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Flash*Freeze Technology and Low Power Modes
Flash*Freeze Mode
IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3L, and RT ProASIC3 FPGAs offer an ultra-low static
power mode to reduce power consumption while preserving the state of the registers, SRAM contents,
and I/O states (IGLOO nano and IGLOO PLUS only) without switching off any power supplies, inputs, or
input clocks.
Flash*Freeze technology enables the user to switch to Flash*Freeze mode within 1 µs, thus simplifying
low power design implementation. The Flash*Freeze (FF) pin (active Low) is a dedicated pin used to
enter or exit Flash*Freeze mode directly; or the pin can be routed internally to the FPGA core and state
management IP to allow the user's application to decide if and when it is safe to transition to this mode. If
the FF pin is not used, it can be used as a regular I/O.
The FF pin has a built-in glitch filter and optional Schmitt trigger (not available for all devices) to prevent
entering or exiting Flash*Freeze mode accidentally.
There are two ways to use Flash*Freeze mode. In Flash*Freeze type 1, entering and exiting the mode is
exclusively controlled by the assertion and deassertion of the FF pin. This enables an external processor
or human interface device to directly control Flash*Freeze mode; however, valid data must be preserved
using standard procedures (refer to the "Flash*Freeze Mode Device Behavior" section on page 30). In
Flash*Freeze mode type 2, entering and exiting the mode is controlled by both the FF pin AND user-
defined logic. Flash*Freeze management IP may be used in type 2 mode for clock and data
management while entering and exiting Flash*Freeze mode.

Flash*Freeze Type 1: Control by Dedicated Flash*Freeze Pin
Flash*Freeze type 1 is intended for systems where either the device will be reset upon exiting
Flash*Freeze mode, or data and clock are managed externally. The device enters Flash*Freeze mode 1
µs after the dedicated FF pin is asserted (active Low), and returns to normal operation when the FF pin is
deasserted (High) (Figure 2-1 on page 25). In this mode, FF pin assertion or deassertion is the only
condition that determines entering or exiting Flash*Freeze mode.
In Libero® System-on-Chip (SoC) software v8.2 and before, this mode is implemented by enabling
Flash*Freeze mode (default setting) in the Compile options of the Microsemi Designer software. To
simplify usage of Flash*Freeze mode, beginning with Libero software v8.3, an INBUF_FF I/O macro was
introduced. An INBUF_FF I/O buffer must be used to identify the Flash*Freeze input. Microsemi
recommends switching to the new implementation. 
In Libero software v8.3 and later, the user must manually instantiate the INBUF_FF macro in the top level
of the design to implement Flash*Freeze Type 1, as shown in Figure 2-1 on page 25.
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Flash*Freeze Technology and Low Power Modes
Table 2-4 summarizes the Flash*Freeze mode implementations.

IGLOO, ProASIC3L, and RT ProASIC3 I/O State in Flash*Freeze 
Mode
In IGLOO and ProASIC3L devices, when the device enters Flash*Freeze mode, I/Os become tristated. If
the weak pull-up or pull-down feature is used, the I/Os will maintain the configured weak pull-up or pull-
down status. This feature enables the design to set the I/O state to a certain level that is determined by
the pull-up/-down configuration. 
Table 2-5 shows the I/O pad state based on the configuration and buffer type.
Note that configuring weak pull-up or pull-down for the FF pin is not allowed. The FF pin can be
configured as a Schmitt trigger input in IGLOOe, IGLOO nano, IGLOO PLUS, and ProASIC3EL devices.

Table 2-4 • Flash*Freeze Mode Usage

Flash*Freeze 
Mode Type Description

Flash*Freeze 
Pin State

Instantiate 
ULSICC Macro 

LSICC 
Signal Operating Mode

1 Flash*Freeze mode is
controlled only by the
FF pin.

Deasserted No N/A Normal operation

Asserted No N/A Flash*Freeze mode

2 Flash*Freeze mode is
controlled by the FF
pin and LSICC signal.

"Don’t care" Yes Deasserted Normal operation

Deasserted Yes "Don’t care" Normal operation

Asserted Yes Asserted Flash*Freeze mode

Note: Refer to Table 2-3 on page 26 for Flash*Freeze pin and LSICC signal assertion and deassertion
values.

Table 2-5 • IGLOO, ProASIC3L, and RT ProASIC3 Flash*Freeze Mode (type 1 and type 2)—I/O 
Pad State

Buffer Type
I/O Pad Weak 
Pull-Up/-Down I/O Pad State in Flash*Freeze Mode

Input/Global Enabled Weak pull-up/pull-down*

Disabled Tristate*

Output Enabled Weak pull-up/pull-down

Disabled Tristate

Bidirectional / Tristate
Buffer 

E = 0
(input/tristate)

Enabled Weak pull-up/pull-down*

Disabled Tristate*

E = 1 (output) Enabled Weak pull-up/pull-down

Disabled Tristate

* Internal core logic driven by this input/global buffer will be tied High as long as the device is in
Flash*Freeze mode.
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ProASIC3L FPGA Fabric User’s Guide
IGLOO nano and IGLOO PLUS I/O State in Flash*Freeze Mode
In IGLOO nano and IGLOO PLUS devices, users have multiple options in how to configure I/Os during 
Flash*Freeze mode:

1. Hold the previous state
2. Set I/O pad to weak pull-up or pull-down
3. Tristate I/O pads

The I/O configuration must be configured by the user in the I/O Attribute Editor or in a PDC constraint file,
and can be done on a pin-by-pin basis. The output hold feature will hold the output in the last registered
state, using the I/O pad weak pull-up or pull-down resistor when the FF pin is asserted. When inputs are
configured with the hold feature enabled, the FPGA core side of the input will hold the last valid state of
the input pad before the device entered Flash*Freeze mode. The input pad can be driven to any value,
configured as tristate, or configured with the weak pull-up or pull-down I/O pad feature during
Flash*Freeze mode without affecting the hold state. If the weak pull-up or pull-down feature is used
without the output hold feature, the input and output pads will maintain the configured weak pull-up or
pull-down status during Flash*Freeze mode and normal operation. If a fixed weak pull-up or pull-down is
defined on an output buffer or as bidirectional in output mode, and a hold state is also defined for the
same pin, the pin will be configured in hold state mode during Flash*Freeze mode. During normal
operation, the pin will be configured with the predefined weak pull-up or pull-down. Any I/Os that do not
use the hold state or I/O pad weak pull-up or pull-down features will be tristated during Flash*Freeze
mode and the FPGA core will be driven High by inputs. Inputs that are tristated during Flash*Freeze
mode may be left floating without any reliability concern or impact to power consumption.
Table 2-6 shows the I/O pad state based on the configuration and buffer type.
Note that configuring weak pull-up or pull-down for the FF pin is not allowed.

Table 2-6 • IGLOO nano and IGLOO PLUS Flash*Freeze Mode (type 1 and type 2)—I/O Pad State 

Buffer Type Hold State
I/O Pad Weak 
Pull-Up/-Down

I/O Pad State in 
Flash*Freeze Mode

Input Enabled Enabled Weak pull-up/pull-down 1

Disabled Enabled Weak pull-up/pull-down 2

Enabled Disabled Tristate 1

Disabled Disabled Tristate 2

Output Enabled "Don't care" Weak pull to hold state

Disabled Enabled Weak pull-up/pull-down

Disabled Disabled Tristate

Bidirectional / Tristate
Buffer

E = 0
(input/tristate)

Enabled Enabled Weak pull-up/pull-down 1

Disabled Enabled Weak pull-up/pull-down 2

Enabled Disabled Tristate 1

Disabled Disabled Tristate 2

E = 1 (output) Enabled "Don't care" Weak pull to hold state 3

Disabled Enabled Weak pull-up/pull-down

Disabled Disabled Tristate

Notes:
1. Internal core logic driven by this input buffer will be set to the value this I/O had when entering

Flash*Freeze mode.
2. Internal core logic driven by this input buffer will be tied High as long as the device is in Flash*Freeze

mode.
3. For bidirectional buffers: Internal core logic driven by the input portion of the bidirectional buffer will

be set to the hold state.
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Global Resources in Low Power Flash Devices
Global Resource Support in Flash-Based Devices
The flash FPGAs listed in Table 3-1 support the global resources and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO products as
listed in Table 3-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 3-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 3-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

IGLOO nano The industry’s lowest-power, smallest-size solution

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
CCC Locations
CCCs located in the middle of the east and west sides of the device access the three VersaNet global 
networks on each side (six total networks), while the four CCCs located in the four corners access three 
quadrant global networks (twelve total networks). See Figure 4-13.

The following explains the locations of the CCCs in IGLOO and ProASIC3 devices:
In Figure 4-15 on page 98 through Figure 4-16 on page 98, CCCs with integrated PLLs are indicated in 
red, and simplified CCCs are indicated in yellow. There is a letter associated with each location of the 
CCC, in clockwise order. The upper left corner CCC is named "A," the upper right is named "B," and so 
on. These names finish up at the middle left with letter "F."

Figure 4-13 • Global Network Architecture for 60 k Gate Devices and Above
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I/O Structures in IGLOO and ProASIC3 Devices
Table 7-6 • Maximum I/O Frequency for Single-Ended and Differential I/Os in All Banks in IGLOO 
and ProASIC Devices (maximum drive strength and high slew selected) 

Specification

 Maximum Performance

ProASIC3

IGLOO V2 or V5 
Devices, 1.5 V DC Core 

Supply Voltage
IGLOO V2, 1.2 V DC 
Core Supply Voltage

LVTTL/LVCMOS 3.3 V  200 MHz 180 MHz TBD

LVCMOS 2.5 V  250 MHz 230 MHz TBD

LVCMOS 1.8 V  200 MHz 180 MHz TBD

LVCMOS 1.5 V  130 MHz 120 MHz TBD

PCI  200 MHz 180 MHz TBD

PCI-X  200 MHz 180 MHz TBD

LVDS  350 MHz 300 MHz TBD

LVPECL  350 MHz 300 MHz TBD
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ProASIC3L FPGA Fabric User’s Guide
Selectable Skew between Output Buffer Enable and Disable Times
Low power flash devices have a configurable skew block in the output buffer circuitry that can be enabled
to delay output buffer assertion without affecting deassertion time. Since this skew block is only available
for the OE signal, the feature can be used in tristate and bidirectional buffers. A typical 1.2 ns delay is
added to the OE signal to prevent potential bus contention. Refer to the appropriate family datasheet for
detailed timing diagrams and descriptions.
The skew feature is available for all I/O standards.
This feature can be implemented by using a PDC command (Table 7-5 on page 179) or by selecting a
check box in the I/O Attribute Editor in Designer. The check box is cleared by default.
The configurable skew block is used to delay output buffer assertion (enable) without affecting
deassertion (disable) time.

Figure 7-13 • Block Diagram of Output Enable Path

Figure 7-14 • Timing Diagram (option 1: bypasses skew circuit)
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I/O Structures in IGLOO and ProASIC3 Devices
User I/O Naming Convention

IGLOO and ProASIC3
Due to the comprehensive and flexible nature of IGLOO and ProASIC3 device user I/Os, a naming
scheme is used to show the details of each I/O (Figure 7-19 on page 207 and Figure 7-20 on page 207).
The name identifies to which I/O bank it belongs, as well as pairing and pin polarity for differential I/Os.

I/O Nomenclature =  FF/Gmn/IOuxwBy

Gmn is only used for I/Os that also have CCC access—i.e., global pins. 
FF = Indicates the I/O dedicated for the Flash*Freeze mode activation pin in IGLOO and ProASIC3L

devices only 
G = Global
m = Global pin location associated with each CCC on the device: A (northwest corner), B (northeast

corner), C (east middle), D (southeast corner), E (southwest corner), and F (west middle) 
n = Global input MUX and pin number of the associated Global location m—either A0, A1, A2, B0,

B1, B2, C0, C1, or C2. Refer to the "Global Resources in Low Power Flash Devices" section on
page 47 for information about the three input pins per clock source MUX at CCC location m.

u = I/O pair number in the bank, starting at 00 from the northwest I/O bank and proceeding in a
clockwise direction

x = P or U (Positive), N or V (Negative) for differential pairs, or R (Regular—single-ended) for the I/Os
that support single-ended and voltage-referenced I/O standards only. U (Positive) or V
(Negative)—for LVDS, DDR LVDS, B-LVDS, and M-LVDS only—restricts the I/O differential pair
from being selected as an LVPECL pair.

w = D (Differential Pair), P (Pair), or S (Single-Ended). D (Differential Pair) if both members of the pair
are bonded out to adjacent pins or are separated only by one GND or NC pin; P (Pair) if both
members of the pair are bonded out but do not meet the adjacency requirement; or S (Single-
Ended) if the I/O pair is not bonded out. For Differential Pairs (D), adjacency for ball grid
packages means only vertical or horizontal. Diagonal adjacency does not meet the requirements
for a true differential pair.

B = Bank
y = Bank number (0–3). The Bank number starts at 0 from the northwest I/O bank and proceeds in a

clockwise direction.
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8 – I/O Structures in IGLOOe and ProASIC3E 
Devices 

Introduction
Low power flash devices feature a flexible I/O structure, supporting a range of mixed voltages (1.2 V, 1.5 V, 
1.8 V, 2.5 V, and 3.3 V) through bank-selectable voltages. IGLOO®e, ProASIC®3EL, and ProASIC3E 
families support Pro I/Os. 
Users designing I/O solutions are faced with a number of implementation decisions and configuration 
choices that can directly impact the efficiency and effectiveness of their final design. The flexible I/O 
structure, supporting a wide variety of voltages and I/O standards, enables users to meet the growing 
challenges of their many diverse applications. The Libero SoC software provides an easy way to 
implement I/O that will result in robust I/O design. 
This document first describes the two different I/O types in terms of the standards and features they 
support. It then explains the individual features and how to implement them in Libero SoC.

Figure 8-1 • DDR Configured I/O Block Logical Representation
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I/O Structures in IGLOOe and ProASIC3E Devices
IGLOOe and ProASIC3E
For devices requiring Level 3 and/or Level 4 compliance, the board drivers connected to the I/Os must 
have 10 kΩ (or lower) output drive resistance at hot insertion, and 1 kΩ (or lower) output drive resistance 
at hot removal. This resistance is the transmitter resistance sending a signal toward the I/O, and no 
additional resistance is needed on the board. If that cannot be assured, three levels of staging can be 
used to achieve Level 3 and/or Level 4 compliance. Cards with two levels of staging should have the 
following sequence: 

• Grounds
• Powers, I/Os, and other pins

Cold-Sparing Support
Cold-sparing refers to the ability of a device to leave system data undisturbed when the system is 
powered up, while the component itself is powered down, or when power supplies are floating.
Cold-sparing is supported on ProASIC3E devices only when the user provides resistors from each power 
supply to ground. The resistor value is calculated based on the decoupling capacitance on a given power 
supply. The RC constant should be greater than 3 µs.
To remove resistor current during operation, it is suggested that the resistor be disconnected (e.g., with 
an NMOS switch) from the power supply after the supply has reached its final value. Refer to the "Power-
Up/-Down Behavior of Low Power Flash Devices" section on page 373 for details on cold-sparing. 
Cold-sparing means that a subsystem with no power applied (usually a circuit board) is electrically 
connected to the system that is in operation. This means that all input buffers of the subsystem must 
present very high input impedance with no power applied so as not to disturb the operating portion of the 
system.
The 30 k gate devices fully support cold-sparing, since the I/O clamp diode is always off (see Table 8-13 on 
page 231). If the 30 k gate device is used in applications requiring cold-sparing, a discharge path from 
the power supply to ground should be provided. This can be done with a discharge resistor or a switched 
resistor. This is necessary because the 30 k gate devices do not have built-in I/O clamp diodes. 
For other IGLOOe and ProASIC3E devices, since the I/O clamp diode is always active, cold-sparing can 
be accomplished either by employing a bus switch to isolate the device I/Os from the rest of the system 
or by driving each I/O pin to 0 V. If the resistor is chosen, the resistor value must be calculated based on 
decoupling capacitance on a given power supply on the board (this decoupling capacitance is in parallel 
with the resistor). The RC time constant should ensure full discharge of supplies before cold-sparing 
functionality is required. The resistor is necessary to ensure that the power pins are discharged to ground 
every time there is an interruption of power to the device.
IGLOOe and ProASIC3E devices support cold-sparing for all I/O configurations. Standards, such as PCI, 
that require I/O clamp diodes can also achieve cold-sparing compliance, since clamp diodes get 
disconnected internally when the supplies are at 0 V.
When targeting low power applications, I/O cold-sparing may add additional current if a pin is configured 
with either a pull-up or pull-down resistor and driven in the opposite direction. A small static current is 
induced on each I/O pin when the pin is driven to a voltage opposite to the weak pull resistor. The current 
is equal to the voltage drop across the input pin divided by the pull resistor. Refer to the "Detailed I/O DC 
Characteristics" section of the appropriate family datasheet for the specific pull resistor value for the 
corresponding I/O standard.
For example, assuming an LVTTL 3.3 V input pin is configured with a weak pull-up resistor, a current will 
flow through the pull-up resistor if the input pin is driven LOW. For LVTTL 3.3 V, the pull-up resistor is 
~45 kΩ, and the resulting current is equal to 3.3 V / 45 kΩ = 73 µA for the I/O pin. This is true also when 
a weak pull-down is chosen and the input pin is driven High. This current can be avoided by driving the 
input Low when a weak pull-down resistor is used and driving it High when a weak pull-up resistor is 
used.
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I/O Software Control in Low Power Flash Devices
Output Buffers
There are two variations: Regular and Special.
If the Regular variation is selected, only the Width (1 to 128) needs to be entered. The default value for
Width is 1.
The Special variation has Width, Technology, Output Drive, and Slew Rate options.

Bidirectional Buffers
There are two variations: Regular and Special.
The Regular variation has Enable Polarity (Active High, Active Low) in addition to the Width option.
The Special variation has Width, Technology, Output Drive, Slew Rate, and Resistor Pull-Up/-Down
options.

Tristate Buffers
Same as Bidirectional Buffers.

DDR
There are eight variations: DDR with Regular Input Buffers, Special Input Buffers, Regular Output
Buffers, Special Output Buffers, Regular Tristate Buffers, Special Tristate Buffers, Regular Bidirectional
Buffers, and Special Bidirectional Buffers.
These variations resemble the options of the previous I/O macro. For example, the Special Input Buffers
variation has Width, Technology, Voltage Level, and Resistor Pull-Up/-Down options. DDR is not
available on IGLOO PLUS devices. 

4. Once the desired configuration is selected, click the Generate button. The Generate Core
window opens (Figure 9-4).

5. Enter a name for the macro. Click OK. The core will be generated and saved to the appropriate
location within the project files (Figure 9-5 on page 257). 

6. Instantiate the I/O macro in the top-level code.
The user must instantiate the DDR_REG or DDR_OUT macro in the design. Use SmartGen to
generate both these macros and then instantiate them in your top level. To combine the DDR
macros with the I/O, the following rules must be met:

Figure 9-4 • Generate Core Window
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I/O Software Control in Low Power Flash Devices
Instantiating in HDL code
All the supported I/O macros can be instantiated in the top-level HDL code (refer to the IGLOO,
ProASIC3, SmartFusion, and Fusion Macro Library Guide for a detailed list of all I/O macros). The
following is an example:
library ieee;
use ieee.std_logic_1164.all;
library proasic3e;

entity TOP is
port(IN2, IN1 : in std_logic; OUT1 : out std_logic);

end TOP;

architecture DEF_ARCH of TOP is 

component INBUF_LVCMOS5U
port(PAD : in std_logic := 'U'; Y : out std_logic);

end component;

component INBUF_LVCMOS5
port(PAD : in std_logic := 'U'; Y : out std_logic);

end component;

component OUTBUF_SSTL3_II
port(D : in std_logic := 'U'; PAD : out std_logic);

end component;

Other component …..

signal x, y, z…….other signals : std_logic;

begin 

I1 : INBUF_LVCMOS5U
port map(PAD => IN1, Y =>x);

I2 : INBUF_LVCMOS5
port map(PAD => IN2, Y => y);

I3 : OUTBUF_SSTL3_II
port map(D => z, PAD => OUT1);

other port mapping…

end DEF_ARCH;

Synthesizing the Design
Libero SoC integrates with the Synplify® synthesis tool. Other synthesis tools can also be used with
Libero SoC. Refer to the Libero SoC User’s Guide or Libero online help for details on how to set up the
Libero tool profile with synthesis tools from other vendors.
During synthesis, the following rules apply:

• Generic macros:
– Users can instantiate generic INBUF, OUTBUF, TRIBUF, and BIBUF macros.
– Synthesis will automatically infer generic I/O macros.
– The default I/O technology for these macros is LVTTL.
– Users will need to use the I/O Attribute Editor in Designer to change the default I/O standard if

needed (see Figure 9-6 on page 259).
• Technology-specific I/O macros:

– Technology-specific I/O macros, such as INBUF_LVCMO25 and OUTBUF_GTL25, can be
instantiated in the design. Synthesis will infer these I/O macros in the netlist. 
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I/O Bank Resource Usage
This is an important portion of the report. The user must meet the requirements stated in this table.
Figure 9-10 shows the I/O Bank Resource Usage table included in the I/O bank report:

The example in Figure 9-10 shows that none of the I/O macros is assigned to the bank because more
than one VCCI is detected.

I/O Voltage Usage
The I/O Voltage Usage table provides the number of VREF (E devices only) and VCCI assignments
required in the design. If the user decides to make I/O assignments manually (PDC or MVN), the issues
listed in this table must be resolved before proceeding to Layout. As stated earlier, VREF assignments
must be made if there are any voltage-referenced I/Os.
Figure 9-11 shows the I/O Voltage Usage table included in the I/O bank report. 

The table in Figure 9-11 indicates that there are two voltage-referenced I/Os used in the design. Even
though both of the voltage-referenced I/O technologies have the same VCCI voltage, their VREF
voltages are different. As a result, two I/O banks are needed to assign the VCCI and VREF voltages.
In addition, there are six single-ended I/Os used that have the same VCCI voltage. Since two banks
are already assigned with the same VCCI voltage and there are enough unused bonded I/Os in

Figure 9-10 • I/O Bank Resource Usage Table

Figure 9-11 • I/O Voltage Usage Table
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VHDL
library ieee;
use ieee.std_logic_1164.all;
library proasic3; use proasic3.all;

entity DDR_BiDir_HSTL_I_LowEnb is 
port(DataR, DataF, CLR, CLK, Trien : in std_logic; QR, QF : out std_logic; 

PAD : inout std_logic) ;
end DDR_BiDir_HSTL_I_LowEnb;

architecture DEF_ARCH of  DDR_BiDir_HSTL_I_LowEnb is

component INV
port(A : in std_logic := 'U'; Y : out std_logic) ;

end component;

component DDR_OUT
port(DR, DF, CLK, CLR : in std_logic := 'U'; Q : out std_logic) ;

end component;

component DDR_REG
port(D, CLK, CLR : in std_logic := 'U'; QR, QF : out std_logic) ;

end component;

component BIBUF_HSTL_I
port(PAD : inout std_logic := 'U'; D, E : in std_logic := 'U'; Y : out std_logic) ;

end component;

signal TrienAux, D, Q : std_logic ;

begin

Inv_Tri : INV
port map(A => Trien, Y => TrienAux);
DDR_OUT_0_inst : DDR_OUT
port map(DR => DataR, DF => DataF, CLK => CLK, CLR => CLR, Q => Q);
DDR_REG_0_inst : DDR_REG
port map(D => D, CLK => CLK, CLR => CLR, QR => QR, QF => QF);
BIBUF_HSTL_I_0_inst : BIBUF_HSTL_I
port map(PAD => PAD, D => Q, E => TrienAux, Y => D);

end DEF_ARCH;
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Verilog
module Inbuf_ddr(PAD,CLR,CLK,QR,QF);

input PAD, CLR, CLK;
output  QR, QF;

wire Y;    

DDR_REG DDR_REG_0_inst(.D(Y), .CLK(CLK), .CLR(CLR), .QR(QR), .QF(QF));
INBUF INBUF_0_inst(.PAD(PAD), .Y(Y));

endmodule

module Outbuf_ddr(DataR,DataF,CLR,CLK,PAD);

input DataR, DataF, CLR, CLK;
output  PAD;

wire Q, VCC;

VCC VCC_1_net(.Y(VCC));
DDR_OUT DDR_OUT_0_inst(.DR(DataR), .DF(DataF), .CLK(CLK), .CLR(CLR), .Q(Q));
OUTBUF OUTBUF_0_inst(.D(Q), .PAD(PAD));    

endmodule

Figure 10-11 • DDR Input/Output Cells as Seen by ChipPlanner for IGLOO/e Devices
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2. Choose the appropriate security level setting and enter a FlashLock Pass Key. The default is the
Medium security level (Figure 12-12). Click Next.
If you want to select different options for the FPGA and/or FlashROM, this can be set by clicking
Custom Level. Refer to the "Advanced Options" section on page 322 for different custom
security level options and descriptions of each.  

Figure 12-12 • Medium Security Level Selected for Low Power Flash Devices
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Security in Low Power Flash Devices
3. Choose the desired settings for the FlashROM configurations to be programmed (Figure 12-13).
Click Finish to generate the STAPL programming file for the design. 

Generation of Security Header Programming File Only—
Application 2
As mentioned in the "Application 2: Nontrusted Environment—Unsecured Location" section on page 309,
the designer may employ FlashLock Pass Key protection or FlashLock Pass Key with AES encryption on
the device before sending it to a nontrusted or unsecured location for device programming. To achieve
this, the user needs to generate a programming file containing only the security settings desired (Security
Header programming file).
Note: If AES encryption is configured, FlashLock Pass Key protection must also be configured.
The available security options are indicated in Table 12-4 and Table 12-5 on page 317.

Figure 12-13 • FlashROM Configuration Settings for Low Power Flash Devices

Table 12-4 • FlashLock Security Options for IGLOO and ProASIC3

Security Option FlashROM Only FPGA Core Only
Both FlashROM 

and FPGA

No AES / no FlashLock – – –

FlashLock only ✓ ✓ ✓

AES and FlashLock ✓ ✓ ✓
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Core Voltage Switching Circuit for IGLOO and ProASIC3L In-System Programming
3. VCC switches from 1.5 V to 1.2 V when TRST is LOW.

In Figure 14-4, the TRST signal and the VCC core voltage signal are labeled. As TRST is pulled to
ground, the core voltage is observed to switch from 1.5 V to 1.2 V. The observed fall time is
approximately 2 ms. 

DirectC
The above analysis is based on FlashPro3, but there are other solutions to ISP, such as DirectC. DirectC
is a microprocessor program that can be run in-system to program Microsemi flash devices. For
FlashPro3, TRST is the most convenient control signal to use for the recommended circuit. However, for
DirectC, users may use any signal to control the FET. For example, the DirectC code can be edited so
that a separate non-JTAG signal can be asserted from the microcontroller that signals the board that it is
about to start programming the device. After asserting the N-Channel Digital FET control signal, the
programming algorithm must allow sufficient time for the supply to rise to 1.5 V before initiating DirectC
programming. As seen in Figure 14-3 on page 345, 50 ms is adequate time. Depending on the size of
the PCB and the capacitance on the VCC supply, results may vary from system to system. Microsemi
recommends using a conservative value for the wait time to make sure that the VCC core voltage is at
the right level.

Conclusion
For applications using IGLOO and ProASIC3L low power FPGAs and taking advantage of the low core
voltage power supplies with less than 1.5 V operation, there must be a way for the core voltage to switch
from 1.2 V (or other voltage) to 1.5 V, which is required during in-system programming. The circuit
explained in this document illustrates one simple, cost-effective way of handling this requirement. A
JTAG signal from the FlashPro3 programmer allows the circuit to sense when programming is in
progress, enabling it to switch to the correct core voltage. 

Figure 14-4 • TRST Toggled LOW

TRST Signal

VCC Core Signal
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16 – Boundary Scan in Low Power Flash Devices 

Boundary Scan
Low power flash devices are compatible with IEEE Standard 1149.1, which defines a hardware
architecture and the set of mechanisms for boundary scan testing. JTAG operations are used during
boundary scan testing. 
The basic boundary scan logic circuit is composed of the TAP controller, test data registers, and
instruction register (Figure 16-2 on page 360). 
Low power flash devices support three types of test data registers: bypass, device identification, and
boundary scan. The bypass register is selected when no other register needs to be accessed in a device.
This speeds up test data transfer to other devices in a test data path. The 32-bit device identification
register is a shift register with four fields (LSB, ID number, part number, and version). The boundary scan
register observes and controls the state of each I/O pin. Each I/O cell has three boundary scan register
cells, each with serial-in, serial-out, parallel-in, and parallel-out pins.

TAP Controller State Machine 
The TAP controller is a 4-bit state machine (16 states) that operates as shown in Figure 16-1.
The 1s and 0s represent the values that must be present on TMS at a rising edge of TCK for the given
state transition to occur. IR and DR indicate that the instruction register or the data register is operating in
that state. 
The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals
for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset
state. To guarantee a reset of the controller from any of the possible states, TMS must remain HIGH for
five TCK cycles. The TRST pin can also be used to asynchronously place the TAP controller in the Test-
Logic-Reset state.

Figure 16-1 • TAP Controller State Machine
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