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Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs
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based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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ProASIC3L FPGA Fabric User’s Guide
Table 1-4 • IGLOO nano and ProASIC3 nano Array Coordinates

Device

VersaTiles Memory Rows Entire Die

Min. Max. Bottom Top Min. Max.

IGLOO nano ProASIC3 nano (x, y) (x, y) (x, y) (x, y) (x, y) (x, y)

AGLN010 A3P010 (0, 2) (32, 5) None None (0, 0) (34, 5)

AGLN015 A3PN015 (0, 2) (32, 9) None None (0, 0) (34, 9)

AGLN020 A3PN020 (0, 2) 32, 13) None None (0, 0) (34, 13)

AGLN060 A3PN060 (3, 2) (66, 25) None (3, 26) (0, 0) (69, 29)

AGLN125 A3PN125 (3, 2) (130, 25) None (3, 26) (0, 0) (133, 29)

AGLN250 A3PN250 (3, 2) (130, 49) None (3, 50) (0, 0) (133, 49)

Note: The vertical I/O tile coordinates are not shown. West-side coordinates are {(0, 2) to (2, 2)} to {(0, 77) to (2, 77)};
east-side coordinates are {(195, 2) to (197, 2)} to {(195, 77) to (197, 77)}.

Figure 1-9 • Array Coordinates for AGL600, AGLE600, A3P600, and A3PE600
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2 – Flash*Freeze Technology and Low Power 
Modes

Flash*Freeze Technology and Low Power Modes
Microsemi IGLOO,® IGLOO nano, IGLOO PLUS, ProASIC®3L, and Radiation-Tolerant (RT) ProASIC3
FPGAs with Flash*Freeze technology are designed to meet the most demanding power and area
challenges of today’s portable electronics products with a reprogrammable, small-footprint, full-featured
flash FPGA. These devices offer lower power consumption in static and dynamic modes, utilizing the
unique Flash*Freeze technology, than any other FPGA or CPLD.
IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3L, and RT ProASIC3 devices offer various power-saving
modes that enable every system to utilize modes that achieve the lowest total system power. Low Power
Active capability (static idle) allows for ultra-low power consumption while the device is operational in the
system by maintaining SRAM, registers, I/Os, and logic functions.
Flash*Freeze technology provides an ultra-low power static mode (Flash*Freeze mode) that retains all
SRAM and register information with rapid recovery to Active (operating) mode. IGLOO nano and IGLOO
PLUS devices have an additional feature when operating in Flash*Freeze mode, allowing them to retain
I/O states as well as SRAM and register states. This mechanism enables the user to quickly (within 1 µs)
enter and exit Flash*Freeze mode by activating the Flash*Freeze (FF) pin while all power supplies are
kept in their original states. In addition, I/Os and clocks connected to the FPGA can still be toggled
without impact on device power consumption. While in Flash*Freeze mode, the device retains all core
register states and SRAM information. This mode can be configured so that no power is consumed by
the I/O banks, clocks, JTAG pins, or PLLs; and the IGLOO and IGLOO PLUS devices consume as little
as 5 µW, while IGLOO nano devices consume as little as 2 µW. Microsemi offers a state management IP
core to aid users in gating clocks and managing data before entering Flash*Freeze mode.
This document will guide users in selecting the best low power mode for their applications, and
introduces Microsemi's Flash*Freeze management IP core.
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Flash*Freeze Technology and Low Power Modes
Flash*Freeze Mode
IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3L, and RT ProASIC3 FPGAs offer an ultra-low static
power mode to reduce power consumption while preserving the state of the registers, SRAM contents,
and I/O states (IGLOO nano and IGLOO PLUS only) without switching off any power supplies, inputs, or
input clocks.
Flash*Freeze technology enables the user to switch to Flash*Freeze mode within 1 µs, thus simplifying
low power design implementation. The Flash*Freeze (FF) pin (active Low) is a dedicated pin used to
enter or exit Flash*Freeze mode directly; or the pin can be routed internally to the FPGA core and state
management IP to allow the user's application to decide if and when it is safe to transition to this mode. If
the FF pin is not used, it can be used as a regular I/O.
The FF pin has a built-in glitch filter and optional Schmitt trigger (not available for all devices) to prevent
entering or exiting Flash*Freeze mode accidentally.
There are two ways to use Flash*Freeze mode. In Flash*Freeze type 1, entering and exiting the mode is
exclusively controlled by the assertion and deassertion of the FF pin. This enables an external processor
or human interface device to directly control Flash*Freeze mode; however, valid data must be preserved
using standard procedures (refer to the "Flash*Freeze Mode Device Behavior" section on page 30). In
Flash*Freeze mode type 2, entering and exiting the mode is controlled by both the FF pin AND user-
defined logic. Flash*Freeze management IP may be used in type 2 mode for clock and data
management while entering and exiting Flash*Freeze mode.

Flash*Freeze Type 1: Control by Dedicated Flash*Freeze Pin
Flash*Freeze type 1 is intended for systems where either the device will be reset upon exiting
Flash*Freeze mode, or data and clock are managed externally. The device enters Flash*Freeze mode 1
µs after the dedicated FF pin is asserted (active Low), and returns to normal operation when the FF pin is
deasserted (High) (Figure 2-1 on page 25). In this mode, FF pin assertion or deassertion is the only
condition that determines entering or exiting Flash*Freeze mode.
In Libero® System-on-Chip (SoC) software v8.2 and before, this mode is implemented by enabling
Flash*Freeze mode (default setting) in the Compile options of the Microsemi Designer software. To
simplify usage of Flash*Freeze mode, beginning with Libero software v8.3, an INBUF_FF I/O macro was
introduced. An INBUF_FF I/O buffer must be used to identify the Flash*Freeze input. Microsemi
recommends switching to the new implementation. 
In Libero software v8.3 and later, the user must manually instantiate the INBUF_FF macro in the top level
of the design to implement Flash*Freeze Type 1, as shown in Figure 2-1 on page 25.
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Flash*Freeze Technology and Low Power Modes
Sleep and Shutdown Modes

Sleep Mode
IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3L, and RT ProASIC3 FPGAs support Sleep mode when
device functionality is not required. In Sleep mode, VCC (core voltage), VJTAG (JTAG DC voltage), and
VPUMP (programming voltage) are grounded, resulting in the FPGA core being turned off to reduce
power consumption. While the device is in Sleep mode, the rest of the system can still be operating and
driving the input buffers of the device. The driven inputs do not pull up the internal power planes, and the
current draw is limited to minimal leakage current.
Table 2-7 shows the power supply status in Sleep mode.

Refer to the "Power-Up/-Down Behavior" section on page 33 for more information about I/O states during
Sleep mode and the timing diagram for entering and exiting Sleep mode.

Shutdown Mode
Shutdown mode is supported for all IGLOO nano and IGLOO PLUS devices as well the following
IGLOO/e devices: AGL015, AGL030, AGLE600, AGLE3000, and A3PE3000L. Shutdown mode can be
used by turning off all power supplies when the device function is not needed. Cold-sparing and hot-
insertion features enable these devices to be powered down without turning off the entire system. When
power returns, the live-at-power-up feature enables operation of the device after reaching the voltage
activation point.

Table 2-7 • Sleep Mode—Power Supply Requirement for IGLOO, IGLOO nano, IGLOO PLUS, 
ProASIC3L, and RT ProASIC3 Devices

Power Supplies Power Supply State 
VCC Powered off

VCCI = VMV Powered on

VJTAG Powered off

VPUMP Powered off
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Flash*Freeze Technology and Low Power Modes
Set/Reset
Since all I/Os and globals are tied High in Flash*Freeze mode (unless hold state is used on IGLOO nano
or IGLOO PLUS), Microsemi recommends using active low set/reset at the top-level port. If needed, the
signal can be inverted internally.

• If the intention is to always set/reset in Flash*Freeze mode, a self set/reset circuit may be
implemented to accomplish this, as shown in Figure 2-9. Configure an active High set/reset input
pin so it uses the internal pull-up during Flash*Freeze mode, and drives Low during active mode.
When the device exits Flash*Freeze mode, the input will transition from High to Low, releasing the
set/reset. Note that this circuit may release set/reset before all outputs become active, since
outputs are enabled up to 200 ns after inputs when exiting Flash*Freeze mode.

I/Os
• Floating inputs can cause totem pole currents on the input I/O circuitry when the device is in

active mode. If inputs will be released (undriven) during Flash*Freeze mode, Microsemi
recommends that they are only released after the device enters Flash*Freeze mode.

• As mentioned earlier, asynchronous input to output paths are subject to possible glitching when
entering Flash*Freeze mode. For example, on a direct in-to-out path, if the current state is '0' and
the input bank deactivates first, the input and then the output will transition to '1' before the output
enters its Flash*Freeze state. This can be prevented by using latches along with Flash*Freeze
management IP to gate asynchronous in-to-out paths prior to entering Flash*Freeze mode.

JTAG
• The JTAG state machine is powered but not active during Flash*Freeze mode. 
• TCK should be held in a static state to prevent dynamic power consumption of the JTAG circuit

during Flash*Freeze.
• Specific JTAG pin tie-off recommendations suitable for Flash*Freeze mode can be found in the

"Pin Descriptions and Packaging" chapter of the device datasheet.

ULSICC
• The User Low Static ICC (ULSICC) macro acts as an access point to the hard Flash*Freeze

technology block in the device. The ULSICC macro represents a hard, fixed location block in the
device. When the LSICC input of the ULSICC macro is driven Low, the Flash*Freeze pin is
blocked, and when LSICC is driven High, the Flash*Freeze pin is enabled.

• If the user decides to build his/her own Flash*Freeze type 2 clock and data management logic,
note that the LSICC signal on the ULSICC macro is ANDed internally with the Flash*Freeze
signal. In order to reliably enter Flash*Freeze, the LSICC signal must remain asserted High while
entering and during Flash*Freeze mode. 

Flash*Freeze Management IP
One of the key benefits of Microsemi's Flash*Freeze mode is the ability to preserve the state of all
internal registers, SRAM content, and I/Os (IGLOO nano and IGLOO PLUS only). This feature enables
seamless continuation of data processing before and after Flash*Freeze, without the need to reload or
reinitialize the FPGA system. Microsemi's Flash*Freeze management IP, available for type 2
implementation, offers a robust RTL block that ensures clean clock gating of all system clocks before
entering and upon exiting Flash*Freeze mode. This IP also gives users the option to perform
housekeeping prior to entering Flash*Freeze mode. This section will provide an overview of the

Figure 2-9 • Flash*Freeze Self-Reset Circuit
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Global Resources in Low Power Flash Devices
v1.1
(March 2008)

The "Global Architecture" section was updated to include the IGLOO PLUS
family. The bullet was revised to include that the west CCC does not contain a
PLL core in 15 k and 30 k devices. Instances of "A3P030 and AGL030 devices"
were replaced with "15 k and 30 k gate devices."

47

v1.1
(continued)

Table 3-1 • Flash-Based FPGAs and the accompanying text was updated to
include the IGLOO PLUS family. The "IGLOO Terminology" section and
"ProASIC3 Terminology" section are new.

48

The "VersaNet Global Network Distribution" section, "Spine Architecture" section,
the note in Figure 3-1 • Overview of VersaNet Global Network and Device
Architecture, and the note in Figure 3-3 • Simplified VersaNet Global Network
(60 k gates and above) were updated to include mention of 15 k gate devices.

49, 50

Table 3-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices was updated
to add the A3P015 device, and to revise the values for clock trees, globals/spines
per tree, and globals/spines per device for the A3P030 and AGL030 devices.

57

Table 3-5 • Globals/Spines/Rows for IGLOO PLUS Devices is new. 58

CLKBUF_LVCMOS12 was added to Table 3-9 • I/O Standards within CLKBUF. 63

The "User’s Guides" section was updated to include the three different I/O
Structures chapters for ProASIC3 and IGLOO device families.

74

v1.0
(January 2008)

Figure 3-3 • Simplified VersaNet Global Network (60 k gates and above) was
updated.

50

The "Naming of Global I/Os" section was updated. 51

The "Using Global Macros in Synplicity" section was updated. 66

The "Global Promotion and Demotion Using PDC" section was updated. 67

The "Designer Flow for Global Assignment" section was updated. 69

The "Simple Design Example" section was updated. 71

51900087-0/1.05
(January 2005)

Table 3-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices was
updated.

57

Date Changes Page
76 Revision 4



ProASIC3L FPGA Fabric User’s Guide
The following is an example of a PLL configuration utilizing the clock frequency synthesis and clock delay 
adjustment features. The steps include generating the PLL core with SmartGen, performing simulation 
for verification with ModelSim, and performing static timing analysis with SmartTime in Designer.
Parameters of the example PLL configuration:

Input Frequency – 20 MHz
Primary Output Requirement – 20 MHz with clock advancement of 3.02 ns
Secondary 1 Output Requirement – 40 MHz with clock delay of 2.515 ns

Figure 4-29 shows the SmartGen settings. Notice that the overall delays are calculated automatically, 
allowing the user to adjust the delay elements appropriately to obtain the desired delays. 

After confirming the correct settings, generate a structural netlist of the PLL and verify PLL core settings 
by checking the log file:
Name                            : test_pll_delays
Family                          : ProASIC3E
Output Format                   : VHDL
Type                            : Static PLL
Input Freq(MHz)                 : 20.000
CLKA Source                     : Hardwired I/O
Feedback Delay Value Index      : 21
Feedback Mux Select             : 2
XDLY Mux Select                 : No
Primary Freq(MHz)               : 20.000
Primary PhaseShift              : 0
Primary Delay Value Index       : 1
Primary Mux Select              : 4
Secondary1 Freq(MHz)            : 40.000
Use GLB                         : YES
Use YB                          : NO
…
…
…
Primary Clock frequency 20.000
Primary Clock Phase Shift 0.000

Figure 4-29 • SmartGen Settings
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ProASIC3L FPGA Fabric User’s Guide
Figure 4-37 shows the simulation results, where the first PLL’s output period is 3.9 ns (~256 MHz), and 
the stage 2 (final) output period is 3.56 ns (~280 MHz). 

Figure 4-36 • Second-Stage PLL Showing Input of 256 MHz from First Stage and Final Output of 280 MHz

Figure 4-37 • ModelSim Simulation Results

Stage 1 Output Clock Period Stage 2 Output Clock Period
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FlashROM in Microsemi’s Low Power Flash Devices
FlashROM Applications 
The SmartGen core generator is used to configure FlashROM content. You can configure each page
independently. SmartGen enables you to create and modify regions within a page; these regions can be
1 to 16 bytes long (Figure 5-4). 

The FlashROM content can be changed independently of the FPGA core content. It can be easily
accessed and programmed via JTAG, depending on the security settings of the device. The SmartGen
core generator enables each region to be independently updated (described in the "Programming and
Accessing FlashROM" section on page 138). This enables you to change the FlashROM content on a
per-part basis while keeping some regions "constant" for all parts. These features allow the FlashROM to
be used in diverse system applications. Consider the following possible uses of FlashROM: 

• Internet protocol (IP) addressing (wireless or fixed) 
• System calibration settings 
• Restoring configuration after unpredictable system power-down
• Device serialization and/or inventory control 
• Subscription-based business models (e.g., set-top boxes) 
• Secure key storage 
• Asset management tracking 
• Date stamping 
• Version management 

Figure 5-4 • FlashROM Configuration
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ProASIC3L FPGA Fabric User’s Guide
SmartGen enables the user to configure the desired RAM element to use either a single clock for read
and write, or two independent clocks for read and write. The user can select the type of RAM as well as
the width/depth and several other parameters (Figure 6-13).

SmartGen also has a Port Mapping option that allows the user to specify the names of the ports
generated in the memory block (Figure 6-14).

SmartGen also configures the FIFO according to user specifications. Users can select no flags, static
flags, or dynamic flags. Static flag settings are configured using configuration flash and cannot be altered

Figure 6-13 • SmartGen Memory Configuration Interface 

Figure 6-14 • Port Mapping Interface for SmartGen-Generated Memory
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I/O Structures in IGLOO and ProASIC3 Devices
I/O Bank Structure
Low power flash device I/Os are divided into multiple technology banks. The number of banks is device-
dependent. The IGLOOe, ProASIC3EL, and ProASIC3E devices have eight banks (two per side); and
IGLOO, ProASIC3L, and ProASIC3 devices have two to four banks. Each bank has its own VCCI power
supply pin. Multiple I/O standards can co-exist within a single I/O bank.
In IGLOOe, ProASIC3EL, and ProASIC3E devices, each I/O bank is subdivided into VREF minibanks.
These are used by voltage-referenced I/Os. VREF minibanks contain 8 to 18 I/Os. All I/Os in a given
minibank share a common VREF line (only one VREF pin is needed per VREF minibank). Therefore, if
an I/O in a VREF minibank is configured as a VREF pin, the remaining I/Os in that minibank will be able
to use the voltage assigned to that pin. If the location of the VREF pin is selected manually in the
software, the user must satisfy VREF rules (refer to the "I/O Software Control in Low Power Flash
Devices" section on page 251). If the user does not pick the VREF pin manually, the software
automatically assigns it.
Figure 7-3 is a snapshot of a section of the I/O ring, showing the basic elements of an I/O tile, as viewed
from the Designer place-and-route tool’s MultiView Navigator (MVN).

Low power flash device I/Os are implemented using two tile types: I/O and differential I/O (diffio).
The diffio tile is built up using two I/O tiles, which form an I/O pair (P side and N side). These I/O pairs are
used according to differential I/O standards. Both the P and N sides of the diffio tile include an I/O buffer
and two I/O logic blocks (auxiliary and main logic). 
Every minibank (E devices only) is built up from multiple diffio tiles. The number of the minibank depends
on the different-size dies. Refer to the "I/O Architecture" section on page 181 for an illustration of the
minibank structure.
Figure 7-4 on page 183 shows a simplified diagram of the I/O buffer circuitry. The Output Enable signal
(OE) enables the output buffer to pass the signal from the core logic to the pin. The output buffer contains
ESD protection circuitry, an n-channel transistor that shunts all ESD surges (up to the limit of the device
ESD specification) to GND. This transistor also serves as an output pull-down resistor.
Each output buffer also contains programmable slew rate, drive strength, programmable power-up state
(pull-up/-down resistor), hot-swap, 5 V tolerance, and clamp diode control circuitry. Multiple flash
switches (not shown in Figure 7-4 on page 183) are programmed by user selections in the software to
activate different I/O features.

Figure 7-3 • Snapshot of an I/O Tile
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I/O Structures in IGLOO and ProASIC3 Devices
At the system level, the skew circuit can be used in applications where transmission activities on
bidirectional data lines need to be coordinated. This circuit, when selected, provides a timing margin that
can prevent bus contention and subsequent data loss and/or transmitter over-stress due to transmitter-
to-transmitter current shorts. Figure 7-16 presents an example of the skew circuit implementation in a
bidirectional communication system. Figure 7-17 on page 201 shows how bus contention is created, and
Figure 7-18 on page 201 shows how it can be avoided with the skew circuit.  

Figure 7-15 • Timing Diagram (option 2: enables skew circuit)
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Figure 7-16 • Example of Implementation of Skew Circuits in Bidirectional Transmission Systems Using 
IGLOO or ProASIC3 Devices
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I/O Structures in IGLOOe and ProASIC3E Devices
I/O Banks and I/O Standards Compatibility
I/Os are grouped into I/O voltage banks. 
Each I/O voltage bank has dedicated I/O supply and ground voltages (VMV/GNDQ for input buffers and 
VCCI/GND for output buffers). Because of these dedicated supplies, only I/Os with compatible standards 
can be assigned to the same I/O voltage bank. Table 8-3 on page 217 shows the required voltage 
compatibility values for each of these voltages.
There are eight I/O banks (two per side).
Every I/O bank is divided into minibanks. Any user I/O in a VREF minibank (a minibank is the region of 
scope of a VREF pin) can be configured as a VREF pin (Figure 8-2). Only one VREF pin is needed to 
control the entire VREF minibank. The location and scope of the VREF minibanks can be determined by 
the I/O name. For details, see the user I/O naming conventions for "IGLOOe and ProASIC3E" on 
page 245. Table 8-5 on page 217 shows the I/O standards supported by IGLOOe and ProASIC3E 
devices, and the corresponding voltage levels. 
I/O standards are compatible if they comply with the following:

• Their VCCI and VMV values are identical.
• Both of the standards need a VREF, and their VREF values are identical.
• All inputs and disabled outputs are voltage tolerant up to 3.3 V.

For more information about I/O and global assignments to I/O banks in a device, refer to the specific pin 
table for the device in the packaging section of the datasheet, and see the user I/O naming conventions 
for "IGLOOe and ProASIC3E" on page 245.  

Figure 8-2 • Typical IGLOOe and ProASIC3E I/O Bank Detail Showing VREF Minibanks
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ProASIC3L FPGA Fabric User’s Guide
I/O Register Combining
Every I/O has several embedded registers in the I/O tile that are close to the I/O pads. Rather than using 
the internal register from the core, the user has the option of using these registers for faster clock-to-out 
timing, and external hold and setup. When combining these registers at the I/O buffer, some architectural 
rules must be met. Provided these rules are met, the user can enable register combining globally during 
Compile (as shown in the "Compiling the Design" section on page 261).
This feature is supported by all I/O standards.

Rules for Registered I/O Function
1. The fanout between an I/O pin (D, Y, or E) and a register must be equal to one for combining to be 

considered on that pin.
2. All registers (Input, Output, and Output Enable) connected to an I/O must share the same clear or 

preset function:
– If one of the registers has a CLR pin, all the other registers that are candidates for combining 

in the I/O must have a CLR pin.
– If one of the registers has a PRE pin, all the other registers that are candidates for combining 

in the I/O must have a PRE pin.
– If one of the registers has neither a CLR nor a PRE pin, all the other registers that are 

candidates for combining must have neither a CLR nor a PRE pin.
– If the clear or preset pins are present, they must have the same polarity.
– If the clear or preset pins are present, they must be driven by the same signal (net).

3. Registers connected to an I/O on the Output and Output Enable pins must have the same clock 
and enable function:
– Both the Output and Output Enable registers must have an E pin (clock enable), or none at all.
– If the E pins are present, they must have the same polarity. The CLK pins must also have the 

same polarity.
In some cases, the user may want registers to be combined with the input of a bibuf while maintaining the 
output as-is. This can be achieved by using PDC commands as follows:
set_io <signal name> -REGISTER yes ------register will combine
set_preserve <signal name> ----register will not combine

Weak Pull-Up and Weak Pull-Down Resistors
When the I/O is pulled up, it is connected to the VCCI of its corresponding I/O bank. When it is pulled 
down, it is connected to GND. Refer to the datasheet for more information.
For low power applications, configuration of the pull-up or pull-down of the I/O can be used to set the I/O 
to a known state while the device is in Flash*Freeze mode. Refer to the "Flash*Freeze Technology and 
Low Power Modes in IGLOO and ProASIC3L Devices" chapter in the IGLOOe FPGA Fabric User’s 
Guide or ProASIC3E FPGA Fabric User’s Guide for more information.
The Flash*Freeze (FF) pin cannot be configured with a weak pull-down or pull-up I/O attribute, as the 
signal needs to be driven at all times.

Output Slew Rate Control
The slew rate is the amount of time an input signal takes to get from logic LOW to logic HIGH or vice 
versa.
It is commonly defined as the propagation delay between 10% and 90% of the signal's voltage swing. 
Slew rate control is available for the output buffers of low power flash devices. The output buffer has a 
programmable slew rate for both HIGH-to-LOW and LOW-to-HIGH transitions. Slew rate control is 
available for LVTTL, LVCMOS, and PCI-X I/O standards. The other I/O standards have a preset slew 
value.
The slew rate can be implemented by using a PDC command (Table 8-6 on page 218), setting it "High" 
or "Low" in the I/O Attribute Editor in Designer, or instantiating a special I/O macro. The default slew rate 
value is "High."
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Simultaneously Switching Outputs (SSOs) and Printed Circuit 
Board Layout

Each I/O voltage bank has a separate ground and power plane for input and output circuits (VMV/GNDQ 
for input buffers and VCCI/GND for output buffers). This isolation is necessary to minimize simultaneous 
switching noise from the input and output (SSI and SSO). The switching noise (ground bounce and 
power bounce) is generated by the output buffers and transferred into input buffer circuits, and vice 
versa.
Since voltage bounce originates on the package inductance, the VMV and VCCI supplies have separate 
package pin assignments. For the same reason, GND and GNDQ also have separate pin assignments.
The VMV and VCCI pins must be shorted to each other on the board. Also, the GND and GNDQ pins 
must be shorted to each other on the board. This will prevent unwanted current draw from the power 
supply.
SSOs can cause signal integrity problems on adjacent signals that are not part of the SSO bus. Both 
inductive and capacitive coupling parasitics of bond wires inside packages and of traces on PCBs will 
transfer noise from SSO busses onto signals adjacent to those busses. Additionally, SSOs can produce 
ground bounce noise and VCCI dip noise. These two noise types are caused by rapidly changing 
currents through GND and VCCI package pin inductances during switching activities (EQ 8-2 and 
EQ 8-3).

Ground bounce noise voltage = L(GND) × di/dt

EQ 8-2

VCCI dip noise voltage = L(VCCI) × di/dt

EQ 8-3
Any group of four or more input pins switching on the same clock edge is considered an SSO bus. The 
shielding should be done both on the board and inside the package unless otherwise described. 
In-package shielding can be achieved in several ways; the required shielding will vary depending on 
whether pins next to the SSO bus are LVTTL/LVCMOS inputs, LVTTL/LVCMOS outputs, or 
GTL/SSTL/HSTL/LVDS/LVPECL inputs and outputs. Board traces in the vicinity of the SSO bus have to 
be adequately shielded from mutual coupling and inductive noise that can be generated by the SSO bus. 
Also, noise generated by the SSO bus needs to be reduced inside the package. 
PCBs perform an important function in feeding stable supply voltages to the IC and, at the same time, 
maintaining signal integrity between devices.
Key issues that need to be considered are as follows:

• Power and ground plane design and decoupling network design
• Transmission line reflections and terminations

For extensive data per package on the SSO and PCB issues, refer to the "ProASIC3/E SSO and Pin 
Placement and Guidelines" chapter of the ProASIC3 FPGA Fabric User’s Guide. 
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I/O Software Control in Low Power Flash Devices
List of Changes
The following table lists critical changes that were made in each revision of the document.

Date Changes Page

August 2012 The notes in Table 9-2 • Designer State (resulting from I/O attribute modification)
were revised to clarify which device families support programmable input delay
(SAR 39666).

253

June 2011 Figure 9-2 • SmartGen Catalog was updated (SAR 24310). Figure 8-3 • Expanded
I/O Section and the step associated with it were deleted to reflect changes in the
software.

254

The following rule was added to the "VREF Rules for the Implementation of
Voltage-Referenced I/O Standards" section: 
Only minibanks that contain input or bidirectional I/Os require a VREF. A VREF is
not needed for minibanks composed of output or tristated I/Os (SAR 24310).

265

July 2010 Notes were added where appropriate to point out that IGLOO nano and ProASIC3
nano devices do not support differential inputs (SAR 21449).

N/A

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 9-1 • Flash-Based
FPGAs.

252

The notes for Table 9-2 • Designer State (resulting from I/O attribute modification)
were revised to indicate that skew control and input delay do not apply to nano
devices.

253

v1.3
(October 2008)

The "Flash FPGAs I/O Support" section was revised to include new families and
make the information more concise.

252

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 9-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V. 
• The number of PLLs for ProASIC3E was changed from five to six.

252

v1.1
(March 2008)

This document was previously part of the I/O Structures in IGLOO and ProASIC3
Devices document. The content was separated and made into a new document.

N/A

Table 9-2 • Designer State (resulting from I/O attribute modification) was updated
to include note 2 for IGLOO PLUS.

253
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VHDL
library ieee;
use ieee.std_logic_1164.all;
library proasic3; use proasic3.all;

entity DDR_BiDir_HSTL_I_LowEnb is 
port(DataR, DataF, CLR, CLK, Trien : in std_logic; QR, QF : out std_logic; 

PAD : inout std_logic) ;
end DDR_BiDir_HSTL_I_LowEnb;

architecture DEF_ARCH of  DDR_BiDir_HSTL_I_LowEnb is

component INV
port(A : in std_logic := 'U'; Y : out std_logic) ;

end component;

component DDR_OUT
port(DR, DF, CLK, CLR : in std_logic := 'U'; Q : out std_logic) ;

end component;

component DDR_REG
port(D, CLK, CLR : in std_logic := 'U'; QR, QF : out std_logic) ;

end component;

component BIBUF_HSTL_I
port(PAD : inout std_logic := 'U'; D, E : in std_logic := 'U'; Y : out std_logic) ;

end component;

signal TrienAux, D, Q : std_logic ;

begin

Inv_Tri : INV
port map(A => Trien, Y => TrienAux);
DDR_OUT_0_inst : DDR_OUT
port map(DR => DataR, DF => DataF, CLK => CLK, CLR => CLR, Q => Q);
DDR_REG_0_inst : DDR_REG
port map(D => D, CLK => CLK, CLR => CLR, QR => QR, QF => QF);
BIBUF_HSTL_I_0_inst : BIBUF_HSTL_I
port map(PAD => PAD, D => Q, E => TrienAux, Y => D);

end DEF_ARCH;
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12 – Security in Low Power Flash Devices

Security in Programmable Logic
The need for security on FPGA programmable logic devices (PLDs) has never been greater than today.
If the contents of the FPGA can be read by an external source, the intellectual property (IP) of the system
is vulnerable to unauthorized copying. Fusion, IGLOO, and ProASIC3 devices contain state-of-the-art
circuitry to make the flash-based devices secure during and after programming. Low power flash devices
have a built-in 128-bit Advanced Encryption Standard (AES) decryption core (except for 30 k gate
devices and smaller). The decryption core facilitates secure in-system programming (ISP) of the FPGA
core array fabric, the FlashROM, and the Flash Memory Blocks (FBs) in Fusion devices. The FlashROM,
Flash Blocks, and FPGA core fabric can be programmed independently of each other, allowing the
FlashROM or Flash Blocks to be updated without the need for change to the FPGA core fabric. 
Microsemi has incorporated the AES decryption core into the low power flash devices and has also
included the Microsemi flash-based lock technology, FlashLock.® Together, they provide leading-edge
security in a programmable logic device. Configuration data loaded into a device can be decrypted prior
to being written to the FPGA core using the AES 128-bit block cipher standard. The AES encryption key
is stored in on-chip, nonvolatile flash memory. 
This document outlines the security features offered in low power flash devices, some applications and
uses, as well as the different software settings for each application.  

Figure 12-1 • Overview on Security
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Boundary Scan in Low Power Flash Devices
Microsemi’s Flash Devices Support the JTAG Feature
The flash-based FPGAs listed in Table 16-1 support the JTAG feature and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 16-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 16-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 16-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Fusion Fusion Mixed signal FPGA integrating ProASIC®3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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