
Microchip Technology - A3P1000L-FGG144 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Active

Number of LABs/CLBs -

Number of Logic Elements/Cells -

Total RAM Bits 147456

Number of I/O 97

Number of Gates 1000000

Voltage - Supply 1.14V ~ 1.575V

Mounting Type Surface Mount

Operating Temperature 0°C ~ 85°C (TJ)

Package / Case 144-LBGA

Supplier Device Package 144-FPBGA (13x13)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/a3p1000l-fgg144

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/a3p1000l-fgg144-4494066
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array

ProASIC3L FPGA Fabric User’s Guide
Figure 2-1 shows the concept of FF pin control in Flash*Freeze mode type 1.

Figure 2-2 shows the timing diagram for entering and exiting Flash*Freeze mode type 1.

Figure 2-1 • Flash*Freeze Mode Type 1 – Controlled by the Flash*Freeze Pin

User Design

IGLOO, IGLOO PLUS, IGLOO nano,
ProASIC3L, or RT ProASIC3 Device

Flash*Freeze
Mode

Enables Entering
Flash*Freeze Mode

Flash*Freeze
Signal

Flash*Freeze
Technology

Flash*Freeze (FF) Pin

INBUF_FF
Flash*Freeze
Mode Control

AND

To FPGA Core or Floating

1

Figure 2-2 • Flash*Freeze Mode Type 1 – Timing Diagram

Normal
Operation

Flash*Freeze
Mode

Normal
Operation

Flash*Freeze Pin

t = 1 μs t = 1 μs
Revision 4 25

Global Resources in Low Power Flash Devices
The following will happen during demotion of a global signal to regular nets:
• CLKBUF_x becomes INBUF_x; CLKINT is removed from the netlist.
• The essential global macro, such as the output of the Clock Conditioning Circuit, cannot be

demoted.
• No automatic buffering will happen.

Since no automatic buffering happens when a signal is demoted, this net may have a high delay due to
large fanout. This may have a negative effect on the quality of the results. Microsemi recommends that
the automatic global demotion only be used on small-fanout nets. Use clock networks for high-fanout
nets to improve timing and routability.

Spine Assignment
The low power flash device architecture allows the global networks to be segmented and used as clock
spines. These spines, also called local clock networks, enable the use of PDC or MVN to assign a signal
to a spine.
PDC syntax to promote a net to a spine/local clock:
assign_local_clock –net netname –type [quadrant|chip] Tn|Bn|Tn:Bm

If the net is driven by a clock macro, Designer automatically demotes the clock net to a regular net before
it is assigned to a spine. Nets driven by a PLL or CLKDLY macro cannot be assigned to a local clock.
When assigning a signal to a spine or quadrant global network using PDC (pre-compile), the Designer
software will legalize the shared instances. The number of shared instances to be legalized can be
controlled by compile options. If these networks are created in MVN (only quadrant globals can be
created), no legalization is done (as it is post-compile). Designer does not do legalization between non-
clock nets.
As an example, consider two nets, net_clk and net_reset, driving the same flip-flop. The following PDC
constraints are used:
assign_local_clock –net net_clk –type chip T3
assign_local_clock –net net_reset –type chip T1:T2

During Compile, Designer adds a buffer in the reset net and places it in the T1 or T2 region, and places
the flip-flop in the T3 spine region (Figure 3-16).

Figure 3-16 • Adding a Buffer for Shared Instances

D

CLK

CLR
net_clk

net_reset

T1 T2 T3

D

CLK

CLR
net_clk

net_reset

assign_local_clock -net net_clk -type chip T3
assign_local_clock -net net_reset -type chip T1:T2

Before Compile After Compile

Added
buffer
68 Revision 4

ProASIC3L FPGA Fabric User’s Guide
You can control the maximum number of shared instances allowed for the legalization to take place using
the Compile Option dialog box shown in Figure 3-17. Refer to Libero SoC / Designer online help for
details on the Compile Option dialog box. A large number of shared instances most likely indicates a
floorplanning problem that you should address.

Designer Flow for Global Assignment
To achieve the desired result, pay special attention to global management during synthesis and place-
and-route. The current Synplify tool does not insert more than six global buffers in the netlist by default.
Thus, the default flow will not assign any signal to the quadrant global network. However, you can use
attributes in Synplify and increase the default global macro assignment in the netlist. Designer v6.2
supports automatic quadrant global assignment, which was not available in Designer v6.1. Layout will
make the choice to assign the correct signals to global. However, you can also utilize PDC and perform
manual global assignment to overwrite any automatic assignment. The following step-by-step
suggestions guide you in the layout of your design and help you improve timing in Designer:

1. Run Compile and check the Compile report. The Compile report has global information in the
"Device Utilization" section that describes the number of chip and quadrant signals in the design.
A "Net Report" section describes chip global nets, quadrant global nets, local clock nets, a list of
nets listed by fanout, and net candidates for local clock assignment. Review this information. Note
that YB or YC are counted as global only when they are used in isolation; if you use YB only and
not GLB, this net is not shown in the global/quadrant nets report. Instead, it appears in the Global
Utilization report.

2. If some signals have a very high fanout and are candidates for global promotion, promote those
signals to global using the compile options or PDC commands. Figure 3-18 on page 70 shows the
Globals Management section of the compile options. Select Promote regular nets whose
fanout is greater than and enter a reasonable value for fanouts.

Figure 3-17 • Shared Instances in the Compile Option Dialog Box
Revision 4 69

ProASIC3L FPGA Fabric User’s Guide
The CLKDLY macro is a pass-through clock source that does not use the PLL, but provides the ability to
delay the clock input using a programmable delay. The CLKDLY macro takes the selected clock input
and adds a user-defined delay element. This macro generates an output clock phase shift from the input
clock.
The CLKDLY macro can be driven by an INBUF* macro to create a composite macro, where the I/O
macro drives the global buffer (with programmable delay) using a hardwired connection. In this case, the
software will automatically place the dedicated global I/O in the appropriate locations. Many specific
INBUF macros support the wide variety of single-ended and differential I/O standards supported by the
low power flash family. The available INBUF macros are described in the IGLOO, ProASIC3,
SmartFusion, and Fusion Macro Library Guide.
The CLKDLY macro can be driven directly from the FPGA core. The CLKDLY macro can also be driven
from an I/O that is routed through the FPGA regular routing fabric. In this case, users must instantiate a
special macro, PLLINT, to differentiate the clock input driven by the hardwired I/O connection.
The visual CLKDLY configuration in the SmartGen area of the Microsemi Libero System-on-Chip (SoC)
and Designer tools allows the user to select the desired amount of delay and configures the delay
elements appropriately. SmartGen also allows the user to select the input clock source. SmartGen will
automatically instantiate the special macro, PLLINT, when needed.

CLKDLY Macro Signal Descriptions
The CLKDLY macro supports one input and one output. Each signal is described in Table 4-2.

Notes:
1. For INBUF* driving a PLL macro or CLKDLY macro, the I/O will be hard-routed to the CCC; i.e., will be placed by

software to a dedicated Global I/O.
2. IGLOO nano and ProASIC3 nano devices do not support differential inputs.
Figure 4-3 • CCC Options: Global Buffers with Programmable Delay

PADN
PADP

Y

PAD Y

Input LVDS/LVPECL Macro

INBUF* Macro

GLA

or

GLB

or

GLC

Clock Source
Clock Conditioning Output

CLK

DLYGL[4:0]

GL

Table 4-2 • Input and Output Description of the CLKDLY Macro

Signal Name I/O Description

CLK Reference Clock Input Reference clock input

GL Global Output Output Primary output clock to respective global/quadrant clock networks
Revision 4 81

http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf

ProASIC3L FPGA Fabric User’s Guide
YB and YC are identical to GLB and GLC, respectively, with the exception of a higher selectable final
output delay. The SmartGen PLL Wizard will configure these outputs according to user specifications and
can enable these signals with or without the enabling of Global Output Clocks.
The above signals can be enabled in the following output groupings in both internal and external
feedback configurations of the static PLL:

• One output – GLA only
• Two outputs – GLA + (GLB and/or YB)
• Three outputs – GLA + (GLB and/or YB) + (GLC and/or YC)

PLL Macro Block Diagram
As illustrated, the PLL supports three distinct output frequencies from a given input clock. Two of these
(GLB and GLC) can be routed to the B and C global network access, respectively, and/or routed to the
device core (YB and YC).
There are five delay elements to support phase control on all five outputs (GLA, GLB, GLC, YB, and YC).
There are delay elements in the feedback loop that can be used to advance the clock relative to the
reference clock.
The PLL macro reference clock can be driven in the following ways:

1. By an INBUF* macro to create a composite macro, where the I/O macro drives the global buffer
(with programmable delay) using a hardwired connection. In this case, the I/O must be placed in
one of the dedicated global I/O locations.

2. Directly from the FPGA core.
3. From an I/O that is routed through the FPGA regular routing fabric. In this case, users must

instantiate a special macro, PLLINT, to differentiate from the hardwired I/O connection described
earlier.

During power-up, the PLL outputs will toggle around the maximum frequency of the voltage-controlled
oscillator (VCO) gear selected. Toggle frequencies can range from 40 MHz to 250 MHz. This will
continue as long as the clock input (CLKA) is constant (HIGH or LOW). This can be prevented by LOW
assertion of the POWERDOWN signal.
The visual PLL configuration in SmartGen, a component of the Libero SoC and Designer tools, will derive
the necessary internal divider ratios based on the input frequency and desired output frequencies
selected by the user.
Revision 4 85

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Dynamic PLL Configuration
To generate a dynamically reconfigurable CCC, the user should select Dynamic CCC in the
configuration section of the SmartGen GUI (Figure 4-26). This will generate both the CCC core and the
configuration shift register / control bit MUX.

Even if dynamic configuration is selected in SmartGen, the user must still specify the static configuration
data for the CCC (Figure 4-27). The specified static configuration is used whenever the MODE signal is
set to LOW and the CCC is required to function in the static mode. The static configuration data can be
used as the default behavior of the CCC where required.

Figure 4-26 • SmartGen GUI

Figure 4-27 • Dynamic CCC Configuration in SmartGen
116 Revision 4

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
v1.4
(December 2008)

The"CCC Support in Microsemi’s Flash Devices" section was updated to include
IGLOO nano and ProASIC3 nano devices.

79

Figure 4-2 • CCC Options: Global Buffers with No Programmable Delay was revised to
add the CLKBIBUF macro.

80

The description of the reference clock was revised in Table 4-2 • Input and Output
Description of the CLKDLY Macro.

81

Figure 4-7 • Clock Input Sources (30 k gates devices and below) is new. Figure 4-8 •
Clock Input Sources Including CLKBUF, CLKBUF_LVDS/LVPECL, and CLKINT (60 k
gates devices and above) applies to 60 k gate devices and above.

88

The "IGLOO and ProASIC3" section was updated to include information for IGLOO
nano devices.

89

A note regarding Fusion CCCs was added to Figure 4-9 • Illustration of Hardwired I/O
(global input pins) Usage for IGLOO and ProASIC3 devices 60 k Gates and Larger
and the name of the figure was changed from Figure 4-8 • Illustration of Hardwired I/O
(global input pins) Usage. Figure 4-10 • Illustration of Hardwired I/O (global input pins)
Usage for IGLOO and ProASIC3 devices 30 k Gates and Smaller is new.

90

Table 4-5 • Number of CCCs by Device Size and Package was updated to include
IGLOO nano and ProASIC3 nano devices. Entries were added to note differences for
the CS81, CS121, and CS201 packages.

94

The "Clock Conditioning Circuits without Integrated PLLs" section was rewritten. 95

The "IGLOO and ProASIC3 CCC Locations" section was updated for nano devices. 97

Figure 4-13 • CCC Locations in the 15 k and 30 k Gate Devices was deleted. 4-20

v1.3
(October 2008)

This document was updated to include Fusion and RT ProASIC3 device information.
Please review the document very carefully.

N/A

The "CCC Support in Microsemi’s Flash Devices" section was updated. 79

In the "Global Buffer with Programmable Delay" section, the following sentence was
changed from:
"In this case, the I/O must be placed in one of the dedicated global I/O locations."
To
"In this case, the software will automatically place the dedicated global I/O in the
appropriate locations."

80

Figure 4-4 • CCC Options: Global Buffers with PLL was updated to include OADIVRST
and OADIVHALF.

83

In Figure 4-6 • CCC with PLL Block "fixed delay" was changed to "programmable
delay".

83

Table 4-3 • Input and Output Signals of the PLL Block was updated to include
OADIVRST and OADIVHALF descriptions.

84

Table 4-8 • Configuration Bit Descriptions for the CCC Blocks was updated to include
configuration bits 88 to 81. Note 2 is new. In addition, the description for bit <76:74>
was updated.

106

Table 4-16 • Fusion Dynamic CCC Clock Source Selection and Table 4-17 • Fusion
Dynamic CCC NGMUX Configuration are new.

110

Table 4-18 • Fusion Dynamic CCC Division by Half Configuration and Table 4-19 •
Configuration Bit <76:75> / VCOSEL<2:1> Selection for All Families are new.

111

Date Changes Page
130 Revision 4

ProASIC3L FPGA Fabric User’s Guide
FlashROM Generation and Instantiation in the Design
The SmartGen core generator, available in Libero SoC and Designer, is the only tool that can be used to
generate the FlashROM content. SmartGen has several user-friendly features to help generate the
FlashROM contents. Instead of selecting each byte and assigning values, you can create a region within
a page, modify the region, and assign properties to that region. The FlashROM user interface, shown in
Figure 5-10, includes the configuration grid, existing regions list, and properties field. The properties field
specifies the region-specific information and defines the data used for that region. You can assign values
to the following properties:

1. Static Fixed Data—Enables you to fix the data so it cannot be changed during programming time.
This option is useful when you have fixed data stored in this region, which is required for the
operation of the design in the FPGA. Key storage is one example.

2. Static Modifiable Data—Select this option when the data in a particular region is expected to be
static data (such as a version number, which remains the same for a long duration but could
conceivably change in the future). This option enables you to avoid changing the value every time
you enter new data.

3. Read from File—This provides the full flexibility of FlashROM usage to the customer. If you have
a customized algorithm for generating the FlashROM data, you can specify this setting. You can
then generate a text file with data for as many devices as you wish to program, and load that into
the FlashPoint programming file generation software to get programming files that include all the
data. SmartGen will optionally pass the location of the file where the data is stored if the file is
specified in SmartGen. Each text file has only one type of data format (binary, decimal, hex, or
ASCII text). The length of each data file must be shorter than or equal to the selected region
length. If the data is shorter than the selected region length, the most significant bits will be
padded with 0s. For multiple text files for multiple regions, the first lines are for the first device. In
SmartGen, Load Sim. Value From File allows you to load the first device data in the MEM file for
simulation.

4. Auto Increment/Decrement—This scenario is useful when you specify the contents of FlashROM
for a large number of devices in a series. You can specify the step value for the serial number and
a maximum value for inventory control. During programming file generation, the actual number of
devices to be programmed is specified and a start value is fed to the software.

Figure 5-10 • SmartGen GUI of the FlashROM
Revision 4 141

SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
RD
This is the output data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. Like the WD
bus, high-order bits become unusable if the data width is less than 18. The output data on unused pins is
undefined (Table 6-7).

ESTOP, FSTOP
ESTOP is used to stop the FIFO read counter from further counting once the FIFO is empty (i.e., the
EMPTY flag goes HIGH). A HIGH on this signal inhibits the counting.
FSTOP is used to stop the FIFO write counter from further counting once the FIFO is full (i.e., the FULL
flag goes HIGH). A HIGH on this signal inhibits the counting.
For more information on these signals, refer to the "ESTOP and FSTOP Usage" section.

FULL, EMPTY
When the FIFO is full and no more data can be written, the FULL flag asserts HIGH. The FULL flag is
synchronous to WCLK to inhibit writing immediately upon detection of a full condition and to prevent
overflows. Since the write address is compared to a resynchronized (and thus time-delayed) version of
the read address, the FULL flag will remain asserted until two WCLK active edges after a read operation
eliminates the full condition.
When the FIFO is empty and no more data can be read, the EMPTY flag asserts HIGH. The EMPTY flag
is synchronous to RCLK to inhibit reading immediately upon detection of an empty condition and to
prevent underflows. Since the read address is compared to a resynchronized (and thus time-delayed)
version of the write address, the EMPTY flag will remain asserted until two RCLK active edges after a
write operation removes the empty condition.
For more information on these signals, refer to the "FIFO Flag Usage Considerations" section on
page 161.

AFULL, AEMPTY
These are programmable flags and will be asserted on the threshold specified by AFVAL and AEVAL,
respectively.
When the number of words stored in the FIFO reaches the amount specified by AEVAL while reading,
the AEMPTY output will go HIGH. Likewise, when the number of words stored in the FIFO reaches the
amount specified by AFVAL while writing, the AFULL output will go HIGH.

AFVAL, AEVAL
The AEVAL and AFVAL pins are used to specify the almost-empty and almost-full threshold values. They
are 12-bit signals. For more information on these signals, refer to the "FIFO Flag Usage Considerations"
section on page 161.

FIFO Usage
ESTOP and FSTOP Usage
The ESTOP pin is used to stop the read counter from counting any further once the FIFO is empty (i.e.,
the EMPTY flag goes HIGH). Likewise, the FSTOP pin is used to stop the write counter from counting
any further once the FIFO is full (i.e., the FULL flag goes HIGH).
The FIFO counters in the device start the count at zero, reach the maximum depth for the configuration
(e.g., 511 for a 512×9 configuration), and then restart at zero. An example application for ESTOP, where
the read counter keeps counting, would be writing to the FIFO once and reading the same content over
and over without doing another write.

Table 6-7 • Input Data Signal Usage for Different Aspect Ratios

D×W WD/RD Unused

4k×1 WD[17:1], RD[17:1]

2k×2 WD[17:2], RD[17:2]

1k×4 WD[17:4], RD[17:4]

512×9 WD[17:9], RD[17:9]

256×18 –
160 Revision 4

ProASIC3L FPGA Fabric User’s Guide
recommended, since it reduces the complexity of the user interface block and the board-level JTAG
driver.
Moreover, using an internal counter for address generation speeds up the initialization procedure, since
the user only needs to import the data through the JTAG port.
The designer may use different methods to select among the multiple RAM blocks. Using counters along
with demultiplexers is one approach to set the write enable signals. Basically, the number of RAM blocks
needing initialization determines the most efficient approach. For example, if all the blocks are initialized
with the same data, one enable signal is enough to activate the write procedure for all of them at the
same time. Another alternative is to use different opcodes to initialize each memory block. For a small
number of RAM blocks, using counters is an optimal choice. For example, a ring counter can be used to
select from multiple RAM blocks. The clock driver of this counter needs to be controlled by the address
generation process.
Once the addressing of one block is finished, a clock pulse is sent to the (ring) counter to select the next
memory block.
Figure 6-9 illustrates a simple block diagram of an interface block between UJTAG and RAM blocks.

In the circuit shown in Figure 6-9, the shift register is enabled by the UDRSH output of the UJTAG macro.
The counters and chip select outputs are controlled by the value of the TAP Instruction Register. The
comparison block compares the UIREG value with the "start initialization" opcode value (defined by the
user). If the result is true, the counters start to generate addresses and activate the WEN inputs of
appropriate RAM blocks.
The UDRUPD output of the UJTAG macro, also shown in Figure 6-9, is used for generating the write
clock (WCLK) and synchronizing the data register and address counter with WCLK. UDRUPD is HIGH
when the TAP Controller is in the Data Register Update state, which is an indication of completing the
loading of one data word. Once the TAP Controller goes into the Data Register Update state, the
UDRUPD output of the UJTAG macro goes HIGH. Therefore, the pipeline register and the address
counter place the proper data and address on the outputs of the interface block. Meanwhile, WCLK is
defined as the inverted UDRUPD. This will provide enough time (equal to the UDRUPD HIGH time) for
the data and address to be placed at the proper ports of the RAM block before the rising edge of WCLK.
The inverter is not required if the RAM blocks are clocked at the falling edge of the write clock. An
example of this is described in the "Example of RAM Initialization" section on page 166.

Figure 6-9 • Block Diagram of a Sample User Interface

nn

m

m

UTDI
UDRSH

UDRCK
UTDO

UDRUPDI

UIREG

URSTB

CLK

Enable

SIN
Serial-to-Port Shift Register

POUT

SOUT

D

En
Reset
CLK

En
Reset
CLK

Q

Q

CLK

WDATA

WCLK

WEN1
WEN2
WENi

WADDR

Chip Select

Data Reg.

Addr Counter

Ring
Counter

Binary
Counter

Compare
with

Defined Opcode
In Result
Revision 4 165

ProASIC3L FPGA Fabric User’s Guide
Advanced I/Os—IGLOO, ProASIC3L, and ProASIC3
Table 7-2 and Table 7-3 show the voltages and compatible I/O standards for the IGLOO, ProASIC3L, and
ProASIC3 families.
I/Os provide programmable slew rates (except 30 K gate devices), drive strengths, and weak pull-up and
pull-down circuits. 3.3 V PCI and 3.3 V PCI-X can be configured to be 5 V–tolerant. See the "5 V Input
Tolerance" section on page 194 for possible implementations of 5 V tolerance.
All I/Os are in a known state during power-up, and any power-up sequence is allowed without current
impact. Refer to the "I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial
and Industrial)" section in the datasheet for more information. During power-up, before reaching
activation levels, the I/O input and output buffers are disabled while the weak pull-up is enabled.
Activation levels are described in the datasheet.

I/O Banks and I/O Standards Compatibility
I/Os are grouped into I/O voltage banks.
Each I/O voltage bank has dedicated I/O supply and ground voltages (VMV/GNDQ for input buffers and
VCCI/GND for output buffers). This isolation is necessary to minimize simultaneous switching noise from
the input and output (SSI and SSO). The switching noise (ground bounce and power bounce) is
generated by the output buffers and transferred into input buffer circuits, and vice versa. Because of
these dedicated supplies, only I/Os with compatible standards can be assigned to the same I/O voltage
bank. Table 7-3 shows the required voltage compatibility values for each of these voltages.
There are four I/O banks on the 250K gate through 1M gate devices.
There are two I/O banks on the 30K, 60K, and 125K gate devices.
I/O standards are compatible if their VCCI and VMV values are identical. VMV and GNDQ are "quiet"
input power supply pins and are not used on 30K gate devices (Table 7-3).

Table 7-2 • Supported I/O Standards

IGLOO AGL015 AGL030 AGL060 AGL125 AGL250 AGL600 AGL1000

ProASIC3 A3P015 A3P030 A3P060 A3P125
A3P250/
A3P250L A3P400

A3P600/
A3P600L

A3P1000/
A3P1000L

Single-Ended

LVTTL/LVCMOS 3.3 V,
LVCMOS 2.5 V / 1.8 V /
1.5 V / 1.2 V
LVCMOS 2.5 V / 5.0 V

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

3.3 V PCI/PCI-X – – ✓ ✓ ✓ ✓ ✓ ✓

Differential

LVPECL, LVDS, B-LVDS,
M-LVDS

– – – – ✓ ✓ ✓ ✓

Table 7-3 • VCCI Voltages and Compatible IGLOO and ProASIC3 Standards

VCCI and VMV (typical) Compatible Standards

3.3 V LVTTL/LVCMOS 3.3, PCI 3.3, PCI-X 3.3 LVPECL

2.5 V LVCMOS 2.5, LVCMOS 2.5/5.0, LVDS, B-LVDS, M-LVDS

1.8 V LVCMOS 1.8

1.5 V LVCMOS 1.5

1.2 V LVCMOS 1.2
Revision 4 177

I/O Structures in IGLOO and ProASIC3 Devices
I/O Features
Low power flash devices support multiple I/O features that make board design easier. For example, an
I/O feature like Schmitt Trigger in the ProASIC3E input buffer saves the board space that would be used
by an external Schmitt trigger for a slow or noisy input signal. These features are also programmable for
each I/O, which in turn gives flexibility in interfacing with other components. The following is a detailed
description of all available features in low power flash devices.

I/O Programmable Features
Low power flash devices offer many flexible I/O features to support a wide variety of board designs.
Some of the features are programmable, with a range for selection. Table 7-7 lists programmable I/O
features and their ranges.

Hot-Swap Support
A pull-up clamp diode must not be present in the I/O circuitry if the hot-swap feature is used. The 3.3 V
PCI standard requires a pull-up clamp diode on the I/O, so it cannot be selected if hot-swap capability is
required. The A3P030 device does not support 3.3 V PCI, so it is the only device in the ProASIC3 family
that supports the hot-swap feature. All devices in the ProASIC3E family are hot-swappable. All standards
except LVCMOS 2.5/5.0 V and 3.3 V PCI/PCI-X support the hot-swap feature.
The hot-swap feature appears as a read-only check box in the I/O Attribute Editor that shows whether an
I/O is hot-swappable or not. Refer to the "Power-Up/-Down Behavior of Low Power Flash Devices"
section on page 373 for details on hot-swapping.
Hot-swapping (also called hot-plugging) is the operation of hot insertion or hot removal of a card in a
powered-up system. The levels of hot-swap support and examples of related applications are described
in Table 7-8 on page 189 to Table 7-11 on page 190. The I/Os also need to be configured in hot-insertion
mode if hot-plugging compliance is required. The AGL030 and A3P030 devices have an I/O structure
that allows the support of Level 3 and Level 4 hot-swap with only two levels of staging.

Table 7-7 • Programmable I/O Features (user control via I/O Attribute Editor)

Feature1 Description Range

Slew Control Output slew rate HIGH, LOW

Output Drive (mA) Output drive strength 2, 4, 6, 8, 12, 16, 24

Skew Control Output tristate enable delay option ON, OFF

Resistor Pull Resistor pull circuit Up, Down, None

Input Delay2 Input delay OFF, 0–7

Schmitt Trigger Schmitt trigger for input only ON, OFF

Notes:
1. Limitations of these features with respect to different devices are discussed in later sections.
2. Programmable input delay is applicable only to ProASIC3EL and RT ProASIC3 devices.
188 Revision 4

ProASIC3L FPGA Fabric User’s Guide
Temporary overshoots are allowed according to the overshoot and undershoot table in the datasheet.

Solution 2
The board-level design must ensure that the reflected waveform at the pad does not exceed the voltage
overshoot/undershoot limits provided in the datasheet. This is a requirement to ensure long-term
reliability.
This scheme will also work for a 3.3 V PCI/PCI-X configuration, but the internal diode should not be used
for clamping, and the voltage must be limited by the external resistors and Zener, as shown in
Figure 7-10. Relying on the diode clamping would create an excessive pad DC voltage of
3.3 V + 0.7 V = 4 V.

Figure 7-9 • Solution 1

Figure 7-10 • Solution 2

Solution 1

5.5 V 3.3 V

Requires two board resistors,
LVCMOS 3.3 V I/Os

I/O Input

Rext1
Rext2

Solution 2

5.5 V 3.3 V

Requires one board resistor, one
Zener 3.3 V diode, LVCMOS 3.3 V I/Os

I/O Input

Rext1

Zener
3.3 V
Revision 4 195

I/O Structures in IGLOOe and ProASIC3E Devices
Low Power Flash Device I/O Support
The low power flash FPGAs listed in Table 8-1 support I/Os and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 8-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated.

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 8-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 8-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

ProASIC3 ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
214 Revision 4

http://www.microsemi.com/soc/documents/IGLOOe_DS.pdf
http://www.microsemi.com/soc/documents/PA3E_DS.pdf
http://www.microsemi.com/socm/documents/PA3L_DS.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/Mil_PA3_EL_DS.pdf
http://www.microsemi.com/soc/documents/RTPA3_DS.pdf

I/O Structures in IGLOOe and ProASIC3E Devices
I/O Banks and I/O Standards Compatibility
I/Os are grouped into I/O voltage banks.
Each I/O voltage bank has dedicated I/O supply and ground voltages (VMV/GNDQ for input buffers and
VCCI/GND for output buffers). Because of these dedicated supplies, only I/Os with compatible standards
can be assigned to the same I/O voltage bank. Table 8-3 on page 217 shows the required voltage
compatibility values for each of these voltages.
There are eight I/O banks (two per side).
Every I/O bank is divided into minibanks. Any user I/O in a VREF minibank (a minibank is the region of
scope of a VREF pin) can be configured as a VREF pin (Figure 8-2). Only one VREF pin is needed to
control the entire VREF minibank. The location and scope of the VREF minibanks can be determined by
the I/O name. For details, see the user I/O naming conventions for "IGLOOe and ProASIC3E" on
page 245. Table 8-5 on page 217 shows the I/O standards supported by IGLOOe and ProASIC3E
devices, and the corresponding voltage levels.
I/O standards are compatible if they comply with the following:

• Their VCCI and VMV values are identical.
• Both of the standards need a VREF, and their VREF values are identical.
• All inputs and disabled outputs are voltage tolerant up to 3.3 V.

For more information about I/O and global assignments to I/O banks in a device, refer to the specific pin
table for the device in the packaging section of the datasheet, and see the user I/O naming conventions
for "IGLOOe and ProASIC3E" on page 245.

Figure 8-2 • Typical IGLOOe and ProASIC3E I/O Bank Detail Showing VREF Minibanks

B
an

k
3

B
an

k
2

Any I/O in a VREF
minibank can be used to
provide the reference
voltage to the common
VREF signal for the VREF
minibank.

Common VREF
signal for all I/Os
in VREF minibanks

Up to five VREF
minibanks within
an I/O bankF

VREF signal scope is
between 8 and 18 I/Os.

I/O Pad

VCCI

VCC

GND

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

VCCI

VCC

GND

JTAG

CCC/PLL
“C”

CCC/PLL
“B”

CCC/PLL
“D”
216 Revision 4

ProASIC3L FPGA Fabric User’s Guide
At the system level, the skew circuit can be used in applications where transmission activities on
bidirectional data lines need to be coordinated. This circuit, when selected, provides a timing margin that
can prevent bus contention and subsequent data loss and/or transmitter over-stress due to transmitter-
to-transmitter current shorts. Figure 8-17 presents an example of the skew circuit implementation in a
bidirectional communication system. Figure 8-18 on page 238 shows how bus contention is created, and
Figure 8-19 on page 238 shows how it can be avoided with the skew circuit.

Figure 8-15 • Timing Diagram (option 1: bypasses skew circuit)

Figure 8-16 • Timing Diagram (option 2: enables skew circuit)

ENABLE (IN)

ENABLE (OUT)

Less than
0.1 ns

Less than
0.1 ns

ENABLE (IN)

ENABLE (OUT)

1.2 ns
(typical)

Less than
0.1 ns

Figure 8-17 • Example of Implementation of Skew Circuits in Bidirectional Transmission Systems Using
IGLOO or ProASIC3 Devices

Transmitter 1: ProASIC3 I/O Transmitter 2: Generic I/O

ENABLE(t2)EN (b1) EN (b2)
Routing
Delay (t1)

Routing
Delay (t2) EN (r1)

ENABLE (t1)

Skew or
Bypass
Skew

Bidirectional Data Bus

Transmitter
ENABLE/
DISABLE
Revision 4 237

I/O Software Control in Low Power Flash Devices
those banks, the user does not need to assign the same VCCI voltage to another bank. The user needs
to assign the other three VCCI voltages to three more banks.

Assigning Technologies and VREF to I/O Banks
Low power flash devices offer a wide variety of I/O standards, including voltage-referenced standards.
Before proceeding to Layout, each bank must have the required VCCI voltage assigned for the
corresponding I/O technologies used for that bank. The voltage-referenced standards require the use of
a reference voltage (VREF). This assignment can be done manually or automatically. The following
sections describe this in detail.

Manually Assigning Technologies to I/O Banks
The user can import the PDC at this point and resolve this requirement. The PDC command is
set_iobank [bank name] –vcci [vcci value]

Another method is to use the I/O Bank Settings dialog box (MVN > Edit > I/O Bank Settings) to set up
the VCCI voltage for the bank (Figure 9-12).

Figure 9-12 • Setting VCCI for a Bank
264 Revision 4

ProASIC3L FPGA Fabric User’s Guide
Table 12-6 and Table 12-7 show all available options. If you want to implement custom levels,
refer to the "Advanced Options" section on page 322 for information on each option and how to
set it.

3. When done, click Finish to generate the Security Header programming file.

Generation of Programming Files with AES Encryption—
Application 3
This section discusses how to generate design content programming files needed specifically at
unsecured or remote locations to program devices with a Security Header (FlashLock Pass Key and AES
key) already programmed ("Application 2: Nontrusted Environment—Unsecured Location" section on
page 309 and "Application 3: Nontrusted Environment—Field Updates/Upgrades" section on page 310).
In this case, the encrypted programming file must correspond to the AES key already programmed into
the device. If AES encryption was previously selected to encrypt the FlashROM, FBs, and FPGA array,
AES encryption must be set when generating the programming file for them. AES encryption can be
applied to the FlashROM only, the FBs only, the FPGA array only, or all. The user must ensure both the
FlashLock Pass Key and the AES key match those already programmed to the device(s), and all security
settings must match what was previously programmed. Otherwise, the encryption and/or device
unlocking will not be recognized when attempting to program the device with the programming file.
The generated programming file will be AES-encrypted.
In this scenario, generate the programming file as follows:

1. Deselect Security settings and select the portion of the device to be programmed (Figure 12-17
on page 320). Select Programming previously secured device(s). Click Next.

Table 12-6 • All IGLOO and ProASIC3 Header File Security Options

Security Option FlashROM Only FPGA Core Only
Both FlashROM

and FPGA

No AES / no FlashLock ✓ ✓ ✓

FlashLock only ✓ ✓ ✓

AES and FlashLock ✓ ✓ ✓

Note: ✓ = options that may be used

Table 12-7 • All Fusion Header File Security Options

Security Option FlashROM Only FPGA Core Only FB Core Only All

No AES / No FlashLock ✓ ✓ ✓ ✓

FlashLock ✓ ✓ ✓ ✓

AES and FlashLock ✓ ✓ ✓ ✓
Revision 4 319

In-System Programming (ISP) of Microsemi’s Low Power Flash Devices Using FlashPro4/3/3X
Figure 13-2 shows different applications for ISP programming.
1. In a trusted programming environment, you can program the device using the unencrypted

(plaintext) programming file.
2. You can program the AES Key in a trusted programming environment and finish the final

programming in an untrusted environment using the AES-encrypted (cipher text) programming
file.

3. For the remote ISP updating/reprogramming, the AES Key stored in the device enables the
encrypted programming bitstream to be transmitted through the untrusted network connection.

Microsemi low power flash devices also provide the unique Microsemi FlashLock feature, which protects
the Pass Key and AES Key. Unless the original FlashLock Pass Key is used to unlock the device,
security settings cannot be modified. Microsemi does not support read-back of FPGA core-programmed
data; however, the FlashROM contents can selectively be read back (or disabled) via the JTAG port
based on the security settings established by the Microsemi Designer software. Refer to the "Security in
Low Power Flash Devices" section on page 301 for more information.

Figure 13-2 • Different ISP Use Models

Source
Plain Text

AES
Encryption

Source
Encrypted Bitstream

TCP/IP

FlashROM AES
Decryption

FPGA
Core

IGLOO or ProASIC3 Device

O
pt

io
n

1

O
pt

io
n

2

O
pt

io
n

3

332 Revision 4

ProASIC3L FPGA Fabric User’s Guide
Fine Tuning
In some applications, design constants or parameters need to be modified after programming the original
design. The tuning process can be done using the UJTAG tile without reprogramming the device with
new values. If the parameters or constants of a design are stored in distributed registers or embedded
SRAM blocks, the new values can be shifted onto the JTAG TAP Controller pins, replacing the old
values. The UJTAG tile is used as the “bridge” for data transfer between the JTAG pins and the FPGA
VersaTiles or SRAM logic. Figure 17-5 shows a flow chart example for fine-tuning application steps using
the UJTAG tile.
In Figure 17-5, the TMS signal sets the TAP Controller state machine to the appropriate states. The flow
mainly consists of two steps: a) shifting the defined instruction and b) shifting the new data. If the target
parameter is constantly used in the design, the new data can be shifted into a temporary shift register
from UTDI. The UDRSH output of UJTAG can be used as a shift-enable signal, and UDRCK is the shift
clock to the shift register. Once the shift process is completed and the TAP Controller state is moved to
the Update_DR state, the UDRUPD output of the UJTAG can latch the new parameter value from the
temporary register into a permanent location. This avoids any interruption or malfunctioning during the
serial shift of the new value.

Figure 17-5 • Flow Chart Example of Fine-Tuning an Application Using UJTAG

Yes

No

TAP Controller in
Test_Logic_Reset

State

Set TAP state to
SHIFT_IR

Shift the user-defined
instruction of tuning

application

Set TAP state to
Update_IR

Latch the recorded data
onto the location of stored

parameter
UIREG Equal to
the user-defined

instruction

Set TAP state to
SHIFT_DR

Shift data into TDI and
record UTDI in a shift

register

Set TAP state in
Update_DR
Revision 4 369

