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Introduction

Contents
This user’s guide contains information to help designers understand and use Microsemi's ProASIC®3L
devices. Each chapter addresses a specific topic. Most of these chapters apply to other Microsemi
device families as well. When a feature or description applies only to a specific device family, this is made
clear in the text.

Revision History
The revision history for each chapter is listed at the end of the chapter. Most of these chapters were
formerly included in device handbooks. Some were originally application notes or information included in
device datasheets. 
A "Summary of Changes" table at the end of this user’s guide lists the chapters that were changed in
each revision of the document, with links to the "List of Changes" sections for those chapters.

Related Information
Refer to the ProASIC3L Flash Family FPGAs datasheet for detailed specifications, timing, and package
and pin information.
The website page for ProASIC3L devices is /www.microsemi.com/soc/products/pa3l/default.aspx.
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Flash*Freeze Technology and Low Power Modes
Flash Families Support the Flash*Freeze Feature
The low power flash FPGAs listed in Table 2-1 support the Flash*Freeze feature and the functions
described in this document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 2-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 2-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 2-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
22 Revision 4

http://www.microsemi.com/soc/documents/IGLOO_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOe_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOPLUS_DS.pdf
http://www.microsemi.com/soc/documents/IGLOO_nano_DS.pdf
http://www.microsemi.com/soc/documents/PA3L_DS.pdf
http://www.microsemi.com/soc/documents/Mil_PA3_EL_DS.pdf
http://www.microsemi.com/soc/documents/RTPA3_DS.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf


Flash*Freeze Technology and Low Power Modes
v1.2
(continued)

Figure 2-3 • Flash*Freeze Mode Type 2 – Controlled by Flash*Freeze Pin and
Internal Logic (LSICC signal) was updated.

27

Figure 2-4 • Flash*Freeze Mode Type 2 – Timing Diagram was revised to show
deasserting LSICC after the device has exited Flash*Freeze mode.

27

The "IGLOO nano and IGLOO PLUS I/O State in Flash*Freeze Mode" section was
added to include information for IGLOO PLUS devices. Table 2-6 • IGLOO nano and
IGLOO PLUS Flash*Freeze Mode (type 1 and type 2)—I/O Pad State is new.

28, 29

The "During Flash*Freeze Mode" section was revised to include a new bullet
pertaining to output behavior for IGLOO PLUS. The bullet on JTAG operation was
revised to provide more detail.

31

Figure 2-6 • Controlling Power-On/-Off State Using Microprocessor and Power FET
and Figure 2-7 • Controlling Power-On/-Off State Using Microprocessor and Voltage
Regulator were updated to include IGLOO PLUS.

33, 33

The first sentence of the "Shutdown Mode" section was updated to list the devices
for which it is supported.

32

The first paragraph of the "Power-Up/-Down Behavior" section was revised. The
second sentence was changed to, "The I/Os remain tristated until the last voltage
supply (VCC or VCCI) is powered to its activation level." The word "activation"
replaced the word "functional." The sentence, "During power-down, device I/Os
become tristated once the first power supply (VCC or VCCI) drops below its
deactivation voltage level" was revised. The word "deactivation" replaced the word
"brownout."

33

The "Prototyping for IGLOO and ProASIC3L Devices Using ProASIC3" section was
revised to state that prototyping in ProASIC3 does not apply for the IGLOO PLUS
family.

2-21

Table 2-8 • Prototyping/Migration Solutions, Table 2-9 • Device Migration—IGLOO
Supported Packages in ProASIC3 Devices, and Table 2-10 • Device Migration—
ProASIC3L Supported Packages in ProASIC3 Devices were updated with a table
note stating that device migration is not supported for IGLOO PLUS devices.

2-21, 
2-23

The text following Table 2-10 • Device Migration—ProASIC3L Supported Packages
in ProASIC3 Devices was moved to a new section: the "Flash*Freeze Design
Guide" section.

34

v1.1
(February 2008)

Table 2-1 • Flash-Based FPGAs was updated to remove the ProASIC3, ProASIC3E,
and Automotive ProASIC3 families, which were incorrectly included.

22

v1.0
(January 2008)

Detailed descriptions of low power modes are described in the advanced
datasheets. This application note was updated to describe how to use the features
in an IGLOO/e application.

N/A

Figure 2-1 • Flash*Freeze Mode Type 1 – Controlled by the Flash*Freeze Pin was
updated.

25

Figure 2-2 • Flash*Freeze Mode Type 1 – Timing Diagram is new. 25

Steps 4 and 5 are new in the "Flash*Freeze Type 2: Control by Dedicated
Flash*Freeze Pin and Internal Logic" section.

26

Date Changes Page
44 Revision 4



ProASIC3L FPGA Fabric User’s Guide
Simple Design Example
Consider a design consisting of six building blocks (shift registers) and targeted for an A3PE600-PQ208
(Figure 3-16 on page 68). The example design consists of two PLLs (PLL1 has GLA only; PLL2 has both
GLA and GLB), a global reset (ACLR), an enable (EN_ALL), and three external clock domains (QCLK1,
QCLK2, and QCLK3) driving the different blocks of the design. Note that the PQ208 package only has
two PLLs (which access the chip global network). Because of fanout, the global reset and enable signals
need to be assigned to the chip global resources. There is only one free chip global for the remaining
global (QCLK1, QCLK2, QCLK3). Place two of these signals on the quadrant global resource. The
design example demonstrates manually assignment of QCLK1 and QCLK2 to the quadrant global using
the PDC command. 

Figure 3-19 • Block Diagram of the Global Management Example Design
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Each CCC can implement up to three independent global buffers (with or without programmable delay) 
or a PLL function (programmable frequency division/multiplication, phase shift, and delays) with up to 
three global outputs. Unused global outputs of a PLL can be used to implement independent global 
buffers, up to a maximum of three global outputs for a given CCC.

CCC Programming
The CCC block is fully configurable, either via flash configuration bits set in the programming bitstream or 
through an asynchronous interface. This asynchronous dedicated shift register interface is dynamically 
accessible from inside the low power flash devices to permit parameter changes, such as PLL divide 
ratios and delays, during device operation. 
To increase the versatility and flexibility of the clock conditioning system, the CCC configuration is 
determined either by the user during the design process, with configuration data being stored in flash 
memory as part of the device programming procedure, or by writing data into a dedicated shift register 
during normal device operation.
This latter mode allows the user to dynamically reconfigure the CCC without the need for core 
programming. The shift register is accessed through a simple serial interface. Refer to the "UJTAG 
Applications in Microsemi’s Low Power Flash Devices" section on page 363 or the application note Using 
Global Resources in Actel Fusion Devices.

Global Resources 
Low power flash and mixed signal devices provide three global routing networks (GLA, GLB, and GLC) 
for each of the CCC locations. There are potentially many I/O locations; each global I/O location can be 
chosen from only one of three possibilities. This is controlled by the multiplexer tree circuitry in each 
global network. Once the I/O location is selected, the user has the option to utilize the CCCs before the 
signals are connected to the global networks. The CCC in each location (up to six) has the same 
structure, so generating the CCC macros is always done with an identical software GUI. The CCCs in the 
corner locations drive the quadrant global networks, and the CCCs in the middle of the east and west 
chip sides drive the chip global networks. The quadrant global networks span only a quarter of the 
device, while the chip global networks span the entire device. For more details on global resources 
offered in low power flash devices, refer to the "Global Resources in Low Power Flash Devices" section 
on page 47. 
A global buffer can be placed in any of the three global locations (CLKA-GLA, CLKB-GLB, or 
CLKC-GLC) of a given CCC. A PLL macro uses the CLKA CCC input to drive its reference clock. It uses 
the GLA and, optionally, the GLB and GLC global outputs to drive the global networks. A PLL macro can 
also drive the YB and YC regular core outputs. The GLB (or GLC) global output cannot be reused if the 
YB (or YC) output is used. Refer to the "PLL Macro Signal Descriptions" section on page 84 for more 
information. 
Each global buffer, as well as the PLL reference clock, can be driven from one of the following: 

• 3 dedicated single-ended I/Os using a hardwired connection
• 2 dedicated differential I/Os using a hardwired connection (not supported for IGLOO nano or 

ProASIC3 nano devices)
• The FPGA core
78 Revision 4
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ProASIC3L FPGA Fabric User’s Guide
External I/O Clock Source
External I/O refers to regular I/O pins. The clock source is instantiated with one of the various INBUF 
options and accesses the CCCs via internal routing. The user has the option of assigning this input to 
any of the I/Os labeled with the I/O convention IOuxwByVz. Refer to the "User I/O Naming Conventions 
in I/O Structures" chapter of the appropriate device user’s guide, and for Fusion, refer to the Fusion 
Family of Mixed Signal FPGAs datasheet for more information. Figure 4-11 gives a brief explanation of 
external I/O usage. Choosing this option provides the freedom of selecting any user I/O location but 
introduces additional delay because the signal connects to the routed clock input through internal routing 
before connecting to the CCC reference clock input.
For the External I/O option, the routed signal would be instantiated with a PLLINT macro before 
connecting to the CCC reference clock input. This instantiation is conveniently done automatically by 
SmartGen when this option is selected. Microsemi recommends using the SmartGen tool to generate the 
CCC macro. The instantiation of the PLLINT macro results in the use of the routed clock input of the I/O 
to connect to the PLL clock input. If not using SmartGen, manually instantiate a PLLINT macro before the 
PLL reference clock to indicate that the regular I/O driving the PLL reference clock should be used (see 
Figure 4-11 for an example illustration of the connections, shown in red).
In the above two options, the clock source must be instantiated with one of the various INBUF macros. 
The reference clock pins of the CCC functional block core macros must be driven by regular input 
macros (INBUFs), not clock input macros. 

For Fusion devices, the input reference clock can also be from the embedded RC oscillator and crystal 
oscillator. In this case, the CCC configuration is the same as the hardwired I/O clock source, and users 
are required to instantiate the RC oscillator or crystal oscillator macro and connect its output to the input 
reference clock of the CCC block.

Figure 4-11 • Illustration of External I/O Usage
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ProASIC3L FPGA Fabric User’s Guide
Available I/O Standards

Global Synthesis Constraints 
The Synplify® synthesis tool, by default, allows six clocks in a design for Fusion, IGLOO, and ProASIC3. 
When more than six clocks are needed in the design, a user synthesis constraint attribute, 
syn_global_buffers, can be used to control the maximum number of clocks (up to 18) that can be inferred 
by the synthesis engine.
High-fanout nets will be inferred with clock buffers and/or internal clock buffers. If the design consists of 
CCC global buffers, they are included in the count of clocks in the design.
The subsections below discuss the clock input source (global buffers with no programmable delays) and 
the clock conditioning functional block (global buffers with programmable delays and/or PLL function) in 
detail.

Table 4-4 • Available I/O Standards within CLKBUF and CLKBUF_LVDS/LVPECL Macros

CLKBUF_LVCMOS5 

CLKBUF_LVCMOS33 1

CLKBUF_LVCMOS25 2

CLKBUF_LVCMOS18 

CLKBUF_LVCMOS15 

CLKBUF_PCI 

CLKBUF_PCIX 3

CLKBUF_GTL25 2,3

CLKBUF_GTL33 2,3

CLKBUF_GTLP25 2,3

CLKBUF_GTLP33 2,3

CLKBUF_HSTL_I 2,3

CLKBUF_HSTL_II 2,3

CLKBUF_SSTL3_I 2,3

CLKBUF_SSTL3_II 2,3

CLKBUF_SSTL2_I 2,3

CLKBUF_SSTL2_II 2,3

CLKBUF_LVDS 4,5

CLKBUF_LVPECL5

Notes:
1. By default, the CLKBUF macro uses 3.3 V LVTTL I/O technology. For more details, refer to the 

IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide.
2. I/O standards only supported in ProASIC3E and IGLOOe families.
3. I/O standards only supported in the following Fusion devices: AFS600 and AFS1500.
4. B-LVDS and M-LVDS standards are supported by CLKBUF_LVDS.
5. Not supported for IGLOO nano and ProASIC3 nano devices.
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ProASIC3L FPGA Fabric User’s Guide
FlashROM Generation and Instantiation in the Design
The SmartGen core generator, available in Libero SoC and Designer, is the only tool that can be used to
generate the FlashROM content. SmartGen has several user-friendly features to help generate the
FlashROM contents. Instead of selecting each byte and assigning values, you can create a region within
a page, modify the region, and assign properties to that region. The FlashROM user interface, shown in
Figure 5-10, includes the configuration grid, existing regions list, and properties field. The properties field
specifies the region-specific information and defines the data used for that region. You can assign values
to the following properties: 

1. Static Fixed Data—Enables you to fix the data so it cannot be changed during programming time.
This option is useful when you have fixed data stored in this region, which is required for the
operation of the design in the FPGA. Key storage is one example. 

2. Static Modifiable Data—Select this option when the data in a particular region is expected to be
static data (such as a version number, which remains the same for a long duration but could
conceivably change in the future). This option enables you to avoid changing the value every time
you enter new data. 

3. Read from File—This provides the full flexibility of FlashROM usage to the customer. If you have
a customized algorithm for generating the FlashROM data, you can specify this setting. You can
then generate a text file with data for as many devices as you wish to program, and load that into
the FlashPoint programming file generation software to get programming files that include all the
data. SmartGen will optionally pass the location of the file where the data is stored if the file is
specified in SmartGen. Each text file has only one type of data format (binary, decimal, hex, or
ASCII text). The length of each data file must be shorter than or equal to the selected region
length. If the data is shorter than the selected region length, the most significant bits will be
padded with 0s. For multiple text files for multiple regions, the first lines are for the first device. In
SmartGen, Load Sim. Value From File allows you to load the first device data in the MEM file for
simulation.

4. Auto Increment/Decrement—This scenario is useful when you specify the contents of FlashROM
for a large number of devices in a series. You can specify the step value for the serial number and
a maximum value for inventory control. During programming file generation, the actual number of
devices to be programmed is specified and a start value is fed to the software. 

Figure 5-10 • SmartGen GUI of the FlashROM 
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I/O Structures in IGLOO and ProASIC3 Devices
I/O Standards

Single-Ended Standards
These I/O standards use a push-pull CMOS output stage with a voltage referenced to system ground to
designate logical states. The input buffer configuration, output drive, and I/O supply voltage (VCCI) vary
among the I/O standards (Figure 7-5).  

The advantage of these standards is that a common ground can be used for multiple I/Os. This simplifies
board layout and reduces system cost. Their low-edge-rate (dv/dt) data transmission causes less
electromagnetic interference (EMI) on the board. However, they are not suitable for high-frequency
(>200 MHz) switching due to noise impact and higher power consumption.

LVTTL (Low-Voltage TTL)
This is a general-purpose standard (EIA/JESD8-B) for 3.3 V applications. It uses an LVTTL input buffer
and a push-pull output buffer. The LVTTL output buffer can have up to six different programmable drive
strengths. The default drive strength is 12 mA. VCCI is 3.3 V. Refer to "I/O Programmable Features" on
page 188 for details. 

LVCMOS (Low-Voltage CMOS)
The low power flash devices provide four different kinds of LVCMOS: LVCMOS 3.3 V, LVCMOS 2.5 V,
LVCMOS 1.8 V, and LVCMOS 1.5 V. LVCMOS 3.3 V is an extension of the LVCMOS standard (JESD8-
B–compliant) used for general-purpose 3.3 V applications. 
LVCMOS 2.5 V is an extension of the LVCMOS standard (JESD8-5–compliant) used for general-purpose
2.5 V applications. 
There is yet another standard supported by IGLOO and ProASIC3 devices (except A3P030): LVCMOS
2.5/5.0 V. This standard is similar to LVCMOS 2.5 V, with the exception that it can support up to 3.3 V on
the input side (2.5 V output drive). 
LVCMOS 1.8 V is an extension of the LVCMOS standard (JESD8-7–compliant) used for general-purpose
1.8 V applications. LVCMOS 1.5 V is an extension of the LVCMOS standard (JESD8-11–compliant) used
for general-purpose 1.5 V applications. 
The VCCI values for these standards are 3.3 V, 2.5 V, 1.8 V, and 1.5 V, respectively. Like LVTTL, the
output buffer has up to seven different programmable drive strengths (2, 4, 6, 8, 12, 16, and 24 mA).
Refer to "I/O Programmable Features" on page 188 for details. 

3.3 V PCI (Peripheral Component Interface) 
This standard specifies support for both 33 MHz and 66 MHz PCI bus applications. It uses an LVTTL
input buffer and a push-pull output buffer. With the aid of an external resistor, this I/O standard can be
5 V–compliant for low power flash devices. It does not have programmable drive strength.

3.3 V PCI-X (Peripheral Component Interface Extended)
An enhanced version of the PCI specification, 3.3 V PCI-X can support higher average bandwidths; it
increases the speed that data can move within a computer from 66 MHz to 133 MHz. It is backward-

Figure 7-5 • Single-Ended I/O Standard Topology
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I/O Structures in IGLOO and ProASIC3 Devices
GTL+ (Gunning Transceiver Logic Plus)
This is an enhanced version of GTL that has defined slew rates and higher voltage levels. It requires a
differential amplifier input buffer and an open-drain output buffer. Even though the output is open-drain,
VCCI must be connected to either 2.5 V or 3.3 V. The reference voltage (VREF) is 1 V.

Differential Standards
These standards require two I/Os per signal (called a “signal pair”). Logic values are determined by the
potential difference between the lines, not with respect to ground. This is why differential drivers and
receivers have much better noise immunity than single-ended standards. The differential interface
standards offer higher performance and lower power consumption than their single-ended counterparts.
Two I/O pins are used for each data transfer channel. Both differential standards require resistor
termination.

LVPECL (Low-Voltage Positive Emitter Coupled Logic)
LVPECL requires that one data bit be carried through two signal lines; therefore, two pins are needed per
input or output. It also requires external resistor termination. The voltage swing between the two signal
lines is approximately 850 mV. When the power supply is +3.3 V, it is commonly referred to as Low-
Voltage PECL (LVPECL). Refer to the device datasheet for the full implementation of the LVPECL
transmitter and receiver.

LVDS (Low-Voltage Differential Signal)
LVDS is a moderate-speed differential signaling system, in which the transmitter generates two different
voltages that are compared at the receiver. LVDS uses a differential driver connected to a terminated
receiver through a constant-impedance transmission line. It requires that one data bit be carried through
two signal lines; therefore, the user will need two pins per input or output. It also requires external resistor
termination. The voltage swing between the two signal lines is approximately 350 mV. VCCI is 2.5 V. Low
power flash devices contain dedicated circuitry supporting a high-speed LVDS standard that has its own
user specification. Refer to the device datasheet for the full implementation of the LVDS transmitter and
receiver.

B-LVDS/M-LVDS
Bus LVDS (B-LVDS) refers to bus interface circuits based on LVDS technology. Multipoint LVDS
(M-LVDS) specifications extend the LVDS standard to high-performance multipoint bus applications.
Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and
transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS
to accommodate the loading. The driver requires series terminations for better signal quality and to
control voltage swing. Termination is also required at both ends of the bus, since the driver can be
located anywhere on the bus. These configurations can be implemented using TRIBUF_LVDS and
BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS
macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in
Figure 7-8. The input and output buffer delays are available in the LVDS sections in the datasheet. 

Figure 7-7 • Differential Topology
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ProASIC3L FPGA Fabric User’s Guide
IGLOO and ProASIC3
For boards and cards with three levels of staging, card power supplies must have time to reach their final
values before the I/Os are connected. Pay attention to the sizing of power supply decoupling capacitors
on the card to ensure that the power supplies are not overloaded with capacitance.
Cards with three levels of staging should have the following sequence: 

• Grounds
• Powers 
• I/Os and other pins

For Level 3 and Level 4 compliance with the 30K gate device, cards with two levels of staging should
have the following sequence:

• Grounds
• Powers, I/Os, and other pins

Cold-Sparing Support
Cold-sparing refers to the ability of a device to leave system data undisturbed when the system is
powered up, while the component itself is powered down, or when power supplies are floating.
The resistor value is calculated based on the decoupling capacitance on a given power supply. The RC
constant should be greater than 3 µs.
To remove resistor current during operation, it is suggested that the resistor be disconnected (e.g., with
an NMOS switch) from the power supply after the supply has reached its final value. Refer to the "Power-
Up/-Down Behavior of Low Power Flash Devices" section on page 373 for details on cold-sparing. 
Cold-sparing means that a subsystem with no power applied (usually a circuit board) is electrically
connected to the system that is in operation. This means that all input buffers of the subsystem must
present very high input impedance with no power applied so as not to disturb the operating portion of the
system.
The 30 k gate devices fully support cold-sparing, since the I/O clamp diode is always off (see Table 7-12 on
page 193). If the 30 k gate device is used in applications requiring cold-sparing, a discharge path from
the power supply to ground should be provided. This can be done with a discharge resistor or a switched
resistor. This is necessary because the 30K gate devices do not have built-in I/O clamp diodes. 
For other IGLOO and ProASIC3 devices, since the I/O clamp diode is always active, cold-sparing can be
accomplished either by employing a bus switch to isolate the device I/Os from the rest of the system or
by driving each I/O pin to 0 V. If the resistor is chosen, the resistor value must be calculated based on
decoupling capacitance on a given power supply on the board (this decoupling capacitance is in parallel
with the resistor). The RC time constant should ensure full discharge of supplies before cold-sparing
functionality is required. The resistor is necessary to ensure that the power pins are discharged to ground
every time there is an interruption of power to the device.
IGLOOe and ProASIC3E devices support cold-sparing for all I/O configurations. Standards, such as PCI,
that require I/O clamp diodes can also achieve cold-sparing compliance, since clamp diodes get
disconnected internally when the supplies are at 0 V.
When targeting low power applications, I/O cold-sparing may add additional current if a pin is configured
with either a pull-up or pull-down resistor and driven in the opposite direction. A small static current is
induced on each I/O pin when the pin is driven to a voltage opposite to the weak pull resistor. The current
is equal to the voltage drop across the input pin divided by the pull resistor. Refer to the "Detailed I/O DC
Characteristics" section of the appropriate family datasheet for the specific pull resistor value for the
corresponding I/O standard.
For example, assuming an LVTTL 3.3 V input pin is configured with a weak pull-up resistor, a current will
flow through the pull-up resistor if the input pin is driven LOW. For LVTTL 3.3 V, the pull-up resistor is
~45 kΩ, and the resulting current is equal to 3.3 V / 45 kΩ = 73 µA for the I/O pin. This is true also when
a weak pull-down is chosen and the input pin is driven HIGH. This current can be avoided by driving the
input LOW when a weak pull-down resistor is used and driving it HIGH when a weak pull-up resistor is
used.
This current draw can occur in the following cases:
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8 – I/O Structures in IGLOOe and ProASIC3E 
Devices 

Introduction
Low power flash devices feature a flexible I/O structure, supporting a range of mixed voltages (1.2 V, 1.5 V, 
1.8 V, 2.5 V, and 3.3 V) through bank-selectable voltages. IGLOO®e, ProASIC®3EL, and ProASIC3E 
families support Pro I/Os. 
Users designing I/O solutions are faced with a number of implementation decisions and configuration 
choices that can directly impact the efficiency and effectiveness of their final design. The flexible I/O 
structure, supporting a wide variety of voltages and I/O standards, enables users to meet the growing 
challenges of their many diverse applications. The Libero SoC software provides an easy way to 
implement I/O that will result in robust I/O design. 
This document first describes the two different I/O types in terms of the standards and features they 
support. It then explains the individual features and how to implement them in Libero SoC.

Figure 8-1 • DDR Configured I/O Block Logical Representation
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I/O Structures in IGLOOe and ProASIC3E Devices
B-LVDS/M-LVDS
Bus LVDS (B-LVDS) refers to bus interface circuits based on LVDS technology. Multipoint LVDS 
(M-LVDS) specifications extend the LVDS standard to high-performance multipoint bus applications. 
Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and 
transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS 
to accommodate the loading. The driver requires series terminations for better signal quality and to 
control voltage swing. Termination is also required at both ends of the bus, since the driver can be 
located anywhere on the bus. These configurations can be implemented using TRIBUF_LVDS and 
BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS 
macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in 
Figure 8-9. The input and output buffer delays are available in the LVDS sections in the datasheet. 
Example: For a bus consisting of 20 equidistant loads, the terminations given in EQ 8-1 provide the 
required differential voltage, in worst case industrial operating conditions, at the farthest receiver:

RS = 60 Ω, RT = 70 Ω, given ZO = 50 Ω (2") and Zstub = 50 Ω (~1.5").

EQ 8-1

Figure 8-9 • A B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers
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ProASIC3L FPGA Fabric User’s Guide
User I/O Naming Convention

IGLOOe and ProASIC3E 
Due to the comprehensive and flexible nature of IGLOOe and ProASIC3E device user I/Os, a naming 
scheme is used to show the details of each I/O (Figure 8-20 on page 246). The name identifies to which 
I/O bank it belongs, as well as the pairing and pin polarity for differential I/Os.

I/O Nomenclature =  FF/Gmn/IOuxwByVz

Gmn is only used for I/Os that also have CCC access—i.e., global pins. 
FF = Indicates the I/O dedicated for the Flash*Freeze mode activation pin in IGLOOe only 
G = Global
m = Global pin location associated with each CCC on the device: A (northwest corner), B (northeast 

corner), C (east middle), D (southeast corner), E (southwest corner), and F (west middle)
n = Global input MUX and pin number of the associated Global location m, either A0, A1, A2, B0, B1, 

B2, C0, C1, or C2. Refer to the "Global Resources in Low Power Flash Devices" section on 
page 47 for information about the three input pins per clock source MUX at CCC location m.

u = I/O pair number in the bank, starting at 00 from the northwest I/O bank and proceeding in a 
clockwise direction

x = P (Positive) or N (Negative) for differential pairs, or R (Regular—single-ended) for the I/Os that 
support single-ended and voltage-referenced I/O standards only

w = D (Differential Pair), P (Pair), or S (Single-Ended). D (Differential Pair) if both members of the pair 
are bonded out to adjacent pins or are separated only by one GND or NC pin; P (Pair) if both 
members of the pair are bonded out but do not meet the adjacency requirement; or S (Single-
Ended) if the I/O pair is not bonded out. For Differential (D) pairs, adjacency for ball grid packages 
means only vertical or horizontal. Diagonal adjacency does not meet the requirements for a true 
differential pair.

B = Bank
y = Bank number (0–7). The bank number starts at 0 from the northwest I/O bank and proceeds in a 

clockwise direction.
V = VREF 
z = VREF minibank number (0–4). A given voltage-referenced signal spans 16 pins (typically) in an I/O 

bank. Voltage banks may have multiple VREF minibanks.
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I/O Software Control in Low Power Flash Devices
I/O Attribute Constraint

set_io Sets the attributes of an
I/O

set_io portname
[-pinname value]
[-fixed value]
[-iostd value]
[-out_drive value]
[-slew value]
[-res_pull value]
[-schmitt_trigger value]
[-in_delay value]
[-skew value]
[-out_load value]
[-register value]

set_io IN2 -pinname 28
-fixed yes -iostd LVCMOS15
-out_drive 12 -slew high
-RES_PULL None
-SCHMITT_TRIGGER Off
-IN_DELAY Off –skew off
-REGISTER No 

If the I/O macro is generic
(e.g., INBUF) or technology-
specific (INBUF_LVCMOS25),
then all I/O attributes can be
assigned using this constraint.
If the netlist has an I/O macro
that specifies one of its
attributes, that attribute
cannot be changed using this
constraint, though other
attributes can be changed. 
Example: OUTBUF_S_24
(low slew, output drive 24 mA)
Slew and output drive cannot
be changed.

I/O Region Placement Constraints

define_region Defines either a
rectangular region or a
rectilinear region

define_region
-name [region_name]
-type [region_type] x1 y1 x2 y2

define_region -name test
-type inclusive 0 15 2 29

If any number of I/Os must be
assigned to a particular I/O
region, such a region can be
created with this constraint. 

assign_region Assigns a set of macros
to a specified region

assign_region [region name]
[macro_name...]

assign_region test U12

This constraint assigns I/O
macros to the I/O regions.
When assigning an I/O macro,
PDC naming conventions
must be followed if the macro
name contains special
characters; e.g., if the macro
name is \\$1I19\\, the correct
use of escape characters is
\\\\\$1I19\\\\.

Table 9-3 • PDC I/O Constraints (continued)

Command Action Example Comment

Note: Refer to the Libero SoC User’s Guide for detailed rules on PDC naming and syntax conventions.
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Related Documents 
Below is a list of related documents, their location on the Microsemi SoC Products Group website, and a 
brief summary of each document. 

Application Notes
Programming Antifuse Devices
http://www.microsemi.com/soc/documents/AntifuseProgram_AN.pdf
Implementation of Security in Actel's ProASIC and ProASICPLUS Flash-Based FPGAs
http://www.microsemi.com/soc/documents/Flash_Security_AN.pdf

User’s Guides
FlashPro Programmers
FlashPro4,1 FlashPro3, FlashPro Lite, and FlashPro2

http://www.microsemi.com/soc/products/hardware/program_debug/flashpro/default.aspx
FlashPro User's Guide
http://www.microsemi.com/soc/documents/FlashPro_UG.pdf
The FlashPro User’s Guide includes hardware and software setup, self-test instructions, use instructions, 
and a troubleshooting / error message guide.

Silicon Sculptor 3 and Silicon Sculptor II 
http://www.microsemi.com/soc/products/hardware/program_debug/ss/default.aspx 

Other Documents
http://www.microsemi.com/soc/products/solutions/security/default.aspx#flashlock 
The security resource center describes security in Microsemi Flash FPGAs.
Quality and Reliability Guide
http://www.microsemi.com/soc/documents/RelGuide.pdf
Programming and Functional Failure Guidelines
http://www.microsemi.com/soc/documents/FA_Policies_Guidelines_5-06-00002.pdf 

1. FlashPro4 replaced FlashPro3 in Q1 2010.
2. FlashPro is no longer available.
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http://www.microsemi.com/soc/documents/FlashPro_UG.pdf
http://www.microsemi.com/soc/products/hardware/program_debug/flashpro/default.aspx
http://www.microsemi.com/soc/documents/FlashPro_UG.pdf
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Security in Low Power Flash Devices
Security in Action
This section illustrates some applications of the security advantages of Microsemi’s devices (Figure 12-6).

.

Note: Flash blocks are only used in Fusion devices
Figure 12-6 • Security Options 

Plaintext
Source File

AES
Encryption

Cipher Text
Source File

Public
Domain

AES Decryption Core

FlashROM Flash Blocks

Flash Device
A

pp
lic

at
io

n 
3

A
pp

lic
at

io
n 

2

A
pp

lic
at

io
n 

1

FPGA Core
308 Revision 4



ProASIC3L FPGA Fabric User’s Guide
ISP Programming Header Information
The FlashPro4/3/3X programming cable connector can be connected with a 10-pin, 0.1"-pitch
programming header. The recommended programming headers are manufactured by AMP (103310-1)
and 3M (2510-6002UB). If you have limited board space, you can use a compact programming header
manufactured by Samtec (FTSH-105-01-L-D-K). Using this compact programming header, you are
required to order an additional header adapter manufactured by Microsemi SoC Products Group (FP3-
10PIN-ADAPTER-KIT).
Existing ProASICPLUS family customers who are using the Samtec Small Programming Header
(FTSH-113-01-L-D-K) and are planning to migrate to IGLOO or ProASIC3 devices can also use
FP3-10PIN-ADAPTER-KIT.

Table 13-3 • Programming Header Ordering Codes

Manufacturer Part Number Description

AMP 103310-1 10-pin, 0.1"-pitch cable header (right-angle PCB mount
angle)

3M 2510-6002UB 10-pin, 0.1"-pitch cable header (straight PCB mount
angle)

Samtec FTSH-113-01-L-D-K Small programming header supported by FlashPro and
Silicon Sculptor 

Samtec FTSH-105-01-L-D-K Compact programming header

Samtec FFSD-05-D-06.00-01-N 10-pin cable with 50 mil pitch sockets; included in FP3-
10PIN-ADAPTER-KIT.

Microsemi FP3-10PIN-ADAPTER-KIT Transition adapter kit to allow FP3 to be connected to a
micro 10-pin header (50 mil pitch). Includes a 6 inch
Samtec FFSD-05-D-06.00-01-N cable in the kit. The
transition adapter board was previously offered as
FP3-26PIN-ADAPTER and includes a 26-pin adapter for
design transitions from ProASICPLUS based boards to
ProASIC3 based boards.

Note: *Prog_Mode on FlashPro4 is an output signal that goes High during device programming and
returns to Low when programming is complete. This signal can be used to drive a system to provide
a 1.5 V programming signal to IGLOO nano, ProASIC3L, and RT ProASIC3 devices that can run
with 1.2 V core voltage but require 1.5 V for programming. IGLOO nano V2 devices can be
programmed at 1.2 V core voltage (when using FlashPro4 only), but IGLOO nano V5 devices are
programmed with a VCC core voltage of 1.5 V.

Figure 13-5 • Programming Header (top view)
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16 – Boundary Scan in Low Power Flash Devices 

Boundary Scan
Low power flash devices are compatible with IEEE Standard 1149.1, which defines a hardware
architecture and the set of mechanisms for boundary scan testing. JTAG operations are used during
boundary scan testing. 
The basic boundary scan logic circuit is composed of the TAP controller, test data registers, and
instruction register (Figure 16-2 on page 360). 
Low power flash devices support three types of test data registers: bypass, device identification, and
boundary scan. The bypass register is selected when no other register needs to be accessed in a device.
This speeds up test data transfer to other devices in a test data path. The 32-bit device identification
register is a shift register with four fields (LSB, ID number, part number, and version). The boundary scan
register observes and controls the state of each I/O pin. Each I/O cell has three boundary scan register
cells, each with serial-in, serial-out, parallel-in, and parallel-out pins.

TAP Controller State Machine 
The TAP controller is a 4-bit state machine (16 states) that operates as shown in Figure 16-1.
The 1s and 0s represent the values that must be present on TMS at a rising edge of TCK for the given
state transition to occur. IR and DR indicate that the instruction register or the data register is operating in
that state. 
The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals
for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset
state. To guarantee a reset of the controller from any of the possible states, TMS must remain HIGH for
five TCK cycles. The TRST pin can also be used to asynchronously place the TAP controller in the Test-
Logic-Reset state.

Figure 16-1 • TAP Controller State Machine
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