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Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
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their reliability and ability to handle complex algorithms
are essential.
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FPGAs

Within the realm of Embedded - FPGAs, several
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General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.
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based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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ProASIC3L FPGA Fabric User’s Guide
Table 1-4 • IGLOO nano and ProASIC3 nano Array Coordinates

Device

VersaTiles Memory Rows Entire Die

Min. Max. Bottom Top Min. Max.

IGLOO nano ProASIC3 nano (x, y) (x, y) (x, y) (x, y) (x, y) (x, y)

AGLN010 A3P010 (0, 2) (32, 5) None None (0, 0) (34, 5)

AGLN015 A3PN015 (0, 2) (32, 9) None None (0, 0) (34, 9)

AGLN020 A3PN020 (0, 2) 32, 13) None None (0, 0) (34, 13)

AGLN060 A3PN060 (3, 2) (66, 25) None (3, 26) (0, 0) (69, 29)

AGLN125 A3PN125 (3, 2) (130, 25) None (3, 26) (0, 0) (133, 29)

AGLN250 A3PN250 (3, 2) (130, 49) None (3, 50) (0, 0) (133, 49)

Note: The vertical I/O tile coordinates are not shown. West-side coordinates are {(0, 2) to (2, 2)} to {(0, 77) to (2, 77)};
east-side coordinates are {(195, 2) to (197, 2)} to {(195, 77) to (197, 77)}.

Figure 1-9 • Array Coordinates for AGL600, AGLE600, A3P600, and A3PE600
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Flash*Freeze Technology and Low Power Modes
Flash*Freeze Type 2: Control by Dedicated Flash*Freeze Pin and 
Internal Logic
The device can be made to enter Flash*Freeze mode by activating the FF pin together with Microsemi's
Flash*Freeze management IP core (refer to the "Flash*Freeze Management IP" section on page 36 for
more information) or user-defined control logic (Figure 2-3 on page 27) within the FPGA core. This method
enables the design to perform important activities before allowing the device to enter Flash*Freeze mode,
such as transitioning into a safe state, completing the processing of a critical event. Designers are
encouraged to take advantage of Microsemi's Flash*Freeze Management IP to handle clean entry and exit
of Flash*Freeze mode (described later in this document). The device will only enter Flash*Freeze mode
when the Flash*Freeze pin is asserted (active Low) and the User Low Static ICC (ULSICC) macro input
signal, called the LSICC signal, is asserted (High). One condition is not sufficient to enter Flash*Freeze
mode type 2; both the FF pin and LSICC signal must be asserted. 
When Flash*Freeze type 2 is implemented in the design, the ULSICC macro needs to be instantiated by
the user. There are no functional differences in the device whether the ULSICC macro is instantiated or
not, and whether the LSICC signal is asserted or deasserted. The LSICC signal is used only to control
entering Flash*Freeze mode. Figure 2-4 on page 27 shows the timing diagram for entering and exiting
Flash*Freeze mode type 2.
After exiting Flash*Freeze mode type 2 by deasserting the Flash*Freeze pin, the LSICC signal must be
deasserted by the user design. This will prevent entering Flash*Freeze mode by asserting the
Flash*Freeze pin only.
Refer to Table 2-3 for Flash*Freeze (FF) pin and LSICC signal assertion and deassertion values. 

Table 2-3 • Flash*Freeze Mode Type 1 and Type 2 – Signal Assertion and Deassertion Values
Signal Assertion Value Deassertion Value
Flash*Freeze (FF) pin Low High

LSICC signal High Low

Notes:
1. The Flash*Freeze (FF) pin is an active-Low signal, and LSICC is an active-High signal.
2. The LSICC signal is used only in Flash*Freeze mode type 2.
26 Revision 4



ProASIC3L FPGA Fabric User’s Guide
Using Sleep and Shutdown Modes in the System
Depending on the power supply and the components used in an application, there are many ways to
power on or off the power supplies connected to the device. For example, Figure 2-6 shows how a
microprocessor can be used to control a power FET. Microsemi recommends that power FETs with low
resistance be used to perform the switching action. 

Figure 2-7 shows how a microprocessor can be used with a voltage regulator’s shutdown pin to turn on
or off the power supplies connected to the device.

Power-Up/-Down Behavior
By design, all IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3L, and RT ProASIC3 I/Os are in tristate
mode before device power-up. The I/Os remain tristated until the last voltage supply (VCC or VCCI) is
powered to its activation level. After the last supply reaches its functional level, the outputs exit the
tristate mode and drive the logic at the input of the output buffer. The behavior of user I/Os is
independent of the VCC and VCCI sequence or the state of other voltage supplies of the FPGA (VPUMP
and VJTAG). During power-down, device I/Os become tristated once the first power supply (VCC or VCCI)
drops below its deactivation voltage level. The I/O behavior during power-down is also independent of
voltage supply sequencing. 
Figure 2-8 on page 34 shows a timing diagram when the VCC power supply crosses the activation and
deactivation trip points in a typical application when the VCC power supply ramp-rate is 100 µs (ramping
from 0 V to 1.5 V in this example). This is the timing diagram for the FPGA entering and exiting Sleep
mode, as this function is dependent on powering VCC down or up. Depending on the ramp-rate of the

Figure 2-6 • Controlling Power-On/-Off State Using Microprocessor and Power FET

Figure 2-7 • Controlling Power-On/-Off State Using Microprocessor and Voltage Regulator
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Flash*Freeze Technology and Low Power Modes
• Avoid using pull-ups and pull-downs on I/Os because these resistors draw some current. Avoid
driving resistive loads or bipolar transistors, since these draw a continuous current, thereby
adding to the static current.

• When partitioning the design across multiple devices, minimize I/O usage among the devices.

Conclusion
Microsemi IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3L, and RT ProASIC3 family architectures are
designed to achieve ultra-low power consumption based on enhanced nonvolatile and live-at-power-up
flash-based technology. Power consumption can be reduced further by using Flash*Freeze, Static (Idle),
Sleep, and Shutdown power modes. All these features result in a low power, cost-effective, single-chip
solution designed specifically for power-sensitive and battery-operated electronics applications.

Related Documents

Application Notes
Embedded SRAM Initialization Using External Serial EEPROM
http://www.microsemi.com/soc/documents/EmbeddedSRAMInit_AN.pdf

List of Changes
The following table lists critical changes that were made in each version of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

v2.3
(November 2009)

The "Sleep Mode" section was revised to state the VJTAG and VPUMP, as well as
VCC, are grounded during Sleep mode (SAR 22517).

32

Figure 2-6 • Controlling Power-On/-Off State Using Microprocessor and Power FET
and Figure 2-7 • Controlling Power-On/-Off State Using Microprocessor and Voltage
Regulator were revised to show that VJTAG and VPUMP are powered off during
Sleep mode.

33

v2.2
(December 2008)

IGLOO nano devices were added as a supported family. N/A

The "Prototyping for IGLOO and ProASIC3L Devices Using ProASIC3" section was
removed, as these devices are now in production.

N/A

The "Additional Power Conservation Techniques" section was revised to add RT
ProASIC3 devices.

41

v2.0
(October 2008)

The "Flash*Freeze Management FSM" section was updated with the following
information: The FSM also asserts Flash_Freeze_Enabled whenever the device
enters Flash*Freeze mode. This occurs after all housekeeping and clock gating
functions have completed.

37
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Global Resources in Low Power Flash Devices
Global Resource Support in Flash-Based Devices
The flash FPGAs listed in Table 3-1 support the global resources and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO products as
listed in Table 3-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 3-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 3-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

IGLOO nano The industry’s lowest-power, smallest-size solution

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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Table 3-3 • Quadrant Global Pin Name 

I/O Type Beginning of I/O Name Notes

Single-Ended GAAO/IOuxwByVz
GAA1/IOuxwByVz
GAA2/IOuxwByVz

Only one of the I/Os can be directly connected to a
quadrant global at a time

GABO/IOuxwByVz
GAB1/IOuxwByVz
GAB2/IOuxwByVz

Only one of the I/Os can be directly connected to a
quadrant global at a time.

GAC0/IOuxwByVz
GAC1/IOuxwByVz
GAC2/IOuxwByVz

Only one of the I/Os can be directly connected to a
quadrant global at a time.

GBAO/IOuxwByVz
GBA1/IOuxwByVz
GBA2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GBBO/IOuxwByVz
GBB1/IOuxwByVz
GBB2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GBC0/IOuxwByVz
GBC1/IOuxwByVz
GBC2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GDAO/IOuxwByVz
GDA1/IOuxwByVz
GDA2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GDBO/IOuxwByVz
GDB1/IOuxwByVz
GDB2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GDC0/IOuxwByVz
GDC1/IOuxwByVz
GDC2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GEAO/IOuxwByVz
GEA1/IOuxwByVz
GEA2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GEBO/IOuxwByVz
GEB1/IOuxwByVz
GEB2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GEC0/IOuxwByVz
GEC1/IOuxwByVz
GEC2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

Note: Only one of the I/Os can be directly connected to a quadrant at a time. 
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Each global buffer, as well as the PLL reference clock, can be driven from one of the following: 
• 3 dedicated single-ended I/Os using a hardwired connection
• 2 dedicated differential I/Os using a hardwired connection (not applicable for IGLOO nano and 

ProASIC3 nano devices)
• The FPGA core 

Since the architecture of the devices varies as size increases, the following list details I/O types 
supported for globals: 

IGLOO and ProASIC3
• LVDS-based clock sources are available only on 250 k gate devices and above (IGLOO nano and 

ProASIC3 nano devices do not support differential inputs).
• 60 k and 125 k gate devices support single-ended clock sources only.
• 15 k and 30 k gate devices support these inputs for CCC only and do not contain a PLL.
• nano devices:

– 10 k, 15 k, and 20 k devices do not contain PLLs in the CCCs, and support only CLKBUF and 
CLKINT.

– 60 k, 125 k, and 250 k devices support one PLL in the middle left CCC position. In the 
absence of the PLL, this CCC can be used by CLKBUF, CLKINT, and CLKDLY macros. The 
corner CCCs support CLKBUF, CLKINT, and CLKDLY.

Fusion
• AFS600 and AFS1500: All single-ended, differential, and voltage-referenced I/O standards (Pro 

I/O).
• AFS090 and AFS250: All single-ended and differential I/O standards.

Clock Sources for PLL and CLKDLY Macros
The input reference clock (CLKA for a PLL macro, CLK for a CLKDLY macro) can be accessed from 
different sources via the associated clock multiplexer tree. Each CCC has the option of choosing the 
source of the input clock from one of the following:

• Hardwired I/O
• External I/O
• Core Logic
• RC Oscillator (Fusion only)
• Crystal Oscillator (Fusion only)

The SmartGen macro builder tool allows users to easily create the PLL and CLKDLY macros with the 
desired settings. Microsemi strongly recommends using SmartGen to generate the CCC macros.

Hardwired I/O Clock Source
Hardwired I/O refers to global input pins that are hardwired to the multiplexer tree, which directly 
accesses the CCC global buffers. These global input pins have designated pin locations and are 
indicated with the I/O naming convention Gmn (m refers to any one of the positions where the PLL core 
is available, and n refers to any one of the three global input MUXes and the pin number of the 
associated global location, m). Choosing this option provides the benefit of directly connecting to the 
CCC reference clock input, which provides less delay. See Figure 4-9 on page 90 for an example 
illustration of the connections, shown in red. If a CLKDLY macro is initiated to utilize the programmable 
delay element of the CCC, the clock input can be placed at one of nine dedicated global input pin 
locations. In other words, if Hardwired I/O is chosen as the input source, the user can decide to place the 
input pin in one of the GmA0, GmA1, GmA2, GmB0, GmB1, GmB2, GmC0, GmC1, or GmC2 locations of 
the low power flash devices. When a PLL macro is used to utilize the PLL core in a CCC location, the 
clock input of the PLL can only be connected to one of three GmA* global pin locations: GmA0, GmA1, or 
GmA2.
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Each group of control bits is assigned a specific location in the configuration shift register. For a list of the 
81 configuration bits (C[80:0]) in the CCC and a description of each, refer to "PLL Configuration Bits 
Description" on page 106. The configuration register can be serially loaded with the new configuration 
data and programmed into the CCC using the following ports:

• SDIN: The configuration bits are serially loaded into a shift register through this port. The LSB of 
the configuration data bits should be loaded first. 

• SDOUT: The shift register contents can be shifted out (LSB first) through this port using the shift 
operation.

• SCLK: This port should be driven by the shift clock.
• SSHIFT: The active-high shift enable signal should drive this port. The configuration data will be 

shifted into the shift register if this signal is HIGH. Once SSHIFT goes LOW, the data shifting will 
be halted. 

• SUPDATE: The SUPDATE signal is used to configure the CCC with the new configuration bits 
when shifting is complete.

To access the configuration ports of the shift register (SDIN, SDOUT, SSHIFT, etc.), the user should 
instantiate the CCC macro in his design with appropriate ports. Microsemi recommends that users 
choose SmartGen to generate the CCC macros with the required ports for dynamic reconfiguration. 
Users must familiarize themselves with the architecture of the CCC core and its input, output, and 
configuration ports to implement the desired delay and output frequency in the CCC structure. 
Figure 4-22 shows a model of the CCC with configurable blocks and switches. 
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
External Feedback Configuration
For certain applications, such as those requiring generation of PCB clocks that must be matched with 
existing board delays, it is useful to implement an external feedback, EXTFB. The Phase Detector of the 
PLL core will receive CLKA and EXTFB as inputs. EXTFB may be processed by the fixed System Delay 
element as well as the M divider element. The EXTFB option is currently not supported.
After setting all the required parameters, users can generate one or more PLL configurations with HDL or 
EDIF descriptions by clicking the Generate button. SmartGen gives the option of saving session results 
and messages in a log file:
****************
Macro Parameters
****************

Name                            : test_pll
Family                          : ProASIC3E
Output Format                   : VHDL
Type                            : Static PLL
Input Freq(MHz)                 : 10.000
CLKA Source                     : Hardwired I/O
Feedback Delay Value Index      : 1
Feedback Mux Select             : 2
XDLY Mux Select                 : No
Primary Freq(MHz)               : 33.000
Primary PhaseShift              : 0
Primary Delay Value Index       : 1
Primary Mux Select              : 4
Secondary1 Freq(MHz)            : 66.000
Use GLB                         : YES
Use YB                          : YES
GLB Delay Value Index           : 1
YB Delay Value Index            : 1
Secondary1 PhaseShift           : 0
Secondary1 Mux Select           : 4
Secondary2 Freq(MHz)            : 101.000
Use GLC                         : YES
Use YC                          : NO
GLC Delay Value Index           : 1
YC Delay Value Index            : 1
Secondary2 PhaseShift           : 0
Secondary2 Mux Select           : 4

…
…
…

Primary Clock frequency 33.333
Primary Clock Phase Shift 0.000
Primary Clock Output Delay from CLKA 0.180

Secondary1 Clock frequency 66.667
Secondary1 Clock Phase Shift 0.000
Secondary1 Clock Global Output Delay from CLKA 0.180
Secondary1 Clock Core Output Delay from CLKA 0.625

Secondary2 Clock frequency 100.000
Secondary2 Clock Phase Shift 0.000
Secondary2 Clock Global Output Delay from CLKA 0.180

Below is an example Verilog HDL description of a legal PLL core configuration generated by SmartGen:

module test_pll(POWERDOWN,CLKA,LOCK,GLA);
input POWERDOWN, CLKA;
output  LOCK, GLA;
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Figure 6-2 • Fusion Device Architecture Overview (AFS600) 
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SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
v1.1
(continued)

Table 6-1 • Flash-Based FPGAs and associated text were updated to include the
IGLOO PLUS family. The "IGLOO Terminology" section and "ProASIC3
Terminology" section are new.

150

The text introducing Table 6-8 • Memory Availability per IGLOO and ProASIC3
Device was updated to replace "A3P030 and AGL030" with "15 k and 30 k gate
devices." Table 6-8 • Memory Availability per IGLOO and ProASIC3 Device was
updated to remove AGL400 and AGLE1500 and include IGLOO PLUS and
ProASIC3L devices. 

162

Date Changes Page
174 Revision 4



ProASIC3L FPGA Fabric User’s Guide
IGLOO and ProASIC3
For boards and cards with three levels of staging, card power supplies must have time to reach their final
values before the I/Os are connected. Pay attention to the sizing of power supply decoupling capacitors
on the card to ensure that the power supplies are not overloaded with capacitance.
Cards with three levels of staging should have the following sequence: 

• Grounds
• Powers 
• I/Os and other pins

For Level 3 and Level 4 compliance with the 30K gate device, cards with two levels of staging should
have the following sequence:

• Grounds
• Powers, I/Os, and other pins

Cold-Sparing Support
Cold-sparing refers to the ability of a device to leave system data undisturbed when the system is
powered up, while the component itself is powered down, or when power supplies are floating.
The resistor value is calculated based on the decoupling capacitance on a given power supply. The RC
constant should be greater than 3 µs.
To remove resistor current during operation, it is suggested that the resistor be disconnected (e.g., with
an NMOS switch) from the power supply after the supply has reached its final value. Refer to the "Power-
Up/-Down Behavior of Low Power Flash Devices" section on page 373 for details on cold-sparing. 
Cold-sparing means that a subsystem with no power applied (usually a circuit board) is electrically
connected to the system that is in operation. This means that all input buffers of the subsystem must
present very high input impedance with no power applied so as not to disturb the operating portion of the
system.
The 30 k gate devices fully support cold-sparing, since the I/O clamp diode is always off (see Table 7-12 on
page 193). If the 30 k gate device is used in applications requiring cold-sparing, a discharge path from
the power supply to ground should be provided. This can be done with a discharge resistor or a switched
resistor. This is necessary because the 30K gate devices do not have built-in I/O clamp diodes. 
For other IGLOO and ProASIC3 devices, since the I/O clamp diode is always active, cold-sparing can be
accomplished either by employing a bus switch to isolate the device I/Os from the rest of the system or
by driving each I/O pin to 0 V. If the resistor is chosen, the resistor value must be calculated based on
decoupling capacitance on a given power supply on the board (this decoupling capacitance is in parallel
with the resistor). The RC time constant should ensure full discharge of supplies before cold-sparing
functionality is required. The resistor is necessary to ensure that the power pins are discharged to ground
every time there is an interruption of power to the device.
IGLOOe and ProASIC3E devices support cold-sparing for all I/O configurations. Standards, such as PCI,
that require I/O clamp diodes can also achieve cold-sparing compliance, since clamp diodes get
disconnected internally when the supplies are at 0 V.
When targeting low power applications, I/O cold-sparing may add additional current if a pin is configured
with either a pull-up or pull-down resistor and driven in the opposite direction. A small static current is
induced on each I/O pin when the pin is driven to a voltage opposite to the weak pull resistor. The current
is equal to the voltage drop across the input pin divided by the pull resistor. Refer to the "Detailed I/O DC
Characteristics" section of the appropriate family datasheet for the specific pull resistor value for the
corresponding I/O standard.
For example, assuming an LVTTL 3.3 V input pin is configured with a weak pull-up resistor, a current will
flow through the pull-up resistor if the input pin is driven LOW. For LVTTL 3.3 V, the pull-up resistor is
~45 kΩ, and the resulting current is equal to 3.3 V / 45 kΩ = 73 µA for the I/O pin. This is true also when
a weak pull-down is chosen and the input pin is driven HIGH. This current can be avoided by driving the
input LOW when a weak pull-down resistor is used and driving it HIGH when a weak pull-up resistor is
used.
This current draw can occur in the following cases:
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• In Active and Static modes:
– Input buffers with pull-up, driven Low
– Input buffers with pull-down, driven High
– Bidirectional buffers with pull-up, driven Low
– Bidirectional buffers with pull-down, driven High
– Output buffers with pull-up, driven Low
– Output buffers with pull-down, driven High
– Tristate buffers with pull-up, driven Low
– Tristate buffers with pull-down, driven High

• In Flash*Freeze mode:
– Input buffers with pull-up, driven Low
– Input buffers with pull-down, driven High
– Bidirectional buffers with pull-up, driven Low
– Bidirectional buffers with pull-down, driven High

Electrostatic Discharge Protection
Low power flash devices are tested per JEDEC Standard JESD22-A114-B.
These devices contain clamp diodes at every I/O, global, and power pad. Clamp diodes protect all device
pads against damage from ESD as well as from excessive voltage transients. 
All IGLOO and ProASIC3 devices are tested to the Human Body Model (HBM) and the Charged Device
Model (CDM).
Each I/O has two clamp diodes. One diode has its positive (P) side connected to the pad and its negative
(N) side connected to VCCI. The second diode has its P side connected to GND and its N side
connected to the pad. During operation, these diodes are normally biased in the off state, except when
transient voltage is significantly above VCCI or below GND levels. 
In 30K gate devices, the first diode is always off. In other devices, the clamp diode is always on and
cannot be switched off.
By selecting the appropriate I/O configuration, the diode is turned on or off. Refer to Table 7-12 on
page 193 for more information about the I/O standards and the clamp diode.
The second diode is always connected to the pad, regardless of the I/O configuration selected.
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Table 8-9 • Hot-Swap Level 1

Description Cold-swap

Power Applied to Device No

Bus State –

Card Ground Connection –

Device Circuitry Connected to Bus Pins –

Example Application System and card with Microsemi FPGA chip are 
powered down, and the card is plugged into the 
system. Then the power supplies are turned on for 
the system but not for the FPGA on the card.

Compliance of IGLOO and ProASIC3 Devices 30 k gate devices: Compliant 
Other IGLOO/ProASIC3 devices: Compliant if bus 
switch used to isolate FPGA I/Os from rest of 
system
IGLOOe/ProASIC3E devices: Compliant I/Os can, 
but do not have to be set to hot-insertion mode.

Table 8-10 • Hot-Swap Level 2

Description Hot-swap while reset

Power Applied to Device Yes

Bus State Held in reset state

Card Ground Connection Reset must be maintained for 1 ms before, during, 
and after insertion/removal.

Device Circuitry Connected to Bus Pins –

Example Application In the PCI hot-plug specification, reset control 
circuitry isolates the card busses until the card 
supplies are at their nominal operating levels and 
stable.

Compliance of IGLOO and ProASIC3 Devices 30 k gate devices, all IGLOOe/ProASIC3E 
devices: Compliant I/Os can but do not have to be 
set to hot-insertion mode.
Other IGLOO/ProASIC3 devices: Compliant
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I/O Register Combining
Every I/O has several embedded registers in the I/O tile that are close to the I/O pads. Rather than using 
the internal register from the core, the user has the option of using these registers for faster clock-to-out 
timing, and external hold and setup. When combining these registers at the I/O buffer, some architectural 
rules must be met. Provided these rules are met, the user can enable register combining globally during 
Compile (as shown in the "Compiling the Design" section on page 261).
This feature is supported by all I/O standards.

Rules for Registered I/O Function
1. The fanout between an I/O pin (D, Y, or E) and a register must be equal to one for combining to be 

considered on that pin.
2. All registers (Input, Output, and Output Enable) connected to an I/O must share the same clear or 

preset function:
– If one of the registers has a CLR pin, all the other registers that are candidates for combining 

in the I/O must have a CLR pin.
– If one of the registers has a PRE pin, all the other registers that are candidates for combining 

in the I/O must have a PRE pin.
– If one of the registers has neither a CLR nor a PRE pin, all the other registers that are 

candidates for combining must have neither a CLR nor a PRE pin.
– If the clear or preset pins are present, they must have the same polarity.
– If the clear or preset pins are present, they must be driven by the same signal (net).

3. Registers connected to an I/O on the Output and Output Enable pins must have the same clock 
and enable function:
– Both the Output and Output Enable registers must have an E pin (clock enable), or none at all.
– If the E pins are present, they must have the same polarity. The CLK pins must also have the 

same polarity.
In some cases, the user may want registers to be combined with the input of a bibuf while maintaining the 
output as-is. This can be achieved by using PDC commands as follows:
set_io <signal name> -REGISTER yes ------register will combine
set_preserve <signal name> ----register will not combine

Weak Pull-Up and Weak Pull-Down Resistors
When the I/O is pulled up, it is connected to the VCCI of its corresponding I/O bank. When it is pulled 
down, it is connected to GND. Refer to the datasheet for more information.
For low power applications, configuration of the pull-up or pull-down of the I/O can be used to set the I/O 
to a known state while the device is in Flash*Freeze mode. Refer to the "Flash*Freeze Technology and 
Low Power Modes in IGLOO and ProASIC3L Devices" chapter in the IGLOOe FPGA Fabric User’s 
Guide or ProASIC3E FPGA Fabric User’s Guide for more information.
The Flash*Freeze (FF) pin cannot be configured with a weak pull-down or pull-up I/O attribute, as the 
signal needs to be driven at all times.

Output Slew Rate Control
The slew rate is the amount of time an input signal takes to get from logic LOW to logic HIGH or vice 
versa.
It is commonly defined as the propagation delay between 10% and 90% of the signal's voltage swing. 
Slew rate control is available for the output buffers of low power flash devices. The output buffer has a 
programmable slew rate for both HIGH-to-LOW and LOW-to-HIGH transitions. Slew rate control is 
available for LVTTL, LVCMOS, and PCI-X I/O standards. The other I/O standards have a preset slew 
value.
The slew rate can be implemented by using a PDC command (Table 8-6 on page 218), setting it "High" 
or "Low" in the I/O Attribute Editor in Designer, or instantiating a special I/O macro. The default slew rate 
value is "High."
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Implementing I/Os in Microsemi Software
Microsemi Libero SoC software is integrated with design entry tools such as the SmartGen macro
builder, the ViewDraw schematic entry tool, and an HDL editor. It is also integrated with the synthesis and
Designer tools. In this section, all necessary steps to implement the I/Os are discussed.

Design Entry
There are three ways to implement I/Os in a design:

1. Use the SmartGen macro builder to configure I/Os by generating specific I/O library macros and
then instantiating them in top-level code. This is especially useful when creating I/O bus
structures.

2. Use an I/O buffer cell in a schematic design.
3. Manually instantiate specific I/O macros in the top-level code.

If technology-specific macros, such as INBUF_LVCMOS33 and OUTBUF_PCI, are used in the HDL
code or schematic, the user will not be able to change the I/O standard later on in Designer. If generic I/O
macros are used, such as INBUF, OUTBUF, TRIBUF, CLKBUF, and BIBUF, the user can change the I/O
standard using the Designer I/O Attribute Editor tool. 

Using SmartGen for I/O Configuration
The SmartGen tool in Libero SoC provides a GUI-based method of configuring the I/O attributes. The
user can select certain I/O attributes while configuring the I/O macro in SmartGen. The steps to configure
an I/O macro with specific I/O attributes are as follows:

1. Open Libero SoC.
2. On the left-hand side of the Catalog View, select I/O, as shown in Figure 9-2. 

Figure 9-2 • SmartGen Catalog
254 Revision 4



ProASIC3L FPGA Fabric User’s Guide
Security in ARM-Enabled Low Power Flash Devices 
There are slight differences between the regular flash device and the ARM-enabled flash devices, which
have the M1 prefix.
The AES key is used by Microsemi and preprogrammed into the device to protect the ARM IP. As a
result, the design will be encrypted along with the ARM IP, according to the details below. 

Cortex-M1 and Cortex-M3 Device Security
Cortex-M1–enabled and Cortex-M3 devices are shipped with the following security features:

• FPGA array enabled for AES-encrypted programming and verification
• FlashROM enabled for AES-encrypted write and verify
• Embedded Flash Memory enabled for AES encrypted write 

Figure 13-1 • AES-128 Security Features 
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SRAM Initialization
Users can also initialize embedded SRAMs of the low power flash devices. The initialization of the
embedded SRAM blocks of the design can be done using UJTAG tiles, where the initialization data is
imported using the TAP Controller. Similar functionality is available in ProASICPLUS devices using JTAG.
The guidelines for implementation and design examples are given in the RAM Initialization and ROM
Emulation in ProASICPLUS Devices application note.
SRAMs are volatile by nature; data is lost in the absence of power. Therefore, the initialization process
should be done at each power-up if necessary.

FlashROM Read-Back Using JTAG
The low power flash architecture contains a dedicated nonvolatile FlashROM block, which is formatted
into eight 128-bit pages. For more information on FlashROM, refer to the "FlashROM in Microsemi’s Low
Power Flash Devices" section on page 133. The contents of FlashROM are available to the VersaTiles
during normal operation through a read operation. As a result, the UJTAG macro can be used to provide
the FlashROM contents to the JTAG port during normal operation. Figure 17-7 illustrates a simple block
diagram of using UJTAG to read the contents of FlashROM during normal operation.
The FlashROM read address can be provided from outside the FPGA through the TDI input or can be
generated internally using the core logic. In either case, data serialization logic is required (Figure 17-7)
and should be designed using the VersaTile core logic. FlashROM contents are read asynchronously in
parallel from the flash memory and shifted out in a synchronous serial format to TDO. Shifting the serial
data out of the serialization block should be performed while the TAP is in UDRSH mode. The
coordination between TCK and the data shift procedure can be done using the TAP state machine by
monitoring UDRSH, UDRCAP, and UDRUPD.

Figure 17-7 • Block Diagram of Using UJTAG to Read FlashROM Contents
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The following devices and families do not support cold-sparing:
• IGLOO: AGL060, AGL125, AGL250, AGL600, AGL1000
• ProASIC3: A3P060, A3P125, A3P250, A3P400, A3P600, A3P1000
• ProASIC3L: A3P250L, A3P600L, A3P1000L
• Military ProASIC3: A3P1000

Hot-Swapping
Hot-swapping is the operation of hot insertion or hot removal of a card in a powered-up system. The I/Os 
need to be configured in hot-insertion mode if hot-swapping compliance is required. For more details on 
the levels of hot-swap compatibility in low power flash devices, refer to the "Hot-Swap Support" section in 
the I/O Structures chapter of the user’s guide for the device you are using.
The following devices and families support hot-swapping:

• IGLOO: AGL015 and AGL030
• All IGLOO nano
• All IGLOO PLUS
• All IGLOOe
• ProASIC3L: A3PE3000L
• ProASIC3: A3P015 and A3P030
• All ProASIC3 nano
• All ProASIC3E
• Military ProASIC3EL: A3PE600L and A3PE3000L
• RT ProASIC3: RT3PE600L and RT3PE3000L

The following devices and families do not support hot-swapping:
• IGLOO: AGL060, AGL125, AGL250, AGL400, AGL600, AGL1000
• ProASIC3: A3P060, A3P125, A3P250, A3P400, A3P600, A3P1000
• ProASIC3L: A3P250L, A3P600L, A3P1000L
• Military ProASIC3: A3P1000

Conclusion
Microsemi's low power flash FPGAs provide an excellent programmable logic solution for a broad range 
of applications. In addition to high performance, low cost, security, nonvolatility, and single chip, they are 
live at power-up (meet Level 0 of the LAPU classification) and offer clear and easy-to-use power-up/-
down characteristics. Unlike SRAM FPGAs, low power flash devices do not require any specific power-
up/-down sequencing and have extremely low power-up inrush current in any power-up sequence. 
Microsemi low power flash FPGAs also support both cold-sparing and hot-swapping for applications 
requiring these capabilities.
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