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Flash*Freeze Technology and Low Power Modes
Flash*Freeze Mode Device Behavior
Entering Flash*Freeze Mode

• IGLOO, IGLOO nano, IGLOO PLUS, ProASCI3L, and RT ProASIC3 devices are designed and
optimized to enter Flash*Freeze mode only when power supplies are stable. If the device is being
powered up while the FF pin is asserted (Flash*Freeze mode type 1), or while both FF pin and
LSICC signal are asserted (Flash*Freeze mode type 2), the device is expected to enter
Flash*Freeze mode within 5 µs after the I/Os and FPGA core have reached their activation levels.

• If the device is already powered up when the FF pin is asserted, the device will enter
Flash*Freeze mode within 1 µs (type 1). In Flash*Freeze mode type 2 operation, entering
Flash*Freeze mode is completed within 1 µs after both FF pin and LSICC signal are asserted.
Exiting Flash*Freeze mode is completed within 1 µs after deasserting the FF pin only.

PLLs
• If an embedded PLL is used, entering Flash*Freeze mode will automatically power down the PLL.
• The PLL output clocks will stop toggling within 1 µs after the assertion of the FF pin in type 1, or

after both FF pin and LSICC signal are asserted in type 2. At the same time, I/Os will transition
into the state specified in Table 2-6 on page 29. The user design must ensure it is safe to enter
Flash*Freeze mode.

I/Os and Globals
• While entering Flash*Freeze mode, inputs, globals, and PLLs will enter their Flash*Freeze state

asynchronously to each other. As a result, clock and data glitches and narrow pulses may be
generated while entering Flash*Freeze mode, as shown in Figure 2-5. 

• I/O banks are not all deactivated simultaneously when entering Flash*Freeze mode. This can
cause clocks and inputs to become disabled at different times, resulting in unexpected data being
captured.

• Upon entering Flash*Freeze mode, all inputs and globals become tied High internally (except
when an input hold state is used on IGLOO nano or IGLOO PLUS devices). If any of these signals
are driven Low or tied Low externally, they will experience a Low to High transition internally when
entering Flash*Freeze mode.

• Upon entering type 2 Flash*Freeze mode, ensure the LSICC signal (active High) does not de-
assert. This can prevent the device from entering Flash*Freeze mode. 

• Asynchronous input to output paths may experience output glitches. For example, on a direct in-
to-out path, if the current state is '0' and the input bank turns off first, the input and then the output
will transition to '1' before the output enters its Flash*Freeze state. This can be prevented by
using latches in asynchronous in-to-out paths.

• The above situations can cause glitches or invalid data to be clocked into and preserved in the
device. Refer to the "Flash*Freeze Design Guide" section on page 34 for solutions.

Figure 2-5 • Narrow Clock Pulses During Flash*Freeze Entrance and Exit
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Flash*Freeze Technology and Low Power Modes
v1.2
(continued)

Figure 2-3 • Flash*Freeze Mode Type 2 – Controlled by Flash*Freeze Pin and
Internal Logic (LSICC signal) was updated.

27

Figure 2-4 • Flash*Freeze Mode Type 2 – Timing Diagram was revised to show
deasserting LSICC after the device has exited Flash*Freeze mode.

27

The "IGLOO nano and IGLOO PLUS I/O State in Flash*Freeze Mode" section was
added to include information for IGLOO PLUS devices. Table 2-6 • IGLOO nano and
IGLOO PLUS Flash*Freeze Mode (type 1 and type 2)—I/O Pad State is new.

28, 29

The "During Flash*Freeze Mode" section was revised to include a new bullet
pertaining to output behavior for IGLOO PLUS. The bullet on JTAG operation was
revised to provide more detail.

31

Figure 2-6 • Controlling Power-On/-Off State Using Microprocessor and Power FET
and Figure 2-7 • Controlling Power-On/-Off State Using Microprocessor and Voltage
Regulator were updated to include IGLOO PLUS.

33, 33

The first sentence of the "Shutdown Mode" section was updated to list the devices
for which it is supported.

32

The first paragraph of the "Power-Up/-Down Behavior" section was revised. The
second sentence was changed to, "The I/Os remain tristated until the last voltage
supply (VCC or VCCI) is powered to its activation level." The word "activation"
replaced the word "functional." The sentence, "During power-down, device I/Os
become tristated once the first power supply (VCC or VCCI) drops below its
deactivation voltage level" was revised. The word "deactivation" replaced the word
"brownout."

33

The "Prototyping for IGLOO and ProASIC3L Devices Using ProASIC3" section was
revised to state that prototyping in ProASIC3 does not apply for the IGLOO PLUS
family.

2-21

Table 2-8 • Prototyping/Migration Solutions, Table 2-9 • Device Migration—IGLOO
Supported Packages in ProASIC3 Devices, and Table 2-10 • Device Migration—
ProASIC3L Supported Packages in ProASIC3 Devices were updated with a table
note stating that device migration is not supported for IGLOO PLUS devices.

2-21, 
2-23

The text following Table 2-10 • Device Migration—ProASIC3L Supported Packages
in ProASIC3 Devices was moved to a new section: the "Flash*Freeze Design
Guide" section.

34

v1.1
(February 2008)

Table 2-1 • Flash-Based FPGAs was updated to remove the ProASIC3, ProASIC3E,
and Automotive ProASIC3 families, which were incorrectly included.

22

v1.0
(January 2008)

Detailed descriptions of low power modes are described in the advanced
datasheets. This application note was updated to describe how to use the features
in an IGLOO/e application.

N/A

Figure 2-1 • Flash*Freeze Mode Type 1 – Controlled by the Flash*Freeze Pin was
updated.

25

Figure 2-2 • Flash*Freeze Mode Type 1 – Timing Diagram is new. 25

Steps 4 and 5 are new in the "Flash*Freeze Type 2: Control by Dedicated
Flash*Freeze Pin and Internal Logic" section.

26

Date Changes Page
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ProASIC3L FPGA Fabric User’s Guide
During Layout, Designer will assign two of the signals to quadrant global locations.

Step 3 (optional)
You can also assign the QCLK1_c and QCLK2_c nets to quadrant regions using the following PDC
commands:
assign_local_clock –net QCLK1_c  –type quadrant UL
assign_local_clock –net QCLK2_c  –type quadrant LL

Step 4
Import this PDC with the netlist and run Compile again. You will see the following in the Compile report:
The following nets have been assigned to a global resource:
Fanout  Type          Name
--------------------------
1536    INT_NET       Net   : EN_ALL_c

Driver: EN_ALL_pad_CLKINT
Source: AUTO PROMOTED

1536    SET/RESET_NET Net   : ACLR_c
Driver: ACLR_pad_CLKINT
Source: AUTO PROMOTED

256     CLK_NET       Net   : QCLK3_c
Driver: QCLK3_pad_CLKINT
Source: AUTO PROMOTED

256     CLK_NET       Net   : $1N14
Driver: $1I5/Core
Source: ESSENTIAL

256     CLK_NET       Net   : $1N12
Driver: $1I6/Core
Source: ESSENTIAL

256     CLK_NET       Net   : $1N10
Driver: $1I6/Core
Source: ESSENTIAL

The following nets have been assigned to a quadrant clock resource using PDC:
Fanout  Type          Name
--------------------------
256     CLK_NET       Net   : QCLK1_c

Driver: QCLK1_pad_CLKINT
Region: quadrant_UL

256     CLK_NET       Net   : QCLK2_c
Driver: QCLK2_pad_CLKINT
Region: quadrant_LL

Step 5
Run Layout.

Global Management in PLL Design 
This section describes the legal global network connections to PLLs in the low power flash devices. For
detailed information on using PLLs, refer to "Clock Conditioning Circuits in Low Power Flash Devices and
Mixed Signal FPGAs" section on page 77. Microsemi recommends that you use the dedicated global
pins to directly drive the reference clock input of the associated PLL for reduced propagation delays and
clock distortion. However, low power flash devices offer the flexibility to connect other signals to
reference clock inputs. Each PLL is associated with three global networks (Figure 3-5 on page 52). There
are some limitations, such as when trying to use the global and PLL at the same time:

• If you use a PLL with only primary output, you can still use the remaining two free global
networks.

• If you use three globals associated with a PLL location, you cannot use the PLL on that location.
• If the YB or YC output is used standalone, it will occupy one global, even though this signal does

not go to the global network.   
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ProASIC3L FPGA Fabric User’s Guide
CCC Support in Microsemi’s Flash Devices
The flash FPGAs listed in Table 4-1 support the CCC feature and the functions described in this 
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed 
in Table 4-1. Where the information applies to only one product line or limited devices, these exclusions 
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices 
as listed in Table 4-1. Where the information applies to only one product line or limited devices, these 
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s 
Lowest Power FPGAs Portfolio.

Table 4-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

IGLOO nano The industry’s lowest-power, smallest-size solution

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable 
analog block, support for ARM® Cortex™-M1 soft processors, and flash 
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics, 
and packaging information.
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
CCC Locations
CCCs located in the middle of the east and west sides of the device access the three VersaNet global 
networks on each side (six total networks), while the four CCCs located in the four corners access three 
quadrant global networks (twelve total networks). See Figure 4-13.

The following explains the locations of the CCCs in IGLOO and ProASIC3 devices:
In Figure 4-15 on page 98 through Figure 4-16 on page 98, CCCs with integrated PLLs are indicated in 
red, and simplified CCCs are indicated in yellow. There is a letter associated with each location of the 
CCC, in clockwise order. The upper left corner CCC is named "A," the upper right is named "B," and so 
on. These names finish up at the middle left with letter "F."

Figure 4-13 • Global Network Architecture for 60 k Gate Devices and Above
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ProASIC3L FPGA Fabric User’s Guide
Table 4-18 • Fusion Dynamic CCC Division by Half Configuration

OADIVHALF / 
OBDIVHALF / 
OCDIVHALF

OADIV<4:0> / 
OBDIV<4:0> / 
OCDIV<4:0> 
(in decimal) Divider Factor

Input Clock 
Frequency

Output Clock 
Frequency (MHz)

1 2 1.5  100 MHz RC 
Oscillator

66.7

4 2.5 40.0

6 3.5 28.6

8 4.5 22.2

10 5.5 18.2

12 6.5 15.4

14 7.5 13.3

16 8.5 11.8

18 9.5 10.5

20 10.5 9.5

22 11.5 8.7

24 12.5 8.0

26 13.5 7.4

28 14.5 6.9

0 0–31 1–32 Other Clock Sources Depends on other 
divider settings

Table 4-19 • Configuration Bit <76:75> / VCOSEL<2:1> Selection for All Families

Voltage

VCOSEL[2:1]

00 01 10 11

Min. 
(MHz)

Max. 
(MHz)

Min. 
(MHz)

Max. 
(MHz)

Min. 
(MHz)

Max. 
(MHz)

Min. 
(MHz)

Max. 
(MHz)

IGLOO and IGLOO PLUS

1.2 V ± 5% 24 35 30 70 60 140 135 160

1.5 V ± 5% 24 43.75 30 87.5 60 175 135 250

ProASIC3L, RT ProASIC3, and Military ProASIC3/L

1.2 V ± 5% 24 35 30 70 60 140 135 250

1.5 V ± 5% 24 43.75 30 70 60 175 135 350

ProASIC3 and Fusion

1.5 V ± 5% 24 43.75 33.75 87.5 67.5 175 135 350

Table 4-20 • Configuration Bit <74> / VCOSEL<0> Selection for All Families

VCOSEL[0] Description

0 Fast PLL lock acquisition time with high tracking jitter. Refer to the corresponding datasheet for specific 
value and definition.

1 Slow PLL lock acquisition time with low tracking jitter. Refer to the corresponding datasheet for specific 
value and definition.
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
wire VCC, GND;

VCC VCC_1_net(.Y(VCC));
GND GND_1_net(.Y(GND));
CLKDLY Inst1(.CLK(CLK), .GL(GL), .DLYGL0(VCC), .DLYGL1(GND), .DLYGL2(VCC),

.DLYGL3(GND), .DLYGL4(GND));

endmodule

Detailed Usage Information

Clock Frequency Synthesis
Deriving clocks of various frequencies from a single reference clock is known as frequency synthesis. 
The PLL has an input frequency range from 1.5 to 350 MHz. This frequency is automatically divided 
down to a range between 1.5 MHz and 5.5 MHz by input dividers (not shown in Figure 4-19 on page 100) 
between PLL macro inputs and PLL phase detector inputs. The VCO output is capable of an output 
range from 24 to 350 MHz. With dividers before the input to the PLL core and following the VCO outputs, 
the VCO output frequency can be divided to provide the final frequency range from 0.75 to 350 MHz. 
Using SmartGen, the dividers are automatically set to achieve the closest possible matches to the 
specified output frequencies.
Users should be cautious when selecting the desired PLL input and output frequencies and the I/O buffer 
standard used to connect to the PLL input and output clocks. Depending on the I/O standards used for 
the PLL input and output clocks, the I/O frequencies have different maximum limits. Refer to the family 
datasheets for specifications of maximum I/O frequencies for supported I/O standards. Desired PLL input 
or output frequencies will not be achieved if the selected frequencies are higher than the maximum I/O 
frequencies allowed by the selected I/O standards. Users should be careful when selecting the I/O 
standards used for PLL input and output clocks. Performing post-layout simulation can help detect this 
type of error, which will be identified with pulse width violation errors. Users are strongly encouraged to 
perform post-layout simulation to ensure the I/O standard used can provide the desired PLL input or 
output frequencies. Users can also choose to cascade PLLs together to achieve the high frequencies 
needed for their applications. Details of cascading PLLs are discussed in the "Cascading CCCs" section 
on page 125.
In SmartGen, the actual generated frequency (under typical operating conditions) will be displayed 
beside the requested output frequency value. This provides the ability to determine the exact frequency 
that can be generated by SmartGen, in real time. The log file generated by SmartGen is a useful tool in 
determining how closely the requested clock frequencies match the user specifications. For example, 
assume a user specifies 101 MHz as one of the secondary output frequencies. If the best output 
frequency that could be achieved were 100 MHz, the log file generated by SmartGen would indicate the 
actual generated frequency.

Simulation Verification
The integration of the generated PLL and CLKDLY modules is similar to any VHDL component or Verilog 
module instantiation in a larger design; i.e., there is no special requirement that users need to take into 
account to successfully synthesize their designs.
For simulation purposes, users need to refer to the VITAL or Verilog library that includes the functional 
description and associated timing parameters. Refer to the Software Tools section of the Microsemi SoC 
Products Group website to obtain the family simulation libraries. If Designer is installed, these libraries 
are stored in the following locations:

<Designer_Installation_Directory>\lib\vtl\95\proasic3.vhd
<Designer_Installation_Directory>\lib\vtl\95\proasic3e.vhd
<Designer_Installation_Directory>\lib\vlog\proasic3.v
<Designer_Installation_Directory>\lib\vlog\proasic3e.v

For Libero users, there is no need to compile the simulation libraries, as they are conveniently pre-
compiled in the ModelSim® Microsemi simulation tool.
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ProASIC3L FPGA Fabric User’s Guide
• Use quadrant global region assignments by finding the clock net associated with the CCC macro 
under the Nets tab and creating a quadrant global region for the net, as shown in Figure 4-33. 

External I/O–Driven CCCs
The above-mentioned recommendation for proper layout techniques will ensure the correct assignment. 
It is possible that, especially with External I/O–Driven CCC macros, placement of the CCC macro in a 
desired location may not be achieved. For example, assigning an input port of an External I/O–Driven 
CCC near a particular CCC location does not guarantee global assignments to the desired location. This 
is because the clock inputs of External I/O–Driven CCCs can be assigned to any I/O location; therefore, 
it is possible that the CCC connected to the clock input will be routed to a location other than the one 
closest to the I/O location, depending on resource availability and placement constraints.

Clock Placer
The clock placer is a placement engine for low power flash devices that places global signals on the chip 
global and quadrant global networks. Based on the clock assignment constraints for the chip global and 
quadrant global clocks, it will try to satisfy all constraints, as well as creating quadrant clock regions when 
necessary. If the clock placer fails to create the quadrant clock regions for the global signals, it will report 
an error and stop Layout. 
The user must ensure that the constraints set to promote clock signals to quadrant global networks are 
valid.

Cascading CCCs
The CCCs in low power flash devices can be cascaded. Cascading CCCs can help achieve more 
accurate PLL output frequency results than those achievable with a single CCC. In addition, this 
technique is useful when the user application requires the output clock of the PLL to be a multiple of the 
reference clock by an integer greater than the maximum feedback divider value of the PLL (divide by 
128) to achieve the desired frequency.
For example, the user application may require a 280 MHz output clock using a 2 MHz input reference 
clock, as shown in Figure 4-34 on page 126. 

Figure 4-33 • Quadrant Clock Assignment for a Global Net
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5 – FlashROM in Microsemi’s Low Power Flash 
Devices

Introduction 
The Fusion, IGLOO, and ProASIC3 families of low power flash-based devices have a dedicated
nonvolatile FlashROM memory of 1,024 bits, which provides a unique feature in the FPGA market. The
FlashROM can be read, modified, and written using the JTAG (or UJTAG) interface. It can be read but
not modified from the FPGA core. Only low power flash devices contain on-chip user nonvolatile memory
(NVM). 

Architecture of User Nonvolatile FlashROM
Low power flash devices have 1 kbit of user-accessible nonvolatile flash memory on-chip that can be
read from the FPGA core fabric. The FlashROM is arranged in eight banks of 128 bits (16 bytes) during
programming. The 128 bits in each bank are addressable as 16 bytes during the read-back of the
FlashROM from the FPGA core. Figure 5-1 shows the FlashROM logical structure. 
The FlashROM can only be programmed via the IEEE 1532 JTAG port. It cannot be programmed directly
from the FPGA core. When programming, each of the eight 128-bit banks can be selectively
reprogrammed. The FlashROM can only be reprogrammed on a bank boundary. Programming involves
an automatic, on-chip bank erase prior to reprogramming the bank. The FlashROM supports
synchronous read. The address is latched on the rising edge of the clock, and the new output data is
stable after the falling edge of the same clock cycle. For more information, refer to the timing diagrams in
the DC and Switching Characteristics chapter of the appropriate datasheet. The FlashROM can be read
on byte boundaries. The upper three bits of the FlashROM address from the FPGA core define the bank
being accessed. The lower four bits of the FlashROM address from the FPGA core define which of the 16
bytes in the bank is being accessed.

Figure 5-1 • FlashROM Architecture
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FlashROM in Microsemi’s Low Power Flash Devices
FlashROM Applications 
The SmartGen core generator is used to configure FlashROM content. You can configure each page
independently. SmartGen enables you to create and modify regions within a page; these regions can be
1 to 16 bytes long (Figure 5-4). 

The FlashROM content can be changed independently of the FPGA core content. It can be easily
accessed and programmed via JTAG, depending on the security settings of the device. The SmartGen
core generator enables each region to be independently updated (described in the "Programming and
Accessing FlashROM" section on page 138). This enables you to change the FlashROM content on a
per-part basis while keeping some regions "constant" for all parts. These features allow the FlashROM to
be used in diverse system applications. Consider the following possible uses of FlashROM: 

• Internet protocol (IP) addressing (wireless or fixed) 
• System calibration settings 
• Restoring configuration after unpredictable system power-down
• Device serialization and/or inventory control 
• Subscription-based business models (e.g., set-top boxes) 
• Secure key storage 
• Asset management tracking 
• Date stamping 
• Version management 

Figure 5-4 • FlashROM Configuration
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FlashROM in Microsemi’s Low Power Flash Devices
Figure 5-12 shows the programming file generator, which enables different STAPL file generation
methods. When you select Program FlashROM and choose the UFC file, the FlashROM Settings
window appears, as shown in Figure 5-13. In this window, you can select the FlashROM page you want
to program and the data value for the configured regions. This enables you to use a different page for
different programming files.   

The programming hardware and software can load the FlashROM with the appropriate STAPL file.
Programming software handles the single STAPL file that contains multiple FlashROM contents for
multiple devices, and programs the FlashROM in sequential order (e.g., for device serialization). This
feature is supported in the programming software. After programming with the STAPL file, you can run
DEVICE_INFO to check the FlashROM content.

Figure 5-12 • Programming File Generator

Figure 5-13 • Setting FlashROM during Programming File Generation
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Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, ADDRB
should be tied to ground. 

DINA and DINB
These are the input data signals, and they are nine bits wide. Not all nine bits are valid in all
configurations. When a data width less than nine is specified, unused high-order signals must be
grounded (Table 6-4).
Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, DINB should

be tied to ground.
DOUTA and DOUTB
These are the nine-bit output data signals. Not all nine bits are valid in all configurations. As with DINA
and DINB, high-order bits may not be used (Table 6-4). The output data on unused pins is undefined. 

RAM512X18 Macro
RAM512X18 is the two-port configuration of the same RAM block (Figure 6-5 on page 156). Like the
RAM4K9 nomenclature, the RAM512X18 nomenclature refers to both the deepest possible configuration
and the widest possible configuration the two-port RAM block can assume. In two-port mode, the RAM
block can be configured to either the 512×9 aspect ratio or the 256×18 aspect ratio. RAM512X18 is also
fully synchronous and has the following features:

• Dedicated read and write ports
• Active-low read and write enables
• Selectable pipelined or nonpipelined read
• Active-low asynchronous reset
• Designer software will automatically facilitate falling-edge clocks by bubble-pushing the inversion

to previous stages.

Table 6-3 • Address Pins Unused/Used for Various Supported Bus Widths

D×W

ADDRx

Unused Used

4k×1 None [11:0]

2k×2 [11] [10:0]

1k×4 [11:10] [9:0]

512×9 [11:9] [8:0]

Note: The "x" in ADDRx implies A or B.

Table 6-4 • Unused/Used Input and Output Data Pins for Various Supported Bus Widths

D×W
DINx/DOUTx

Unused Used
4k×1 [8:1] [0]

2k×2 [8:2] [1:0]

1k×4 [8:4] [3:0]

512×9 None [8:0]

Note: The "x" in DINx or DOUTx implies A or B.
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SRAM Usage
The following descriptions refer to the usage of both RAM4K9 and RAM512X18.

Clocking
The dual-port SRAM blocks are only clocked on the rising edge. SmartGen allows falling-edge-triggered
clocks by adding inverters to the netlist, hence achieving dual-port SRAM blocks that are clocked on
either edge (rising or falling). For dual-port SRAM, each port can be clocked on either edge and by
separate clocks by port. Note that for Automotive ProASIC3, the same clock, with an inversion between
the two clock pins of the macro, should be used in design to prevent errors during compile.
Low power flash devices support inversion (bubble-pushing) throughout the FPGA architecture, including
the clock input to the SRAM modules. Inversions added to the SRAM clock pin on the design schematic
or in the HDL code will be automatically accounted for during design compile without incurring additional
delay in the clock path.
The two-port SRAM can be clocked on the rising or falling edge of WCLK and RCLK. 
If negative-edge RAM and FIFO clocking is selected for memory macros, clock edge inversion
management (bubble-pushing) is automatically used within the development tools, without performance
penalty. 

Modes of Operation
There are two read modes and one write mode:

• Read Nonpipelined (synchronous—1 clock edge): In the standard read mode, new data is driven
onto the RD bus in the same clock cycle following RA and REN valid. The read address is
registered on the read port clock active edge, and data appears at RD after the RAM access time.
Setting PIPE to OFF enables this mode.

• Read Pipelined (synchronous—2 clock edges): The pipelined mode incurs an additional clock
delay from address to data but enables operation at a much higher frequency. The read address
is registered on the read port active clock edge, and the read data is registered and appears at
RD after the second read clock edge. Setting PIPE to ON enables this mode.

• Write (synchronous—1 clock edge): On the write clock active edge, the write data is written into
the SRAM at the write address when WEN is HIGH. The setup times of the write address, write
enables, and write data are minimal with respect to the write clock. 

RAM Initialization
Each SRAM block can be individually initialized on power-up by means of the JTAG port using the UJTAG
mechanism. The shift register for a target block can be selected and loaded with the proper bit
configuration to enable serial loading. The 4,608 bits of data can be loaded in a single operation. 

FIFO Features
The FIFO4KX18 macro is created by merging the RAM block with dedicated FIFO logic (Figure 6-6 on
page 158). Since the FIFO logic can only be used in conjunction with the memory block, there is no
separate FIFO controller macro. As with the RAM blocks, the FIFO4KX18 nomenclature does not refer to
a possible aspect ratio, but rather to the deepest possible data depth and the widest possible data width.
FIFO4KX18 can be configured into the following aspect ratios: 4,096×1, 2,048×2, 1,024×4, 512×9, and
256×18. In addition to being fully synchronous, the FIFO4KX18 also has the following features:

• Four FIFO flags: Empty, Full, Almost-Empty, and Almost-Full
• Empty flag is synchronized to the read clock
• Full flag is synchronized to the write clock
• Both Almost-Empty and Almost-Full flags have programmable thresholds
• Active-low asynchronous reset
• Active-low block enable
• Active-low write enable
• Active-high read enable
• Ability to configure the FIFO to either stop counting after the empty or full states are reached or to

allow the FIFO counters to continue
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Solution 2
The board-level design must ensure that the reflected waveform at the pad does not exceed the voltage 
overshoot/undershoot limits provided in the datasheet. This is a requirement to ensure long-term 
reliability. 
This scheme will also work for a 3.3 V PCI/PCI-X configuration, but the internal diode should not be used 
for clamping, and the voltage must be limited by the external resistors and Zener, as shown in 
Figure 8-11. Relying on the diode clamping would create an excessive pad DC voltage of 
3.3 V + 0.7 V = 4 V.

Figure 8-10 • Solution 1

Figure 8-11 • Solution 2

Solution 1

5.5 V 3.3 V

Requires two board resistors, 
LVCMOS 3.3 V I/Os

I/O Input

Rext1
Rext2

Solution 2

5.5 V 3.3 V

Requires one board resistor, one
Zener 3.3 V diode, LVCMOS 3.3 V I/Os

I/O Input

Rext1

Zener
3.3 V
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Solution 4
The board-level design must ensure that the reflected waveform at the pad does not exceed the voltage 
overshoot/undershoot limits provided in the datasheet. This is a requirement to ensure long-term 
reliability.

Figure 8-13 • Solution 4

Solution 4

2.5 V5.5 V 2.5 V

Requires one board resistor.
Available for LVCMOS 2.5 V / 5.0 V.

I/O Input

Rext

On-Chip
Clamp
Diode

Table 8-14 • Comparison Table for 5 V–Compliant Receiver Solutions 

Solution Board Components Speed Current Limitations

1 Two resistors Low to High1 Limited by transmitter's drive strength

2 Resistor and Zener 3.3 V Medium Limited by transmitter's drive strength

3 Bus switch High N/A

4 Minimum resistor value2,3,4,5

R = 47 Ω at TJ = 70°C
R = 150 Ω at TJ = 85°C
R = 420 Ω at TJ = 100°C

Medium Maximum diode current at 100% duty cycle, signal 
constantly at 1
52.7 mA at TJ = 70°C / 10-year lifetime
16.5 mA at TJ = 85°C / 10-year lifetime
5.9 mA at TJ = 100°C / 10-year lifetime
For duty cycles other than 100%, the currents can be 
increased by a factor of 1 / (duty cycle).
Example: 20% duty cycle at 70°C
Maximum current = (1 / 0.2) × 52.7 mA = 5 × 52.7 mA = 
263.5 mA

Notes:
1. Speed and current consumption increase as the board resistance values decrease.
2. Resistor values ensure I/O diode long-term reliability.
3. At 70°C, customers could still use 420 Ω  on every I/O.
4. At 85°C, a 5 V solution on every other I/O is permitted, since the resistance is lower (150 Ω ) and the current is 

higher. Also, the designer can still use 420 Ω  and use the solution on every I/O. 
5. At 100°C, the 5 V solution on every I/O is permitted, since 420 Ω are used to limit the current to 5.9 mA.
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those banks, the user does not need to assign the same VCCI voltage to another bank. The user needs
to assign the other three VCCI voltages to three more banks.

Assigning Technologies and VREF to I/O Banks
Low power flash devices offer a wide variety of I/O standards, including voltage-referenced standards.
Before proceeding to Layout, each bank must have the required VCCI voltage assigned for the
corresponding I/O technologies used for that bank. The voltage-referenced standards require the use of
a reference voltage (VREF). This assignment can be done manually or automatically. The following
sections describe this in detail.

Manually Assigning Technologies to I/O Banks
The user can import the PDC at this point and resolve this requirement. The PDC command is
set_iobank [bank name] –vcci [vcci value]

Another method is to use the I/O Bank Settings dialog box (MVN > Edit > I/O Bank Settings) to set up
the VCCI voltage for the bank (Figure 9-12).

Figure 9-12 • Setting VCCI for a Bank
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If the assignment is not successful, an error message appears in the Output window.
To undo the I/O bank assignments, choose Undo from the Edit menu. Undo removes the I/O
technologies assigned by the IOBA. It does not remove the I/O technologies previously assigned.
To redo the changes undone by the Undo command, choose Redo from the Edit menu.
To clear I/O bank assignments made before using the Undo command, manually unassign or reassign
I/O technologies to banks. To do so, choose I/O Bank Settings from the Edit menu to display the I/O
Bank Settings dialog box.

Conclusion
Fusion, IGLOO, and ProASIC3 support for multiple I/O standards minimizes board-level components and
makes possible a wide variety of applications. The Microsemi Designer software, integrated with Libero
SoC, presents a clear visual display of I/O assignments, allowing users to verify I/O and board-level
design requirements before programming the device. The device I/O features and functionalities ensure
board designers can produce low-cost and low power FPGA applications fulfilling the complexities of
contemporary design needs. 

Related Documents

User’s Guides
Libero SoC User’s Guide
http://www.microsemi.com/soc/documents/libero_ug.pdf
IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
SmartGen Core Reference Guide
http://www.microsemi.com/soc/documents/genguide_ug.pdf
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Programming Flash Devices
List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 FlashPro4 is a replacement for FlashPro3 and has been added to this chapter. 
FlashPro is no longer available.

N/A

The chapter was updated to include SmartFusion devices. N/A

The following were deleted: 
"Live at Power-Up (LAPU) or Boot PROM" section
"Design Security" section
Table 14-2 • Programming Features for Actel Devices and much of the text in the 
"Programming Features for Microsemi Devices" section
"Programming Flash FPGAs" section
"Return Material Authorization (RMA) Policies" section

N/A

The "Device Programmers" section was revised. 291

The Independent Programming Centers information was removed from the "Volume 
Programming Services" section.

292

Table 11-3 • Programming Solutions was revised to add FlashPro4 and note that 
FlashPro is discontinued. A note was added for FlashPro Lite regarding power 
supply requirements.

293

Most items were removed from Table 11-4 • Programming Ordering Codes, 
including FlashPro3 and FlashPro.

294

The "Programmer Device Support" section was deleted and replaced with a 
reference to the Microsemi SoC Products Group website for the latest information.

294

The "Certified Programming Solutions" section was revised to add FlashPro4 and 
remove Silicon Sculptor I and Silicon Sculptor 6X. Reference to Programming and 
Functional Failure Guidelines was added.

294

The file type *.pdb was added to the "Use the Latest Version of the Designer 
Software to Generate Your Programming File (recommended)" section.

295

Instructions on cleaning and careful insertion were added to the "Perform Routine 
Hardware Self-Diagnostic Test" section. Information was added regarding testing 
Silicon Sculptor programmers with an adapter module installed before every 
programming session verifying their calibration annually.

295

The "Signal Integrity While Using ISP" section is new. 296

The "Programming Failure Allowances" section was revised. 296
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STAPL vs. DirectC
Programming the low power flash devices is performed using DirectC or the STAPL player. Both tools
use the STAPL file as an input. DirectC is a compiled language, whereas STAPL is an interpreted
language. Microprocessors will be able to load the FPGA using DirectC much more quickly than STAPL.
This speed advantage becomes more apparent when lower clock speeds of 8- or 16-bit microprocessors
are used. DirectC also requires less memory than STAPL, since the programming algorithm is directly
implemented. STAPL does have one advantage over DirectC—the ability to upgrade. When a new
programming algorithm is required, the STAPL user simply needs to regenerate a STAPL file using the
latest version of the Designer software and download it to the system. The DirectC user must download
the latest version of DirectC from Microsemi, compile everything, and download the result into the system
(Figure 15-4).

Figure 15-4 • STAPL vs. DirectC

STAPL Flow DirectC Flow

DirectC Source Code Input STAPL File

Microprocessor
Compiler

BIN File

Generate the
New STAPL File

Download to System

Program Device

Download to System

Program Device
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UJTAG Applications in Microsemi’s Low Power Flash Devices
UJTAG Operation
There are a few basic functions of the UJTAG macro that users must understand before designing with it.
The most important fundamental concept of the UJTAG design is its connection with the TAP Controller
state machine. 

TAP Controller State Machine
The 16 states of the TAP Controller state machine are shown in Figure 17-4 on page 367. The 1s and 0s,
shown adjacent to the state transitions, represent the TMS values that must be present at the time of a
rising TCK edge for a state transition to occur. In the states that include the letters "IR," the instruction
register operates; in the states that contain the letters "DR," the test data register operates. The TAP
Controller receives two control inputs, TMS and TCK, and generates control and clock signals for the rest
of the test logic. 
On power-up (or the assertion of TRST), the TAP Controller enters the Test-Logic-Reset state. To reset
the controller from any other state, TMS must be held HIGH for at least five TCK cycles. After reset, the
TAP state changes at the rising edge of TCK, based on the value of TMS. 

Note: Do not connect JTAG pins (TDO, TDI, TMS, TCK, or TRST) to I/Os in the design.
Figure 17-3 • Connectivity Method of UJTAG Macro
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