right and shift by one spine. For chip global
networks, there are three types of clock aggregation available, as shown in Figure 3-10:

• Long lines that can drive up to four adjacent spines (A)
• Long lines that can drive up to two adjacent spines (B)
• Long lines that can drive one spine (C)

There are three types of clock aggregation available for the quadrant spines, as shown in Figure 3-10:
• I/Os or local resources that can drive up to four adjacent spines
• I/Os or local resources that can drive up to two adjacent spines
• I/Os or local resources that can drive one spine

As an example, A3PE600 and AFS600 devices have twelve spine locations: T1, T2, T3, T4, T5, T6, B1,
B2, B3, B4, B5, and B6. Table 3-7 shows the clock aggregation you can have in A3PE600 and
AFS600.

The clock aggregation for the quadrant spines can cross over from the left to right quadrant, but not from
top to bottom. The quadrant spine assignment T1:T4 is legal, but the quadrant spine assignment T1:B1
is not legal. Note that this clock aggregation is hardwired. You can always assign signals to spine T1 and
B2 by instantiating a buffer, but this may add skew in the signal.

Figure 3-10 • Four Spines Aggregation

Tn Tn + 1 Tn + 2 Tn + 4

A

B

C

Tn + 3

Table 3-7 • Spine Aggregation in A3PE600 or AFS600

Clock Aggregation Spine

1 spine T1, T2, T3, T4, T5, T6, B1, B2, B3, B4, B5, B6

2 spines T1:T2, T2:T3, T3:T4, T4:T5, T5:T6, B1:B2, B2:B3, B3:B4, B4:B5, B5:B6

4 spines B1:B4, B2:B5, B3:B6, T1:T4, T2:T5, T3:T6
Revision 4 61

Global Resources in Low Power Flash Devices
Design Recommendations
The following sections provide design flow recommendations for using a global network in a design.

• "Global Macros and I/O Standards"
• "Global Macro and Placement Selections" on page 64
• "Using Global Macros in Synplicity" on page 66
• "Global Promotion and Demotion Using PDC" on page 67
• "Spine Assignment" on page 68
• "Designer Flow for Global Assignment" on page 69
• "Simple Design Example" on page 71
• "Global Management in PLL Design" on page 73
• "Using Spines of Occupied Global Networks" on page 74

Global Macros and I/O Standards
The larger low power flash devices have six chip global networks and four quadrant global networks.
However, the same clock macros are used for assigning signals to chip globals and quadrant globals.
Depending on the clock macro placement or assignment in the Physical Design Constraint (PDC) file or
MultiView Navigator (MVN), the signal will use the chip global network or quadrant network. Table 3-8
lists the clock macros available for low power flash devices. Refer to the IGLOO, ProASIC3,
SmartFusion, and Fusion Macro Library Guide for details.

Use these available macros to assign a signal to the global network. In addition to these global macros,
PLL and CLKDLY macros can also drive the global networks. Use I/O–standard–specific clock macros
(CLKBUF_x) to instantiate a specific I/O standard for the global signals. Table 3-9 on page 63 shows the
list of these I/O–standard–specific macros. Note that if you use these I/O–standard–specific clock
macros, you cannot change the I/O standard later in the design stage. If you use the regular CLKBUF
macro, you can use MVN or the PDC file in Designer to change the I/O standard. The default I/O

Table 3-8 • Clock Macros

Macro Name Description Symbol

CLKBUF Input macro for Clock Network

CLKBUF_x Input macro for Clock Network
with specific I/O standard

CLKBUF_LVDS/LVPECL LVDS or LVPECL input macro
for Clock Network (not
supported for IGLOO nano or
ProASIC3 nano devices)

CLKINT Macro for internal clock interface

CLKBIBUF Bidirectional macro with input
dedicated to routed Clock
Network

YPAD

CLKBUF

PAD Y
CLKBUF_X

PADN

PADP

CLKBUF_LVPECL Y

PADN

PADP

CLKBUF_LVDS Y

A Y

CLKINT

D
Y

E PAD

CLKBIBUF
62 Revision 4

http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf

ProASIC3L FPGA Fabric User’s Guide
Figure 3-12 • Chip Global Region

Figure 3-13 • Quadrant Global Region

Location A

Location F

Location E Location D

Location C

Location BBankx Bankx

Bankx Bankx

B
an

kx
B

an
kx

B
an

kx
B

an
kx

Chip Global Region

C
LK

B
U

F
pl

ac
ed

 a
t o

ne
 o

f t
he

 G
F

pi
n

lo
ca

tio
ns

Location A

Location F

Location E Location D

Location C

Location BBankx Bankx

Bankx Bankx

B
an

kx
B

an
kx

B
an

kx
B

an
kx

Quadrant Global Region

CLKBUF placed at one of the GA pin locations
Revision 4 65

ProASIC3L FPGA Fabric User’s Guide
Simple Design Example
Consider a design consisting of six building blocks (shift registers) and targeted for an A3PE600-PQ208
(Figure 3-16 on page 68). The example design consists of two PLLs (PLL1 has GLA only; PLL2 has both
GLA and GLB), a global reset (ACLR), an enable (EN_ALL), and three external clock domains (QCLK1,
QCLK2, and QCLK3) driving the different blocks of the design. Note that the PQ208 package only has
two PLLs (which access the chip global network). Because of fanout, the global reset and enable signals
need to be assigned to the chip global resources. There is only one free chip global for the remaining
global (QCLK1, QCLK2, QCLK3). Place two of these signals on the quadrant global resource. The
design example demonstrates manually assignment of QCLK1 and QCLK2 to the quadrant global using
the PDC command.

Figure 3-19 • Block Diagram of the Global Management Example Design

reg256_behave

REG_PLLCLK2GLA_OUT

REG_QCLK1_OUT

REG_QCLK2_OUT

REG_PLLCLK2GLB_OUT

REG_QCLK3_OUT

REG_PLLCLK1_OUT

REG_PLLCLK2GLA

PDOWN
PLLZ_CLKA

DATA_QCLK1

DATA_PLLCQCLK2
EN_ALL

QCLK1

DATA_QCLK2

QCLK2
ACLR

DATA_QCLK3

DATA_PLLCLK1

PLL1_CLKA

QCLK3

Shhl_In
Shhl_In
Adr
Clock

Shhl_out

REG_QCLK1

REG_QCLK2

REG_PLLCLK2GLB

REG_QCLK3

REG_PLLCLK1

PLL1

\$115

POWER-DOWN
CLKA

LOCK
GLA

POWER-DOWN
CLKA

LOCK
GLA
GLB

PLL2

\$116

reg256_behave
Shhl_In
Shhl_In
Adr
Clock

Shhl_out

reg256_behave
Shhl_In
Shhl_In
Adr
Clock

Shhl_out

reg256_behave
Shhl_In
Shhl_In
Adr
Clock

Shhl_out

reg256_behave
Shhl_In
Shhl_In
Adr
Clock

Shhl_out

reg256_behave
Shhl_In
Shhl_In
Adr
Clock

Shhl_out
Revision 4 71

ProASIC3L FPGA Fabric User’s Guide
Fusion CCC Locations
Fusion devices have six CCCs: one in each of the four corners and one each in the middle of the east
and west sides of the device (Figure 4-17 and Figure 4-18). The device can have one integrated PLL in
the middle of the west side of the device or two integrated PLLs in the middle of the east and west sides
of the device (middle right and middle left).

Figure 4-17 • CCC Locations in Fusion Family Devices (AFS090, AFS250, M1AFS250)

Figure 4-18 • CCC Locations in Fusion Family Devices (except AFS090, AFS250, M1AFS250)

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

VersaTile

CCC

I/Os

ISP AES
Decryption

User Nonvolatile
FlashROM (FROM) Charge Pumps

Bank 0

B
an

k
3

B
an

k
3 B

ank 1
B

ank 1

Bank 2

A B

C

DE

F

= CCC with integrated PLL
= Simplified CCC with programmable delay elements (no PLL)

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

VersaTile

I/Os

Bank 0

B
an

k
3

B
an

k
3 B

ank 1
B

ank 1

Bank 2

= CCC with integrated PLL
= Simplified CCC with programmable delay elements (no PLL)

B

C

D

CCC
A

E

F

ISP AES
Decryption*

User Nonvolatile
FlashRom

Flash*Freeze
Technology

Charge
Pumps
Revision 4 99

5 – FlashROM in Microsemi’s Low Power Flash
Devices

Introduction
The Fusion, IGLOO, and ProASIC3 families of low power flash-based devices have a dedicated
nonvolatile FlashROM memory of 1,024 bits, which provides a unique feature in the FPGA market. The
FlashROM can be read, modified, and written using the JTAG (or UJTAG) interface. It can be read but
not modified from the FPGA core. Only low power flash devices contain on-chip user nonvolatile memory
(NVM).

Architecture of User Nonvolatile FlashROM
Low power flash devices have 1 kbit of user-accessible nonvolatile flash memory on-chip that can be
read from the FPGA core fabric. The FlashROM is arranged in eight banks of 128 bits (16 bytes) during
programming. The 128 bits in each bank are addressable as 16 bytes during the read-back of the
FlashROM from the FPGA core. Figure 5-1 shows the FlashROM logical structure.
The FlashROM can only be programmed via the IEEE 1532 JTAG port. It cannot be programmed directly
from the FPGA core. When programming, each of the eight 128-bit banks can be selectively
reprogrammed. The FlashROM can only be reprogrammed on a bank boundary. Programming involves
an automatic, on-chip bank erase prior to reprogramming the bank. The FlashROM supports
synchronous read. The address is latched on the rising edge of the clock, and the new output data is
stable after the falling edge of the same clock cycle. For more information, refer to the timing diagrams in
the DC and Switching Characteristics chapter of the appropriate datasheet. The FlashROM can be read
on byte boundaries. The upper three bits of the FlashROM address from the FPGA core define the bank
being accessed. The lower four bits of the FlashROM address from the FPGA core define which of the 16
bytes in the bank is being accessed.

Figure 5-1 • FlashROM Architecture

B
an

k
N

um
be

r 3
 M

SB
 o

f
A

D
D

R
 (R

EA
D

)

Byte Number in Bank 4 LSB of ADDR (READ)

7

0

1

2

3

4

5

6

0123456789101112131415
Revision 4 133

SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
Notes:
1. Automotive ProASIC3 devices restrict RAM4K9 to a single port or to dual ports with the same clock 180° out of

phase (inverted) between clock pins. In single-port mode, inputs to port B should be tied to ground to prevent
errors during compile. This warning applies only to automotive ProASIC3 parts of certain revisions and earlier.
Contact Technical Support at soc_tech@microsemi.com for information on the revision number for a particular lot
and date code.

2. For FIFO4K18, the same clock 180° out of phase (inverted) between clock pins should be used.
Figure 6-3 • Supported Basic RAM Macros

FIFO4K18

RW2 RD17
RW1 RD16
RW0
WW2
WW1
WW0 RD0
ESTOP
FSTOP FULL

 AFULL
EMPTY

AFVAL11

AEMPTY

AFVAL10

AFVAL0

AEVAL11
AEVAL10

AEVAL0

REN
RBLK
RCLK

WEN
WBLK
WCLK

RPIPE

WD17
WD16

WD0

RESET

ADDRA11 DOUTA8
DOUTA7

DOUTA0

DOUTB8
DOUTB7

DOUTB0

ADDRA10

ADDRA0
DINA8
DINA7

DINA0

WIDTHA1
WIDTHA0
PIPEA
WMODEA
BLKA
WENA
CLKA

ADDRB11
ADDRB10

ADDRB0

DINB8
DINB7

DINB0

WIDTHB1
WIDTHB0
PIPEB
WMODEB
BLKB
WENB
CLKB

RAM4K9

RADDR8 RD17
RADDR7 RD16

RADDR0 RD0

WD17
WD16

WD0

WW1
WW0

RW1
RW0

PIPE

REN
RCLK

RAM512x18

WADDR8
WADDR7

WADDR0

WEN
WCLK

RESETRESET
152 Revision 4

mailto:soc_tech@microsemi.com

SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
Software Support
The SmartGen core generator is the easiest way to select and configure the memory blocks
(Figure 6-12). SmartGen automatically selects the proper memory block type and aspect ratio, and
cascades the memory blocks based on the user's selection. SmartGen also configures any additional
signals that may require tie-off.
SmartGen will attempt to use the minimum number of blocks required to implement the desired memory.
When cascading, SmartGen will configure the memory for width before configuring for depth. For
example, if the user requests a 256×8 FIFO, SmartGen will use a 512×9 FIFO configuration, not 256×18.

Figure 6-12 • SmartGen Core Generator Interface
170 Revision 4

ProASIC3L FPGA Fabric User’s Guide
SmartGen enables the user to configure the desired RAM element to use either a single clock for read
and write, or two independent clocks for read and write. The user can select the type of RAM as well as
the width/depth and several other parameters (Figure 6-13).

SmartGen also has a Port Mapping option that allows the user to specify the names of the ports
generated in the memory block (Figure 6-14).

SmartGen also configures the FIFO according to user specifications. Users can select no flags, static
flags, or dynamic flags. Static flag settings are configured using configuration flash and cannot be altered

Figure 6-13 • SmartGen Memory Configuration Interface

Figure 6-14 • Port Mapping Interface for SmartGen-Generated Memory
Revision 4 171

ProASIC3L FPGA Fabric User’s Guide
I/O Architecture

I/O Tile
The I/O tile provides a flexible, programmable structure for implementing a large number of I/O
standards. In addition, the registers available in the I/O tile can be used to support high-performance
register inputs and outputs, with register enable if desired (Figure 7-2). The registers can also be used to
support the JESD-79C Double Data Rate (DDR) standard within the I/O structure (see the "DDR for
Microsemi’s Low Power Flash Devices" section on page 271 for more information). In addition, the
registers available in the I/O tile can be used to support high-performance register inputs and outputs,
with register enable if desired (Figure 7-2).
As depicted in Figure 7-2, all I/O registers share one CLR port. The output register and output enable
register share one CLK port.

Figure 7-2 • DDR Configured I/O Block Logical Representation

Input
Register

E = Enable PinA

Y

PAD

1 2

3

4

5

6

OCE

ICE

ICE

Input
Register

Input
Register

CLR/PRE

CLR/PRE

CLR/PRE

CLR/PRE

CLR/PRE

Pull-Up/-Down
Resistor Control

Signal Drive Strength
and Slew Rate Control

Output
Register

Output
Register

To FPGA Core

From FPGA Core

Output
Enable

Register
OCE

I/O / CLR or I/O / PRE / OCE

I/O / Q0

I/O / Q1

I/O / ICLK

I/O / D0

I/O / D1 / ICE

I/O / OCLK

I/O / OE
Revision 4 181

I/O Software Control in Low Power Flash Devices
Instantiating in HDL code
All the supported I/O macros can be instantiated in the top-level HDL code (refer to the IGLOO,
ProASIC3, SmartFusion, and Fusion Macro Library Guide for a detailed list of all I/O macros). The
following is an example:
library ieee;
use ieee.std_logic_1164.all;
library proasic3e;

entity TOP is
port(IN2, IN1 : in std_logic; OUT1 : out std_logic);

end TOP;

architecture DEF_ARCH of TOP is

component INBUF_LVCMOS5U
port(PAD : in std_logic := 'U'; Y : out std_logic);

end component;

component INBUF_LVCMOS5
port(PAD : in std_logic := 'U'; Y : out std_logic);

end component;

component OUTBUF_SSTL3_II
port(D : in std_logic := 'U'; PAD : out std_logic);

end component;

Other component …..

signal x, y, z…….other signals : std_logic;

begin

I1 : INBUF_LVCMOS5U
port map(PAD => IN1, Y =>x);

I2 : INBUF_LVCMOS5
port map(PAD => IN2, Y => y);

I3 : OUTBUF_SSTL3_II
port map(D => z, PAD => OUT1);

other port mapping…

end DEF_ARCH;

Synthesizing the Design
Libero SoC integrates with the Synplify® synthesis tool. Other synthesis tools can also be used with
Libero SoC. Refer to the Libero SoC User’s Guide or Libero online help for details on how to set up the
Libero tool profile with synthesis tools from other vendors.
During synthesis, the following rules apply:

• Generic macros:
– Users can instantiate generic INBUF, OUTBUF, TRIBUF, and BIBUF macros.
– Synthesis will automatically infer generic I/O macros.
– The default I/O technology for these macros is LVTTL.
– Users will need to use the I/O Attribute Editor in Designer to change the default I/O standard if

needed (see Figure 9-6 on page 259).
• Technology-specific I/O macros:

– Technology-specific I/O macros, such as INBUF_LVCMO25 and OUTBUF_GTL25, can be
instantiated in the design. Synthesis will infer these I/O macros in the netlist.
258 Revision 4

http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf

http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf

http://www.microsemi.com/soc/documents/libero_ug.pdf

ProASIC3L FPGA Fabric User’s Guide
Compiling the Design
During Compile, a PDC I/O constraint file can be imported along with the netlist file. If only the netlist file
is compiled, certain I/O assignments need to be completed before proceeding to Layout. All constraints
that can be entered in PDC can also be entered using ChipPlanner, I/O Attribute Editor, and PinEditor.
There are certain rules that must be followed in implementing I/O register combining and the I/O DDR
macro (refer to the I/O Registers section of the handbook for the device that you are using and the "DDR"
section on page 256 for details). Provided these rules are met, the user can enable or disable I/O register
combining by using the PDC command set_io portname –register yes|no in the I/O Attribute Editor
or selecting a check box in the Compile Options dialog box (see Figure 9-7). The Compile Options dialog
box appears when the design is compiled for the first time. It can also be accessed by choosing Options
> Compile during successive runs. I/O register combining is off by default. The PDC command overrides
the setting in the Compile Options dialog box.

Understanding the Compile Report
The I/O bank report is generated during Compile and displayed in the log window. This report lists the I/O
assignments necessary before Layout can proceed.
When Designer is started, the I/O Bank Assigner tool is run automatically if the Layout command is
executed. The I/O Bank Assigner takes care of the necessary I/O assignments. However, these
assignments can also be made manually with MVN or by importing the PDC file. Refer to the "Assigning
Technologies and VREF to I/O Banks" section on page 264 for further description.
The I/O bank report can also be extracted from Designer by choosing Tools > Report and setting the
Report Type to IOBank.
This report has the following tables: I/O Function, I/O Technology, I/O Bank Resource Usage, and I/O
Voltage Usage. This report is useful if the user wants to do I/O assignments manually.

Figure 9-7 • Setting Register Combining During Compile
Revision 4 261

I/O Software Control in Low Power Flash Devices
List of Changes
The following table lists critical changes that were made in each revision of the document.

Date Changes Page

August 2012 The notes in Table 9-2 • Designer State (resulting from I/O attribute modification)
were revised to clarify which device families support programmable input delay
(SAR 39666).

253

June 2011 Figure 9-2 • SmartGen Catalog was updated (SAR 24310). Figure 8-3 • Expanded
I/O Section and the step associated with it were deleted to reflect changes in the
software.

254

The following rule was added to the "VREF Rules for the Implementation of
Voltage-Referenced I/O Standards" section:
Only minibanks that contain input or bidirectional I/Os require a VREF. A VREF is
not needed for minibanks composed of output or tristated I/Os (SAR 24310).

265

July 2010 Notes were added where appropriate to point out that IGLOO nano and ProASIC3
nano devices do not support differential inputs (SAR 21449).

N/A

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 9-1 • Flash-Based
FPGAs.

252

The notes for Table 9-2 • Designer State (resulting from I/O attribute modification)
were revised to indicate that skew control and input delay do not apply to nano
devices.

253

v1.3
(October 2008)

The "Flash FPGAs I/O Support" section was revised to include new families and
make the information more concise.

252

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 9-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

252

v1.1
(March 2008)

This document was previously part of the I/O Structures in IGLOO and ProASIC3
Devices document. The content was separated and made into a new document.

N/A

Table 9-2 • Designer State (resulting from I/O attribute modification) was updated
to include note 2 for IGLOO PLUS.

253
270 Revision 4

DDR for Microsemi’s Low Power Flash Devices
DDR Support in Flash-Based Devices
The flash FPGAs listed in Table 10-1 support the DDR feature and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 10-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated.

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 10-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 10-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
272 Revision 4

http://www.microsemi.com/soc/documents/Fusion_DS.pdf
http://www.microsemi.com/soc/documents/IGLOO_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOe_DS.pdf
http://www.microsemi.com/soc/documents/PA3_DS.pdf
http://www.microsemi.com/soc/documents/PA3E_DS.pdf
http://www.microsemi.com/soc/documents/PA3L_DS.pdf
http://www.microsemi.com/soc/documents/PA3_Auto_DS.pdf
http://www.microsemi.com/soc/documents/Mil_PA3_EL_DS.pdf
http://www.microsemi.com/soc/documents/RTPA3_DS.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/IGLOO_nano_DS.pdf
http://www.microsemi.com/soc/documents/PA3_nano_DS.pdf

12 – Security in Low Power Flash Devices

Security in Programmable Logic
The need for security on FPGA programmable logic devices (PLDs) has never been greater than today.
If the contents of the FPGA can be read by an external source, the intellectual property (IP) of the system
is vulnerable to unauthorized copying. Fusion, IGLOO, and ProASIC3 devices contain state-of-the-art
circuitry to make the flash-based devices secure during and after programming. Low power flash devices
have a built-in 128-bit Advanced Encryption Standard (AES) decryption core (except for 30 k gate
devices and smaller). The decryption core facilitates secure in-system programming (ISP) of the FPGA
core array fabric, the FlashROM, and the Flash Memory Blocks (FBs) in Fusion devices. The FlashROM,
Flash Blocks, and FPGA core fabric can be programmed independently of each other, allowing the
FlashROM or Flash Blocks to be updated without the need for change to the FPGA core fabric.
Microsemi has incorporated the AES decryption core into the low power flash devices and has also
included the Microsemi flash-based lock technology, FlashLock.® Together, they provide leading-edge
security in a programmable logic device. Configuration data loaded into a device can be decrypted prior
to being written to the FPGA core using the AES 128-bit block cipher standard. The AES encryption key
is stored in on-chip, nonvolatile flash memory.
This document outlines the security features offered in low power flash devices, some applications and
uses, as well as the different software settings for each application.

Figure 12-1 • Overview on Security
Revision 4 301

Security in Low Power Flash Devices
Note: If programming the Security Header only, just perform sub-flow 1.
If programming design content only, just perform sub-flow 2.

Figure 12-9 • Security Programming Flows

Software Generates Programming File
with Desired Security Settings:
 – Encrypted with AES and Protected
 with FlashLock Pass Key
 – Protected with FlashLock Pass Key Only

Program
Design
Contents

Program
Security
Settings

User

1

2

Designer Software Programming Software

Programming
Previously
Secured

Device(s)?

Yes

No

No

Software Generates
Programming File

with Desired
Design Contents

(FPGA Array,
FlashROM, FB,

or All) Yes

No

Device
Previously

Programmed?

Software Performs
Comparison of

FlashLock Pass Key
between

Programming File
and Device

Software Performs
Comparison of

FlashLock Pass Key
between

Programming File
and Device

Encrypted Design
Content Passes
through MAC for
Authentication

Software
Programs
Selected

Security Settings
into Device

No

Does
FlashLock
Pass Key
Match?

Does
FlashLock
Pass Key
Match?

Yes

No

Returns Error

Returns Error

Yes

Correct?

Yes

No

AES Key Used
Previously?

Yes

User Assigns Desired Security Settings
To FPGA/FlashROM/FB/All:
 – AES Key and FlashLock Pass Key
 – FlashLock Pass Key Only

User Must
Reassign Exact

FlashLock Pass Key
Previously

Programmed
into the Device

User Must
Reassign Exact

AES Key
Previously

Programmed
into the Device

Software Generates
Programming File

with FlashLock
Pass Key and

Design Contents

Design Content
Programmed
into Device

Software Generates
Programming File

with Encrypted
Design Contents

Design Content
Decrypted and
Programmed
into Device
312 Revision 4

Security in Low Power Flash Devices
STAPL File with AES Encryption
• Does not contain AES key / FlashLock Key information
• Intended for transmission through web or service to unsecured locations for programming

===
NOTE "CREATOR" "Designer Version: 6.1.1.108";
NOTE "DEVICE" "A3PE600";
NOTE "PACKAGE" "208 PQFP";
NOTE "DATE" "2005/04/08";
NOTE "STAPL_VERSION" "JESD71";
NOTE "IDCODE" "$123261CF";
NOTE "DESIGN" "counter32";
NOTE "CHECKSUM" "$EF57";
NOTE "SAVE_DATA" "FRomStream";
NOTE "SECURITY" "ENCRYPT FROM CORE ";
NOTE "ALG_VERSION" "1";
NOTE "MAX_FREQ" "20000000";
NOTE "SILSIG" "$00000000";

Conclusion
The new and enhanced security features offered in Fusion, IGLOO, and ProASIC3 devices provide state-
of-the-art security to designs programmed into these flash-based devices. Microsemi low power flash
devices employ the encryption standard used by NIST and the U.S. government—AES using the 128-bit
Rijndael algorithm.
The combination of an on-chip AES decryption engine and FlashLock technology provides the highest
level of security against invasive attacks and design theft, implementing the most robust and secure ISP
solution. These security features protect IP within the FPGA and protect the system from cloning,
wholesale “black box” copying of a design, invasive attacks, and explicit IP or data theft.

Glossary

References
National Institute of Standards and Technology. “ADVANCED ENCRYPTION STANDARD (AES)

Questions and Answers.” 28 January 2002 (10 January 2005).
See http://csrc.nist.gov/archive/aes/index1.html for more information.

Term Explanation

Security Header
programming file

Programming file used to program the FlashLock Pass Key and/or AES key into the device to
secure the FPGA, FlashROM, and/or FBs.

AES (encryption) key 128-bit key defined by the user when the AES encryption option is set in the Microsemi
Designer software when generating the programming file.

FlashLock Pass Key 128-bit key defined by the user when the FlashLock option is set in the Microsemi Designer
software when generating the programming file.
The FlashLock Key protects the security settings programmed to the device. Once a device
is programmed with FlashLock, whatever settings were chosen at that time are secure.

FlashLock The combined security features that protect the device content from attacks. These features
are the following:
• Flash technology that does not require an external bitstream to program the device
• FlashLock Pass Key that secures device content by locking the security settings and

preventing access to the device as defined by the user
• AES key that allows secure, encrypted device reprogrammability
324 Revision 4

http://csrc.nist.gov/archive/aes/index1.html

