

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	
Number of Logic Elements/Cells	·
Total RAM Bits	147456
Number of I/O	177
Number of Gates	1000000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/a3p1000l-fgg256

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		VersaTiles		Memory Rows		Entire Die	
Device		Min.	Max.	Bottom	Тор	Min.	Max.
IGLOO nano	ProASIC3 nano	(x, y)	(x, y)	(x, y)	(x, y)	(x, y)	(x, y)
AGLN010	A3P010	(0, 2)	(32, 5)	None	None	(0, 0)	(34, 5)
AGLN015	A3PN015	(0, 2)	(32, 9)	None	None	(0, 0)	(34, 9)
AGLN020	A3PN020	(0, 2)	32, 13)	None	None	(0, 0)	(34, 13)
AGLN060	A3PN060	(3, 2)	(66, 25)	None	(3, 26)	(0, 0)	(69, 29)
AGLN125	A3PN125	(3, 2)	(130, 25)	None	(3, 26)	(0, 0)	(133, 29)
AGLN250	A3PN250	(3, 2)	(130, 49)	None	(3, 50)	(0, 0)	(133, 49)

Note: The vertical I/O tile coordinates are not shown. West-side coordinates are {(0, 2) to (2, 2)} to {(0, 77) to (2, 77)}; east-side coordinates are {(195, 2) to (197, 2)} to {(195, 77) to (197, 77)}.

Figure 1-9 • Array Coordinates for AGL600, AGLE600, A3P600, and A3PE600

Flash*Freeze Technology and Low Power Modes

Flash*Freeze Type 2: Control by Dedicated Flash*Freeze Pin and Internal Logic

The device can be made to enter Flash*Freeze mode by activating the FF pin together with Microsemi's Flash*Freeze management IP core (refer to the "Flash*Freeze Management IP" section on page 36 for more information) or user-defined control logic (Figure 2-3 on page 27) within the FPGA core. This method enables the design to perform important activities before allowing the device to enter Flash*Freeze mode, such as transitioning into a safe state, completing the processing of a critical event. Designers are encouraged to take advantage of Microsemi's Flash*Freeze Management IP to handle clean entry and exit of Flash*Freeze mode (described later in this document). The device will only enter Flash*Freeze mode when the Flash*Freeze pin is asserted (active Low) and the User Low Static I_{CC} (ULSICC) macro input signal, called the LSICC signal, is asserted (High). One condition is not sufficient to enter Flash*Freeze mode type 2; both the FF pin and LSICC signal must be asserted.

When Flash*Freeze type 2 is implemented in the design, the ULSICC macro needs to be instantiated by the user. There are no functional differences in the device whether the ULSICC macro is instantiated or not, and whether the LSICC signal is asserted or deasserted. The LSICC signal is used only to control entering Flash*Freeze mode. Figure 2-4 on page 27 shows the timing diagram for entering and exiting Flash*Freeze mode type 2.

After exiting Flash*Freeze mode type 2 by deasserting the Flash*Freeze pin, the LSICC signal must be deasserted by the user design. This will prevent entering Flash*Freeze mode by asserting the Flash*Freeze pin only.

1/1

Refer to Table 2-3 for Flash*Freeze (FF) pin and LSICC signal assertion and deassertion values.

Table 2-3 •	Flash*Freeze wode	Type 1 and 1	ype 2 – Signal As	ssertion and Deassertion values	
					-

Signal	Assertion Value	Deassertion Value
Flash*Freeze (FF) pin	Low	High
LSICC signal	High	Low

Notes:

T.

1. The Flash*Freeze (FF) pin is an active-Low signal, and LSICC is an active-High signal.

2. The LSICC signal is used only in Flash*Freeze mode type 2.

Using Sleep and Shutdown Modes in the System

Depending on the power supply and the components used in an application, there are many ways to power on or off the power supplies connected to the device. For example, Figure 2-6 shows how a microprocessor can be used to control a power FET. Microsemi recommends that power FETs with low resistance be used to perform the switching action.

Figure 2-6 • Controlling Power-On/-Off State Using Microprocessor and Power FET

Figure 2-7 shows how a microprocessor can be used with a voltage regulator's shutdown pin to turn on or off the power supplies connected to the device.

Figure 2-7 • Controlling Power-On/-Off State Using Microprocessor and Voltage Regulator

Power-Up/-Down Behavior

By design, all IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3L, and RT ProASIC3 I/Os are in tristate mode before device power-up. The I/Os remain tristated until the last voltage supply (V_{CC} or V_{CCI}) is powered to its activation level. After the last supply reaches its functional level, the outputs exit the tristate mode and drive the logic at the input of the output buffer. The behavior of user I/Os is independent of the V_{CC} and V_{CCI} sequence or the state of other voltage supplies of the FPGA (V_{PUMP} and V_{JTAG}). During power-down, device I/Os become tristated once the first power supply (V_{CC} or V_{CCI}) drops below its deactivation voltage level. The I/O behavior during power-down is also independent of voltage supply sequencing.

Figure 2-8 on page 34 shows a timing diagram when the V_{CC} power supply crosses the activation and deactivation trip points in a typical application when the V_{CC} power supply ramp-rate is 100 μ s (ramping from 0 V to 1.5 V in this example). This is the timing diagram for the FPGA entering and exiting Sleep mode, as this function is dependent on powering V_{CC} down or up. Depending on the ramp-rate of the

Flash*Freeze Technology and Low Power Modes

- Avoid using pull-ups and pull-downs on I/Os because these resistors draw some current. Avoid driving resistive loads or bipolar transistors, since these draw a continuous current, thereby adding to the static current.
- When partitioning the design across multiple devices, minimize I/O usage among the devices.

Conclusion

Microsemi IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3L, and RT ProASIC3 family architectures are designed to achieve ultra-low power consumption based on enhanced nonvolatile and live-at-power-up flash-based technology. Power consumption can be reduced further by using Flash*Freeze, Static (Idle), Sleep, and Shutdown power modes. All these features result in a low power, cost-effective, single-chip solution designed specifically for power-sensitive and battery-operated electronics applications.

Related Documents

Application Notes

Embedded SRAM Initialization Using External Serial EEPROM http://www.microsemi.com/soc/documents/EmbeddedSRAMInit_AN.pdf

List of Changes

The following table lists critical changes that were made in each version of the chapter.

Date	Changes	Page
July 2010	This chapter is no longer published separately with its own part number and version but is now part of several FPGA fabric user's guides.	N/A
v2.3 (November 2009)	The "Sleep Mode" section was revised to state the VJTAG and VPUMP, as well as VCC, are grounded during Sleep mode (SAR 22517).	32
	Figure 2-6 • Controlling Power-On/-Off State Using Microprocessor and Power FET and Figure 2-7 • Controlling Power-On/-Off State Using Microprocessor and Voltage Regulator were revised to show that VJTAG and VPUMP are powered off during Sleep mode.	33
v2.2 (December 2008)	IGLOO nano devices were added as a supported family.	N/A
	The "Prototyping for IGLOO and ProASIC3L Devices Using ProASIC3" section was removed, as these devices are now in production.	N/A
	The "Additional Power Conservation Techniques" section was revised to add RT ProASIC3 devices.	41
v2.0 (October 2008)	The "Flash*Freeze Management FSM" section was updated with the following information: The FSM also asserts Flash_Freeze_Enabled whenever the device enters Flash*Freeze mode. This occurs after all housekeeping and clock gating functions have completed.	37

Global Resources in Low Power Flash Devices

Global Resource Support in Flash-Based Devices

The flash FPGAs listed in Table 3-1 support the global resources and the functions described in this document.

Table 3-1 • Flash-Based FPGAs

Series	Family [*]	Description
IGLOO	IGLOO	Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology
	IGLOOe	Higher density IGLOO FPGAs with six PLLs and additional I/O standards
	IGLOO PLUS	IGLOO FPGAs with enhanced I/O capabilities
	IGLOO nano	The industry's lowest-power, smallest-size solution
ProASIC3	ProASIC3	Low power, high-performance 1.5 V FPGAs
	ProASIC3E	Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards
	ProASIC3 nano	Lowest-cost solution with enhanced I/O capabilities
	ProASIC3L	ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology
	RT ProASIC3	Radiation-tolerant RT3PE600L and RT3PE3000L
	Military ProASIC3/EL	Military temperature A3PE600L, A3P1000, and A3PE3000L
	Automotive ProASIC3	ProASIC3 FPGAs qualified for automotive applications
Fusion	Fusion	Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable analog block, support for ARM [®] Cortex [™] -M1 soft processors, and flash memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics, and packaging information.

IGLOO Terminology

In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO products as listed in Table 3-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

ProASIC3 Terminology

In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices as listed in Table 3-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

To further understand the differences between the IGLOO and ProASIC3 devices, refer to the *Industry's Lowest Power FPGAs Portfolio*.

/О Туре	Beginning of I/O Name	Notes
Single-Ended	GAAO/IOuxwByVz	Only one of the I/Os can be directly connected to
	GAA1/IOuxwByVz	quadrant global at a time
	GAA2/IOuxwByVz	
	GABO/IOuxwByVz	Only one of the I/Os can be directly connected to
	GAB1/IOuxwByVz	quadrant global at a time.
	GAB2/IOuxwByVz	
	GAC0/IOuxwByVz	Only one of the I/Os can be directly connected to
	GAC1/IOuxwByVz	quadrant global at a time.
	GAC2/IOuxwByVz	
	GBAO/IOuxwByVz	Only one of the I/Os can be directly connected to a glob
	GBA1/IOuxwByVz	at a time.
	GBA2/IOuxwByVz	
	GBBO/IOuxwByVz	Only one of the I/Os can be directly connected to a glob
	GBB1/IOuxwByVz	at a time.
	GBB2/IOuxwByVz	
	GBC0/IOuxwByVz	Only one of the I/Os can be directly connected to a glob
	GBC1/IOuxwByVz	at a time.
	GBC2/IOuxwByVz	
	GDAO/IOuxwByVz	Only one of the I/Os can be directly connected to a glob
	GDA1/IOuxwByVz	at a time.
	GDA2/IOuxwByVz	
	GDBO/IOuxwByVz	Only one of the I/Os can be directly connected to a glob
	GDB1/IOuxwByVz	at a time.
	GDB2/IOuxwByVz	
	GDC0/IOuxwByVz	Only one of the I/Os can be directly connected to a glob
	GDC1/IOuxwByVz	at a time.
	GDC2/IOuxwByVz	
	GEAO/IOuxwByVz	Only one of the I/Os can be directly connected to a glob
	GEA1/IOuxwByVz	at a time.
	GEA2/IOuxwByVz	
	GEBO/IOuxwByVz	Only one of the I/Os can be directly connected to a glob
	GEB1/IOuxwByVz	at a time.
	GEB2/IOuxwByVz	
	GEC0/IOuxwByVz	Only one of the I/Os can be directly connected to a glob
	GEC1/IOuxwByVz	at a time.
	GEC2/IOuxwByVz	

Table 3-3 • Quadrant Global Pin Name

Note: Only one of the I/Os can be directly connected to a quadrant at a time.

Each global buffer, as well as the PLL reference clock, can be driven from one of the following:

- 3 dedicated single-ended I/Os using a hardwired connection
- 2 dedicated differential I/Os using a hardwired connection (not applicable for IGLOO nano and ProASIC3 nano devices)
- The FPGA core

Since the architecture of the devices varies as size increases, the following list details I/O types supported for globals:

IGLOO and ProASIC3

- LVDS-based clock sources are available only on 250 k gate devices and above (IGLOO nano and ProASIC3 nano devices do not support differential inputs).
- 60 k and 125 k gate devices support single-ended clock sources only.
- 15 k and 30 k gate devices support these inputs for CCC only and do not contain a PLL.
- nano devices:
 - 10 k, 15 k, and 20 k devices do not contain PLLs in the CCCs, and support only CLKBUF and CLKINT.
 - 60 k, 125 k, and 250 k devices support one PLL in the middle left CCC position. In the absence of the PLL, this CCC can be used by CLKBUF, CLKINT, and CLKDLY macros. The corner CCCs support CLKBUF, CLKINT, and CLKDLY.

Fusion

- AFS600 and AFS1500: All single-ended, differential, and voltage-referenced I/O standards (Pro I/O).
- AFS090 and AFS250: All single-ended and differential I/O standards.

Clock Sources for PLL and CLKDLY Macros

The input reference clock (CLKA for a PLL macro, CLK for a CLKDLY macro) can be accessed from different sources via the associated clock multiplexer tree. Each CCC has the option of choosing the source of the input clock from one of the following:

- · Hardwired I/O
- External I/O
- Core Logic
- RC Oscillator (Fusion only)
- Crystal Oscillator (Fusion only)

The SmartGen macro builder tool allows users to easily create the PLL and CLKDLY macros with the desired settings. Microsemi strongly recommends using SmartGen to generate the CCC macros.

Hardwired I/O Clock Source

Hardwired I/O refers to global input pins that are hardwired to the multiplexer tree, which directly accesses the CCC global buffers. These global input pins have designated pin locations and are indicated with the I/O naming convention *Gmn* (*m* refers to any one of the positions where the PLL core is available, and *n* refers to any one of the three global input MUXes and the pin number of the associated global location, *m*). Choosing this option provides the benefit of directly connecting to the CCC reference clock input, which provides less delay. See Figure 4-9 on page 90 for an example illustration of the connections, shown in red. If a CLKDLY macro is initiated to utilize the programmable delay element of the CCC, the clock input can be placed at one of nine dedicated global input pin locations. In other words, if Hardwired I/O is chosen as the input source, the user can decide to place the input pin in one of the GmA0, GmA1, GmA2, GmB0, GmB1, GmB2, GmC0, GmC1, or GmC2 locations of the low power flash devices. When a PLL macro is used to utilize the PLL core in a CCC location, the clock input of the PLL can only be connected to one of three GmA* global pin locations: GmA0, GmA1, or GmA2.

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs

Each group of control bits is assigned a specific location in the configuration shift register. For a list of the 81 configuration bits (C[80:0]) in the CCC and a description of each, refer to "PLL Configuration Bits Description" on page 106. The configuration register can be serially loaded with the new configuration data and programmed into the CCC using the following ports:

- SDIN: The configuration bits are serially loaded into a shift register through this port. The LSB of the configuration data bits should be loaded first.
- SDOUT: The shift register contents can be shifted out (LSB first) through this port using the shift operation.
- SCLK: This port should be driven by the shift clock.
- SSHIFT: The active-high shift enable signal should drive this port. The configuration data will be shifted into the shift register if this signal is HIGH. Once SSHIFT goes LOW, the data shifting will be halted.
- SUPDATE: The SUPDATE signal is used to configure the CCC with the new configuration bits when shifting is complete.

To access the configuration ports of the shift register (SDIN, SDOUT, SSHIFT, etc.), the user should instantiate the CCC macro in his design with appropriate ports. Microsemi recommends that users choose SmartGen to generate the CCC macros with the required ports for dynamic reconfiguration.

Users must familiarize themselves with the architecture of the CCC core and its input, output, and configuration ports to implement the desired delay and output frequency in the CCC structure. Figure 4-22 shows a model of the CCC with configurable blocks and switches.

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs

External Feedback Configuration

For certain applications, such as those requiring generation of PCB clocks that must be matched with existing board delays, it is useful to implement an external feedback, EXTFB. The Phase Detector of the PLL core will receive CLKA and EXTFB as inputs. EXTFB may be processed by the fixed System Delay element as well as the *M* divider element. The EXTFB option is currently not supported.

After setting all the required parameters, users can generate one or more PLL configurations with HDL or EDIF descriptions by clicking the **Generate** button. SmartGen gives the option of saving session results and messages in a log file:

Name	: test_pll
Family	: ProASIC3E
Output Format	: VHDL
Type	: Static PLL
Input Freq(MHz)	: 10.000
CLKA Source	: Hardwired I/O
Feedback Delay Value Index	: 1
Feedback Mux Select	: 2
XDLY Mux Select	- : No
Primary Freq(MHz)	: 33.000
Primary PhaseShift	: 0
Primary Delay Value Index	: 1
Primary Mux Select	: 4
Secondary1 Freq(MHz)	: 66.000
Use GLB	: YES
Use YB	: YES
GLB Delay Value Index	: 1
YB Delay Value Index	· 1
Secondaryl PhaseShift	: 0
Secondary1 Mux Select	: 4
Secondary1 Mux Select Secondary2 Freq(MHz)	: 101.000
Use GLC	: YES
Use YC	: NO
GLC Delay Value Index	: NO : 1
YC Delay Value Index	· 1
_	: 0
Secondary2 PhaseShift	: 4
Secondary2 Mux Select	• 4
Primary Clock frequency 33.333	
Primary Clock Phase Shift 0.000	
Primary Clock Output Delay from	n CLKA U.180
Secondaryl Clock frequency 66.6	
Secondaryl Clock Phase Shift 0.	
Secondaryl Clock Global Output	
Secondaryl Clock Core Output De	elay from CLKA 0.625
	000
Secondary2 Clock frequency 100.	
Secondary2 Clock Phase Shift 0.	
Secondary2 Clock Global Output	Delay from CLKA 0.180

Below is an example Verilog HDL description of a legal PLL core configuration generated by SmartGen:

module test_pll(POWERDOWN,CLKA,LOCK,GLA); input POWERDOWN, CLKA; output LOCK,GLA;

ProASIC3L FPGA Fabric User's Guide

Figure 6-2 • Fusion Device Architecture Overview (AFS600)

SRAM and FIFO Memories in Microsemi's Low Power Flash Devices

Date	Changes		
v1.1 (continued)	Table 6-1 • Flash-Based FPGAs and associated text were updated to include the IGLOO PLUS family. The "IGLOO Terminology" section and "ProASIC3 Terminology" section are new.		
	The text introducing Table 6-8 • Memory Availability per IGLOO and ProASIC3 Device was updated to replace "A3P030 and AGL030" with "15 k and 30 k gate devices." Table 6-8 • Memory Availability per IGLOO and ProASIC3 Device was updated to remove AGL400 and AGLE1500 and include IGLOO PLUS and ProASIC3L devices.	162	

IGLOO and ProASIC3

For boards and cards with three levels of staging, card power supplies must have time to reach their final values before the I/Os are connected. Pay attention to the sizing of power supply decoupling capacitors on the card to ensure that the power supplies are not overloaded with capacitance.

Cards with three levels of staging should have the following sequence:

- Grounds
- Powers
- I/Os and other pins

For Level 3 and Level 4 compliance with the 30K gate device, cards with two levels of staging should have the following sequence:

- Grounds
- Powers, I/Os, and other pins

Cold-Sparing Support

Cold-sparing refers to the ability of a device to leave system data undisturbed when the system is powered up, while the component itself is powered down, or when power supplies are floating.

The resistor value is calculated based on the decoupling capacitance on a given power supply. The RC constant should be greater than 3 μ s.

To remove resistor current during operation, it is suggested that the resistor be disconnected (e.g., with an NMOS switch) from the power supply after the supply has reached its final value. Refer to the "Power-Up/-Down Behavior of Low Power Flash Devices" section on page 373 for details on cold-sparing.

Cold-sparing means that a subsystem with no power applied (usually a circuit board) is electrically connected to the system that is in operation. This means that all input buffers of the subsystem must present very high input impedance with no power applied so as not to disturb the operating portion of the system.

The 30 k gate devices fully support cold-sparing, since the I/O clamp diode is always off (see Table 7-12 on page 193). If the 30 k gate device is used in applications requiring cold-sparing, a discharge path from the power supply to ground should be provided. This can be done with a discharge resistor or a switched resistor. This is necessary because the 30K gate devices do not have built-in I/O clamp diodes.

For other IGLOO and ProASIC3 devices, since the I/O clamp diode is always active, cold-sparing can be accomplished either by employing a bus switch to isolate the device I/Os from the rest of the system or by driving each I/O pin to 0 V. If the resistor is chosen, the resistor value must be calculated based on decoupling capacitance on a given power supply on the board (this decoupling capacitance is in parallel with the resistor). The RC time constant should ensure full discharge of supplies before cold-sparing functionality is required. The resistor is necessary to ensure that the power pins are discharged to ground every time there is an interruption of power to the device.

IGLOOe and ProASIC3E devices support cold-sparing for all I/O configurations. Standards, such as PCI, that require I/O clamp diodes can also achieve cold-sparing compliance, since clamp diodes get disconnected internally when the supplies are at 0 V.

When targeting low power applications, I/O cold-sparing may add additional current if a pin is configured with either a pull-up or pull-down resistor and driven in the opposite direction. A small static current is induced on each I/O pin when the pin is driven to a voltage opposite to the weak pull resistor. The current is equal to the voltage drop across the input pin divided by the pull resistor. Refer to the "Detailed I/O DC Characteristics" section of the appropriate family datasheet for the specific pull resistor value for the corresponding I/O standard.

For example, assuming an LVTTL 3.3 V input pin is configured with a weak pull-up resistor, a current will flow through the pull-up resistor if the input pin is driven LOW. For LVTTL 3.3 V, the pull-up resistor is ~45 k Ω , and the resulting current is equal to 3.3 V / 45 k Ω = 73 µA for the I/O pin. This is true also when a weak pull-down is chosen and the input pin is driven HIGH. This current can be avoided by driving the input LOW when a weak pull-down resistor is used and driving it HIGH when a weak pull-up resistor is used.

This current draw can occur in the following cases:

I/O Structures in IGLOO and ProASIC3 Devices

- In Active and Static modes:
 - Input buffers with pull-up, driven Low
 - Input buffers with pull-down, driven High
 - Bidirectional buffers with pull-up, driven Low
 - Bidirectional buffers with pull-down, driven High
 - Output buffers with pull-up, driven Low
 - Output buffers with pull-down, driven High
 - Tristate buffers with pull-up, driven Low
 - Tristate buffers with pull-down, driven High
- In Flash*Freeze mode:
 - Input buffers with pull-up, driven Low
 - Input buffers with pull-down, driven High
 - Bidirectional buffers with pull-up, driven Low
 - Bidirectional buffers with pull-down, driven High

Electrostatic Discharge Protection

Low power flash devices are tested per JEDEC Standard JESD22-A114-B.

These devices contain clamp diodes at every I/O, global, and power pad. Clamp diodes protect all device pads against damage from ESD as well as from excessive voltage transients.

All IGLOO and ProASIC3 devices are tested to the Human Body Model (HBM) and the Charged Device Model (CDM).

Each I/O has two clamp diodes. One diode has its positive (P) side connected to the pad and its negative (N) side connected to VCCI. The second diode has its P side connected to GND and its N side connected to the pad. During operation, these diodes are normally biased in the off state, except when transient voltage is significantly above VCCI or below GND levels.

In 30K gate devices, the first diode is always off. In other devices, the clamp diode is always on and cannot be switched off.

By selecting the appropriate I/O configuration, the diode is turned on or off. Refer to Table 7-12 on page 193 for more information about the I/O standards and the clamp diode.

The second diode is always connected to the pad, regardless of the I/O configuration selected.

I/O Structures in IGLOOe and ProASIC3E Devices

Table 8-9 • Hot-Swap Level 1

Description	Cold-swap
Power Applied to Device	No
Bus State	-
Card Ground Connection	-
Device Circuitry Connected to Bus Pins	-
Example Application	System and card with Microsemi FPGA chip are powered down, and the card is plugged into the system. Then the power supplies are turned on for the system but not for the FPGA on the card.
Compliance of IGLOO and ProASIC3 Devices	30 k gate devices: Compliant Other IGLOO/ProASIC3 devices: Compliant if bus switch used to isolate FPGA I/Os from rest of system IGLOOe/ProASIC3E devices: Compliant I/Os can, but do not have to be set to hot-insertion mode.

Table 8-10 • Hot-Swap Level 2

Description	Hot-swap while reset
Power Applied to Device	Yes
Bus State	Held in reset state
Card Ground Connection	Reset must be maintained for 1 ms before, during, and after insertion/removal.
Device Circuitry Connected to Bus Pins	-
Example Application	In the PCI hot-plug specification, reset control circuitry isolates the card busses until the card supplies are at their nominal operating levels and stable.
Compliance of IGLOO and ProASIC3 Devices	30 k gate devices, all IGLOOe/ProASIC3E devices: Compliant I/Os can but do not have to be set to hot-insertion mode. Other IGLOO/ProASIC3 devices: Compliant

I/O Register Combining

Every I/O has several embedded registers in the I/O tile that are close to the I/O pads. Rather than using the internal register from the core, the user has the option of using these registers for faster clock-to-out timing, and external hold and setup. When combining these registers at the I/O buffer, some architectural rules must be met. Provided these rules are met, the user can enable register combining globally during Compile (as shown in the "Compiling the Design" section on page 261).

This feature is supported by all I/O standards.

Rules for Registered I/O Function

- 1. The fanout between an I/O pin (D, Y, or E) and a register must be equal to one for combining to be considered on that pin.
- 2. All registers (Input, Output, and Output Enable) connected to an I/O must share the same clear or preset function:
 - If one of the registers has a CLR pin, all the other registers that are candidates for combining in the I/O must have a CLR pin.
 - If one of the registers has a PRE pin, all the other registers that are candidates for combining in the I/O must have a PRE pin.
 - If one of the registers has neither a CLR nor a PRE pin, all the other registers that are candidates for combining must have neither a CLR nor a PRE pin.
 - If the clear or preset pins are present, they must have the same polarity.
 - If the clear or preset pins are present, they must be driven by the same signal (net).
- 3. Registers connected to an I/O on the Output and Output Enable pins must have the same clock and enable function:
 - Both the Output and Output Enable registers must have an E pin (clock enable), or none at all.
 - If the E pins are present, they must have the same polarity. The CLK pins must also have the same polarity.

In some cases, the user may want registers to be combined with the input of a bibuf while maintaining the output as-is. This can be achieved by using PDC commands as follows:

```
set_io <signal name> -REGISTER yes -----register will combine
set_preserve <signal name> ----register will not combine
```

Weak Pull-Up and Weak Pull-Down Resistors

When the I/O is pulled up, it is connected to the VCCI of its corresponding I/O bank. When it is pulled down, it is connected to GND. Refer to the datasheet for more information.

For low power applications, configuration of the pull-up or pull-down of the I/O can be used to set the I/O to a known state while the device is in Flash*Freeze mode. Refer to the "Flash*Freeze Technology and Low Power Modes in IGLOO and ProASIC3L Devices" chapter in the *IGLOOe FPGA Fabric User's Guide* or *ProASIC3E FPGA Fabric User's Guide* for more information.

The Flash*Freeze (FF) pin cannot be configured with a weak pull-down or pull-up I/O attribute, as the signal needs to be driven at all times.

Output Slew Rate Control

The slew rate is the amount of time an input signal takes to get from logic LOW to logic HIGH or vice versa.

It is commonly defined as the propagation delay between 10% and 90% of the signal's voltage swing. Slew rate control is available for the output buffers of low power flash devices. The output buffer has a programmable slew rate for both HIGH-to-LOW and LOW-to-HIGH transitions. Slew rate control is available for LVTTL, LVCMOS, and PCI-X I/O standards. The other I/O standards have a preset slew value.

The slew rate can be implemented by using a PDC command (Table 8-6 on page 218), setting it "High" or "Low" in the I/O Attribute Editor in Designer, or instantiating a special I/O macro. The default slew rate value is "High."

I/O Software Control in Low Power Flash Devices

Implementing I/Os in Microsemi Software

Microsemi Libero SoC software is integrated with design entry tools such as the SmartGen macro builder, the ViewDraw schematic entry tool, and an HDL editor. It is also integrated with the synthesis and Designer tools. In this section, all necessary steps to implement the I/Os are discussed.

Design Entry

There are three ways to implement I/Os in a design:

- 1. Use the SmartGen macro builder to configure I/Os by generating specific I/O library macros and then instantiating them in top-level code. This is especially useful when creating I/O bus structures.
- 2. Use an I/O buffer cell in a schematic design.
- 3. Manually instantiate specific I/O macros in the top-level code.

If technology-specific macros, such as INBUF_LVCMOS33 and OUTBUF_PCI, are used in the HDL code or schematic, the user will not be able to change the I/O standard later on in Designer. If generic I/O macros are used, such as INBUF, OUTBUF, TRIBUF, CLKBUF, and BIBUF, the user can change the I/O standard using the Designer I/O Attribute Editor tool.

Using SmartGen for I/O Configuration

The SmartGen tool in Libero SoC provides a GUI-based method of configuring the I/O attributes. The user can select certain I/O attributes while configuring the I/O macro in SmartGen. The steps to configure an I/O macro with specific I/O attributes are as follows:

- 1. Open Libero SoC.
- 2. On the left-hand side of the Catalog View, select I/O, as shown in Figure 9-2.

Figure 9-2 • SmartGen Catalog

Security in ARM-Enabled Low Power Flash Devices

There are slight differences between the regular flash device and the ARM-enabled flash devices, which have the M1 prefix.

The AES key is used by Microsemi and preprogrammed into the device to protect the ARM IP. As a result, the design will be encrypted along with the ARM IP, according to the details below.

Cortex-M1 and Cortex-M3 Device Security

Cortex-M1–enabled and Cortex-M3 devices are shipped with the following security features:

- FPGA array enabled for AES-encrypted programming and verification
- · FlashROM enabled for AES-encrypted write and verify
- Embedded Flash Memory enabled for AES encrypted write

Figure 13-1 • AES-128 Security Features

SRAM Initialization

Users can also initialize embedded SRAMs of the low power flash devices. The initialization of the embedded SRAM blocks of the design can be done using UJTAG tiles, where the initialization data is imported using the TAP Controller. Similar functionality is available in ProASIC^{PLUS} devices using JTAG. The guidelines for implementation and design examples are given in the *RAM Initialization and ROM Emulation in ProASIC^{PLUS} Devices* application note.

SRAMs are volatile by nature; data is lost in the absence of power. Therefore, the initialization process should be done at each power-up if necessary.

FlashROM Read-Back Using JTAG

The low power flash architecture contains a dedicated nonvolatile FlashROM block, which is formatted into eight 128-bit pages. For more information on FlashROM, refer to the "FlashROM in Microsemi's Low Power Flash Devices" section on page 133. The contents of FlashROM are available to the VersaTiles during normal operation through a read operation. As a result, the UJTAG macro can be used to provide the FlashROM contents to the JTAG port during normal operation. Figure 17-7 illustrates a simple block diagram of using UJTAG to read the contents of FlashROM during normal operation.

The FlashROM read address can be provided from outside the FPGA through the TDI input or can be generated internally using the core logic. In either case, data serialization logic is required (Figure 17-7) and should be designed using the VersaTile core logic. FlashROM contents are read asynchronously in parallel from the flash memory and shifted out in a synchronous serial format to TDO. Shifting the serial data out of the serialization block should be performed while the TAP is in UDRSH mode. The coordination between TCK and the data shift procedure can be done using the TAP state machine by monitoring UDRSH, UDRCAP, and UDRUPD.

Figure 17-7 • Block Diagram of Using UJTAG to Read FlashROM Contents

The following devices and families do not support cold-sparing:

- IGLOO: AGL060, AGL125, AGL250, AGL600, AGL1000
- ProASIC3: A3P060, A3P125, A3P250, A3P400, A3P600, A3P1000
- ProASIC3L: A3P250L, A3P600L, A3P1000L
- Military ProASIC3: A3P1000

Hot-Swapping

Hot-swapping is the operation of hot insertion or hot removal of a card in a powered-up system. The I/Os need to be configured in hot-insertion mode if hot-swapping compliance is required. For more details on the levels of hot-swap compatibility in low power flash devices, refer to the "Hot-Swap Support" section in the I/O Structures chapter of the user's guide for the device you are using.

The following devices and families support hot-swapping:

- IGLOO: AGL015 and AGL030
- All IGLOO nano
- All IGLOO PLUS
- All IGLOOe
- ProASIC3L: A3PE3000L
- ProASIC3: A3P015 and A3P030
- All ProASIC3 nano
- All ProASIC3E
- Military ProASIC3EL: A3PE600L and A3PE3000L
- RT ProASIC3: RT3PE600L and RT3PE3000L

The following devices and families do not support hot-swapping:

- IGLOO: AGL060, AGL125, AGL250, AGL400, AGL600, AGL1000
- ProASIC3: A3P060, A3P125, A3P250, A3P400, A3P600, A3P1000
- ProASIC3L: A3P250L, A3P600L, A3P1000L
- Military ProASIC3: A3P1000

Conclusion

Microsemi's low power flash FPGAs provide an excellent programmable logic solution for a broad range of applications. In addition to high performance, low cost, security, nonvolatility, and single chip, they are live at power-up (meet Level 0 of the LAPU classification) and offer clear and easy-to-use power-up/down characteristics. Unlike SRAM FPGAs, low power flash devices do not require any specific powerup/-down sequencing and have extremely low power-up inrush current in any power-up sequence. Microsemi low power flash FPGAs also support both cold-sparing and hot-swapping for applications requiring these capabilities.

sleep 32 static 23 summary 23 product support customer service 387 email 387 My Cases 388 outside the U.S. 388 technical support 387 website 387 programmers 291 device support 294 programming AES encryption 319 basics 289 features 289 file header definition 323 flash and antifuse 291 flash devices 289 glossary 324 guidelines for flash programming 295 header pin numbers 336 microprocessor 349 power supplies 329 security 313 solution 334 solutions 293 voltage 329 volume services 292 programming support 287

R

RAM memory block consumption 163 remote upgrade via TCP/IP 354 routing structure 18

S

security 330 architecture 303 encrypted programming 354 examples 308 features 304 FlashLock 307 FlashROM 137 FlashROM use models 311 in programmable logic 301 overview 301 shutdown mode 32 context save and restore 34 signal integrity problem 337 silicon testing 370 sleep mode 32 context save and restore 34 SmartGen 170 spine architecture 57 spine assignment 68 SRAM features 153 initializing 164 software support 170 usage 157 STAPL player 351 STAPL vs. DirectC 353 static mode 23 switching circuit 344 verification 344 synthesizing 258

Т

TAP controller state machine 357, 366 tech support ITAR 388 My Cases 388 outside the U.S. 388 technical support 387 transient current VCC 376 VCCI 376 transient current, power-up/-down 375

U

UJTAG CCC dynamic reconfiguration 368 fine tuning 369 macro 365 operation 366 port usage 367 use to read FlashROM contents 363 ULSICC 40 ultra-fast local lines 18

V

variable aspect ratio and cascading 161 VersaNet global networks 49 VersaTile 15 very-long-line resources 19 ViewDraw 257 VREF pins manually assigning 265

W

web-based technical support 387