
Microchip Technology - A3P600L-FGG484 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Active

Number of LABs/CLBs -

Number of Logic Elements/Cells -

Total RAM Bits 110592

Number of I/O 235

Number of Gates 600000

Voltage - Supply 1.14V ~ 1.575V

Mounting Type Surface Mount

Operating Temperature 0°C ~ 85°C (TJ)

Package / Case 484-BGA

Supplier Device Package 484-FPBGA (23x23)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/a3p600l-fgg484

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/a3p600l-fgg484-4493127
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array

ProASIC3L FPGA Fabric User’s Guide

Table of Contents
Introduction . 7
Contents . 7
Revision History . 7
Related Information . 7

1 FPGA Array Architecture in Low Power Flash Devices . 9
Device Architecture . 9
FPGA Array Architecture Support . 10
Device Overview . 11
Related Documents . 20
List of Changes . 20

2 Flash*Freeze Technology and Low Power Modes. 21
Flash*Freeze Technology and Low Power Modes . 21
Flash Families Support the Flash*Freeze Feature . 22
Low Power Modes Overview . 23
Static (Idle) Mode . 23
Flash*Freeze Mode . 24
Sleep and Shutdown Modes . 32
Flash*Freeze Design Guide . 34
Conclusion . 42
Related Documents . 42
List of Changes . 42

3 Global Resources in Low Power Flash Devices. 47
Introduction . 47
Global Architecture . 47
Global Resource Support in Flash-Based Devices . 48
VersaNet Global Network Distribution . 49
Chip and Quadrant Global I/Os . 51
Spine Architecture . 57
Using Clock Aggregation . 60
Design Recommendations . 62
Conclusion . 74
Related Documents . 74
List of Changes . 75

4 Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs 77
Introduction . 77
Overview of Clock Conditioning Circuitry . 77
CCC Support in Microsemi’s Flash Devices . 79
Global Buffers with No Programmable Delays . 80
Global Buffer with Programmable Delay . 80
Global Buffers with PLL Function . 83
Global Input Selections . 87
Revision 4 2

2 – Flash*Freeze Technology and Low Power
Modes

Flash*Freeze Technology and Low Power Modes
Microsemi IGLOO,® IGLOO nano, IGLOO PLUS, ProASIC®3L, and Radiation-Tolerant (RT) ProASIC3
FPGAs with Flash*Freeze technology are designed to meet the most demanding power and area
challenges of today’s portable electronics products with a reprogrammable, small-footprint, full-featured
flash FPGA. These devices offer lower power consumption in static and dynamic modes, utilizing the
unique Flash*Freeze technology, than any other FPGA or CPLD.
IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3L, and RT ProASIC3 devices offer various power-saving
modes that enable every system to utilize modes that achieve the lowest total system power. Low Power
Active capability (static idle) allows for ultra-low power consumption while the device is operational in the
system by maintaining SRAM, registers, I/Os, and logic functions.
Flash*Freeze technology provides an ultra-low power static mode (Flash*Freeze mode) that retains all
SRAM and register information with rapid recovery to Active (operating) mode. IGLOO nano and IGLOO
PLUS devices have an additional feature when operating in Flash*Freeze mode, allowing them to retain
I/O states as well as SRAM and register states. This mechanism enables the user to quickly (within 1 µs)
enter and exit Flash*Freeze mode by activating the Flash*Freeze (FF) pin while all power supplies are
kept in their original states. In addition, I/Os and clocks connected to the FPGA can still be toggled
without impact on device power consumption. While in Flash*Freeze mode, the device retains all core
register states and SRAM information. This mode can be configured so that no power is consumed by
the I/O banks, clocks, JTAG pins, or PLLs; and the IGLOO and IGLOO PLUS devices consume as little
as 5 µW, while IGLOO nano devices consume as little as 2 µW. Microsemi offers a state management IP
core to aid users in gating clocks and managing data before entering Flash*Freeze mode.
This document will guide users in selecting the best low power mode for their applications, and
introduces Microsemi's Flash*Freeze management IP core.
Revision 4 21

Global Resources in Low Power Flash Devices
The following will happen during demotion of a global signal to regular nets:
• CLKBUF_x becomes INBUF_x; CLKINT is removed from the netlist.
• The essential global macro, such as the output of the Clock Conditioning Circuit, cannot be

demoted.
• No automatic buffering will happen.

Since no automatic buffering happens when a signal is demoted, this net may have a high delay due to
large fanout. This may have a negative effect on the quality of the results. Microsemi recommends that
the automatic global demotion only be used on small-fanout nets. Use clock networks for high-fanout
nets to improve timing and routability.

Spine Assignment
The low power flash device architecture allows the global networks to be segmented and used as clock
spines. These spines, also called local clock networks, enable the use of PDC or MVN to assign a signal
to a spine.
PDC syntax to promote a net to a spine/local clock:
assign_local_clock –net netname –type [quadrant|chip] Tn|Bn|Tn:Bm

If the net is driven by a clock macro, Designer automatically demotes the clock net to a regular net before
it is assigned to a spine. Nets driven by a PLL or CLKDLY macro cannot be assigned to a local clock.
When assigning a signal to a spine or quadrant global network using PDC (pre-compile), the Designer
software will legalize the shared instances. The number of shared instances to be legalized can be
controlled by compile options. If these networks are created in MVN (only quadrant globals can be
created), no legalization is done (as it is post-compile). Designer does not do legalization between non-
clock nets.
As an example, consider two nets, net_clk and net_reset, driving the same flip-flop. The following PDC
constraints are used:
assign_local_clock –net net_clk –type chip T3
assign_local_clock –net net_reset –type chip T1:T2

During Compile, Designer adds a buffer in the reset net and places it in the T1 or T2 region, and places
the flip-flop in the T3 spine region (Figure 3-16).

Figure 3-16 • Adding a Buffer for Shared Instances

D

CLK

CLR
net_clk

net_reset

T1 T2 T3

D

CLK

CLR
net_clk

net_reset

assign_local_clock -net net_clk -type chip T3
assign_local_clock -net net_reset -type chip T1:T2

Before Compile After Compile

Added
buffer
68 Revision 4

ProASIC3L FPGA Fabric User’s Guide
List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and
version but is now part of several FPGA fabric user’s guides.

N/A

Notes were added where appropriate to point out that IGLOO nano and
ProASIC3 nano devices do not support differential inputs (SAR 21449).

N/A

The "Global Architecture" section and "VersaNet Global Network Distribution"
section were revised for clarity (SARs 20646, 24779).

47, 49

The "I/O Banks and Global I/Os" section was moved earlier in the document,
renamed to "Chip and Quadrant Global I/Os", and revised for clarity. Figure 3-4 •
Global Connections Details, Figure 3-6 • Global Inputs, Table 3-2 • Chip Global
Pin Name, and Table 3-3 • Quadrant Global Pin Name are new (SARs 20646,
24779).

51

The "Clock Aggregation Architecture" section was revised (SARs 20646, 24779). 57

Figure 3-7 • Chip Global Aggregation was revised (SARs 20646, 24779). 59

The "Global Macro and Placement Selections" section is new (SARs 20646,
24779).

64

v1.4
(December 2008)

The "Global Architecture" section was updated to include 10 k devices, and to
include information about VersaNet global support for IGLOO nano devices.

47

The Table 3-1 • Flash-Based FPGAs was updated to include IGLOO nano and
ProASIC3 nano devices.

48

The "VersaNet Global Network Distribution" section was updated to include 10 k
devices and to note an exception in global lines for nano devices.

49

Figure 3-2 • Simplified VersaNet Global Network (30 k gates and below) is new. 50

The "Spine Architecture" section was updated to clarify support for 10 k and nano
devices.

57

Table 3-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices was updated
to include IGLOO nano and ProASIC3 nano devices.

57

The figure in the CLKBUF_LVDS/LVPECL row of Table 3-8 • Clock Macros was
updated to change CLKBIBUF to CLKBUF.

62

v1.3
(October 2008)

A third bullet was added to the beginning of the "Global Architecture" section: In
Fusion devices, the west CCC also contains a PLL core. In the two larger devices
(AFS600 and AFS1500), the west and east CCCs each contain a PLL.

47

The "Global Resource Support in Flash-Based Devices" section was revised to
include new families and make the information more concise.

48

Table 3-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices was updated
to include A3PE600/L in the device column.

57

Table note 1 was revised in Table 3-9 • I/O Standards within CLKBUF to include
AFS600 and AFS1500.

63

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 3-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

48
Revision 4 75

ProASIC3L FPGA Fabric User’s Guide
The CLKDLY macro is a pass-through clock source that does not use the PLL, but provides the ability to
delay the clock input using a programmable delay. The CLKDLY macro takes the selected clock input
and adds a user-defined delay element. This macro generates an output clock phase shift from the input
clock.
The CLKDLY macro can be driven by an INBUF* macro to create a composite macro, where the I/O
macro drives the global buffer (with programmable delay) using a hardwired connection. In this case, the
software will automatically place the dedicated global I/O in the appropriate locations. Many specific
INBUF macros support the wide variety of single-ended and differential I/O standards supported by the
low power flash family. The available INBUF macros are described in the IGLOO, ProASIC3,
SmartFusion, and Fusion Macro Library Guide.
The CLKDLY macro can be driven directly from the FPGA core. The CLKDLY macro can also be driven
from an I/O that is routed through the FPGA regular routing fabric. In this case, users must instantiate a
special macro, PLLINT, to differentiate the clock input driven by the hardwired I/O connection.
The visual CLKDLY configuration in the SmartGen area of the Microsemi Libero System-on-Chip (SoC)
and Designer tools allows the user to select the desired amount of delay and configures the delay
elements appropriately. SmartGen also allows the user to select the input clock source. SmartGen will
automatically instantiate the special macro, PLLINT, when needed.

CLKDLY Macro Signal Descriptions
The CLKDLY macro supports one input and one output. Each signal is described in Table 4-2.

Notes:
1. For INBUF* driving a PLL macro or CLKDLY macro, the I/O will be hard-routed to the CCC; i.e., will be placed by

software to a dedicated Global I/O.
2. IGLOO nano and ProASIC3 nano devices do not support differential inputs.
Figure 4-3 • CCC Options: Global Buffers with Programmable Delay

PADN
PADP

Y

PAD Y

Input LVDS/LVPECL Macro

INBUF* Macro

GLA

or

GLB

or

GLC

Clock Source
Clock Conditioning Output

CLK

DLYGL[4:0]

GL

Table 4-2 • Input and Output Description of the CLKDLY Macro

Signal Name I/O Description

CLK Reference Clock Input Reference clock input

GL Global Output Output Primary output clock to respective global/quadrant clock networks
Revision 4 81

http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Implementing EXTFB in ProASIC3/E Devices
When the external feedback (EXTFB) signal of the PLL in the ProASIC3/E devices is implemented, the
phase detector of the PLL core receives the reference clock (CLKA) and EXTFB as inputs. EXTFB must
be sourced as an INBUF macro and located at the global/chip clock location associated with the target
PLL by Designer software. EXTFB cannot be sourced from the FPGA fabric.
The following example shows CLKA and EXTFB signals assigned to two global I/Os in the same global
area of ProASIC3E device.

Figure 4-5 • CLKA and EXTFB Assigned to Global I/Os

+–

+
–

Source for CCC
(CLKA or CLKB or CLKC)

To Core

GxB0

GxB1

GxB2
Routed Clok
(from FPGA core)

+–

+
–

Source for CCC
(CLKA or CLKB or CLKC)

To Core

GxA0

GxA1

GxA2
Routed Clok
(from FPGA core)

x represents global location; can be A, B, C, D, E, or F

External Feedback
(EXTFB) signal is
assigned on GxB1
by Designer automatically.

The reference clock,
CLKA, can be assigned
on GxA0 or GxA1.
86 Revision 4

ProASIC3L FPGA Fabric User’s Guide
Figure 4-22 • CCC Block Control Bits – Graphical Representation of Assignments

/w D

C<37:35>

C<28:24>

Internal

C<60:56>

GLCD

C<70:66>

YC

CLKC

CLKB

Internal
C<55:51>

C<23:19>
C<34:32>

GLBD

D YB/v
C<44:40>

C<45>
C<39:38>

D

D

(0)

(1)

(1)

(2)

C<13:7>

C<6:0>

/m

/n
CLKA

PLL
Core

(4)

(2)

(7)
(6)
(5)

C<18:14>

C<31:29>

C<50:46>

Internal

GLAD

/u
M
U
X
A

0°

90°

270°
180°

M
U
X
B

M
U
X
C

Revision 4 105

FlashROM in Microsemi’s Low Power Flash Devices
FlashROM Design Flow
The Microsemi Libero System-on-Chip (SoC) software has extensive FlashROM support, including
FlashROM generation, instantiation, simulation, and programming. Figure 5-9 shows the user flow
diagram. In the design flow, there are three main steps:

1. FlashROM generation and instantiation in the design
2. Simulation of FlashROM design
3. Programming file generation for FlashROM design

Figure 5-9 • FlashROM Design Flow

Simulator

FlashPoint

SmartGen

Programmer

Synthesis

Designer

Security
Header
Options

Programming
Files

UFC
File

FlashROM
Netlist

User
Design

User
Netlist

Core
Map

MEM
File

Back-
Annotated

Netlist
140 Revision 4

ProASIC3L FPGA Fabric User’s Guide
SRAM and FIFO Architecture
To meet the needs of high-performance designs, the memory blocks operate strictly in synchronous
mode for both read and write operations. The read and write clocks are completely independent, and
each can operate at any desired frequency up to 250 MHz.

• 4k×1, 2k×2, 1k×4, 512×9 (dual-port RAM—2 read / 2 write or 1 read / 1 write)
• 512×9, 256×18 (2-port RAM—1 read / 1 write)
• Sync write, sync pipelined / nonpipelined read

Automotive ProASIC3 devices support single-port SRAM capabilities or dual-port SRAM only under
specific conditions. Dual-port mode is supported if the clocks to the two SRAM ports are the same and
180° out of phase (i.e., the port A clock is the inverse of the port B clock). The Libero SoC software
macro libraries support a dual-port macro only. For use of this macro as a single-port SRAM, the inputs
and clock of one port should be tied off (grounded) to prevent errors during design compile. For use in
dual-port mode, the same clock with an inversion between the two clock pins of the macro should be
used in the design to prevent errors during compile.
The memory block includes dedicated FIFO control logic to generate internal addresses and external flag
logic (FULL, EMPTY, AFULL, AEMPTY).
Simultaneous dual-port read/write and write/write operations at the same address are allowed when
certain timing requirements are met.
During RAM operation, addresses are sourced by the user logic, and the FIFO controller is ignored. In
FIFO mode, the internal addresses are generated by the FIFO controller and routed to the RAM array by
internal MUXes.
The low power flash device architecture enables the read and write sizes of RAMs to be organized
independently, allowing for bus conversion. For example, the write size can be set to 256×18 and the
read size to 512×9.
Both the write width and read width for the RAM blocks can be specified independently with the WW
(write width) and RW (read width) pins. The different D×W configurations are 256×18, 512×9, 1k×4,
2k×2, and 4k×1. When widths of one, two, or four are selected, the ninth bit is unused. For example,
when writing nine-bit values and reading four-bit values, only the first four bits and the second four bits of
each nine-bit value are addressable for read operations. The ninth bit is not accessible.
Conversely, when writing four-bit values and reading nine-bit values, the ninth bit of a read operation will
be undefined. The RAM blocks employ little-endian byte order for read and write operations.

Memory Blocks and Macros
Memory blocks can be configured with many different aspect ratios, but are generically supported in the
macro libraries as one of two memory elements: RAM4K9 or RAM512X18. The RAM4K9 is configured
as a true dual-port memory block, and the RAM512X18 is configured as a two-port memory block. Dual-
port memory allows the RAM to both read from and write to either port independently. Two-port memory
allows the RAM to read from one port and write to the other using a common clock or independent read
and write clocks. If needed, the RAM4K9 blocks can be configured as two-port memory blocks. The
memory block can be configured as a FIFO by combining the basic memory block with dedicated FIFO
controller logic. The FIFO macro is named FIFO4KX18 (Figure 6-3 on page 152).
Clocks for the RAM blocks can be driven by the VersaNet (global resources) or by regular nets. When
using local clock segments, the clock segment region that encompasses the RAM blocks can drive the
RAMs. In the dual-port configuration (RAM4K9), each memory block port can be driven by either rising-
edge or falling-edge clocks. Each port can be driven by clocks with different edges. Though only a rising-
edge clock can drive the physical block itself, the Microsemi Designer software will automatically bubble-
push the inversion to properly implement the falling-edge trigger for the RAM block.
Revision 4 151

SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
RD
This is the output data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. Like the WD
bus, high-order bits become unusable if the data width is less than 18. The output data on unused pins is
undefined (Table 6-7).

ESTOP, FSTOP
ESTOP is used to stop the FIFO read counter from further counting once the FIFO is empty (i.e., the
EMPTY flag goes HIGH). A HIGH on this signal inhibits the counting.
FSTOP is used to stop the FIFO write counter from further counting once the FIFO is full (i.e., the FULL
flag goes HIGH). A HIGH on this signal inhibits the counting.
For more information on these signals, refer to the "ESTOP and FSTOP Usage" section.

FULL, EMPTY
When the FIFO is full and no more data can be written, the FULL flag asserts HIGH. The FULL flag is
synchronous to WCLK to inhibit writing immediately upon detection of a full condition and to prevent
overflows. Since the write address is compared to a resynchronized (and thus time-delayed) version of
the read address, the FULL flag will remain asserted until two WCLK active edges after a read operation
eliminates the full condition.
When the FIFO is empty and no more data can be read, the EMPTY flag asserts HIGH. The EMPTY flag
is synchronous to RCLK to inhibit reading immediately upon detection of an empty condition and to
prevent underflows. Since the read address is compared to a resynchronized (and thus time-delayed)
version of the write address, the EMPTY flag will remain asserted until two RCLK active edges after a
write operation removes the empty condition.
For more information on these signals, refer to the "FIFO Flag Usage Considerations" section on
page 161.

AFULL, AEMPTY
These are programmable flags and will be asserted on the threshold specified by AFVAL and AEVAL,
respectively.
When the number of words stored in the FIFO reaches the amount specified by AEVAL while reading,
the AEMPTY output will go HIGH. Likewise, when the number of words stored in the FIFO reaches the
amount specified by AFVAL while writing, the AFULL output will go HIGH.

AFVAL, AEVAL
The AEVAL and AFVAL pins are used to specify the almost-empty and almost-full threshold values. They
are 12-bit signals. For more information on these signals, refer to the "FIFO Flag Usage Considerations"
section on page 161.

FIFO Usage
ESTOP and FSTOP Usage
The ESTOP pin is used to stop the read counter from counting any further once the FIFO is empty (i.e.,
the EMPTY flag goes HIGH). Likewise, the FSTOP pin is used to stop the write counter from counting
any further once the FIFO is full (i.e., the FULL flag goes HIGH).
The FIFO counters in the device start the count at zero, reach the maximum depth for the configuration
(e.g., 511 for a 512×9 configuration), and then restart at zero. An example application for ESTOP, where
the read counter keeps counting, would be writing to the FIFO once and reading the same content over
and over without doing another write.

Table 6-7 • Input Data Signal Usage for Different Aspect Ratios

D×W WD/RD Unused

4k×1 WD[17:1], RD[17:1]

2k×2 WD[17:2], RD[17:2]

1k×4 WD[17:4], RD[17:4]

512×9 WD[17:9], RD[17:9]

256×18 –
160 Revision 4

I/O Software Control in Low Power Flash Devices
Instantiating in HDL code
All the supported I/O macros can be instantiated in the top-level HDL code (refer to the IGLOO,
ProASIC3, SmartFusion, and Fusion Macro Library Guide for a detailed list of all I/O macros). The
following is an example:
library ieee;
use ieee.std_logic_1164.all;
library proasic3e;

entity TOP is
port(IN2, IN1 : in std_logic; OUT1 : out std_logic);

end TOP;

architecture DEF_ARCH of TOP is

component INBUF_LVCMOS5U
port(PAD : in std_logic := 'U'; Y : out std_logic);

end component;

component INBUF_LVCMOS5
port(PAD : in std_logic := 'U'; Y : out std_logic);

end component;

component OUTBUF_SSTL3_II
port(D : in std_logic := 'U'; PAD : out std_logic);

end component;

Other component …..

signal x, y, z…….other signals : std_logic;

begin

I1 : INBUF_LVCMOS5U
port map(PAD => IN1, Y =>x);

I2 : INBUF_LVCMOS5
port map(PAD => IN2, Y => y);

I3 : OUTBUF_SSTL3_II
port map(D => z, PAD => OUT1);

other port mapping…

end DEF_ARCH;

Synthesizing the Design
Libero SoC integrates with the Synplify® synthesis tool. Other synthesis tools can also be used with
Libero SoC. Refer to the Libero SoC User’s Guide or Libero online help for details on how to set up the
Libero tool profile with synthesis tools from other vendors.
During synthesis, the following rules apply:

• Generic macros:
– Users can instantiate generic INBUF, OUTBUF, TRIBUF, and BIBUF macros.
– Synthesis will automatically infer generic I/O macros.
– The default I/O technology for these macros is LVTTL.
– Users will need to use the I/O Attribute Editor in Designer to change the default I/O standard if

needed (see Figure 9-6 on page 259).
• Technology-specific I/O macros:

– Technology-specific I/O macros, such as INBUF_LVCMO25 and OUTBUF_GTL25, can be
instantiated in the design. Synthesis will infer these I/O macros in the netlist.
258 Revision 4

http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf

http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf

http://www.microsemi.com/soc/documents/libero_ug.pdf

Programming Flash Devices
Types of Programming for Flash Devices
The number of devices to be programmed will influence the optimal programming methodology. Those
available are listed below:

• In-system programming
– Using a programmer
– Using a microprocessor or microcontroller

• Device programmers
– Single-site programmers
– Multi-site programmers, batch programmers, or gang programmers
– Automated production (robotic) programmers

• Volume programming services
– Microsemi in-house programming
– Programming centers

In-System Programming
Device Type Supported: Flash
ISP refers to programming the FPGA after it has been mounted on the system printed circuit board. The
FPGA may be preprogrammed and later reprogrammed using ISP.
The advantage of using ISP is the ability to update the FPGA design many times without any changes to
the board. This eliminates the requirement of using a socket for the FPGA, saving cost and improving
reliability. It also reduces programming hardware expenses, as the ISP methodology is die-/package-
independent.
There are two methods of in-system programming: external and internal.

• Programmer ISP—Refer to the "In-System Programming (ISP) of Microsemi’s Low Power Flash
Devices Using FlashPro4/3/3X" section on page 327 for more information.
Using an external programmer and a cable, the device can be programmed through a header on
the system board. In Microsemi SoC Products Group documentation, this is referred to as
external ISP. Microsemi provides FlashPro4, FlashPro3, FlashPro Lite, or Silicon Sculptor 3 to
perform external ISP. Note that Silicon Sculptor II and Silicon Sculptor 3 can only provide ISP for
ProASIC and ProASICPLUS® families, not for SmartFusion, Fusion, IGLOO, or ProASIC3. Silicon
Sculptor II and Silicon Sculptor 3 can be used for programming ProASIC and ProASICPLUS
devices by using an adapter module (part number SMPA-ISP-ACTEL-3).
– Advantages: Allows local control of programming and data files for maximum security. The

programming algorithms and hardware are available from Microsemi. The only hardware
required on the board is a programming header.

– Limitations: A negligible board space requirement for the programming header and JTAG
signal routing

• Microprocessor ISP—Refer to the "Microprocessor Programming of Microsemi’s Low Power
Flash Devices" chapter of an appropriate FPGA fabric user’s guide for more information.
Using a microprocessor and an external or internal memory, you can store the program in
memory and use the microprocessor to perform the programming. In Microsemi documentation,
this is referred to as internal ISP. Both the code for the programming algorithm and the FPGA
programming file must be stored in memory on the board. Programming voltages must also be
generated on the board.
– Advantages: The programming code is stored in the system memory. An external programmer

is not required during programming.
– Limitations: This is the approach that requires the most design work, since some way of

getting and/or storing the data is needed; a system interface to the device must be designed;
and the low-level API to the programming firmware must be written and linked into the code
provided by Microsemi. While there are benefits to this methodology, serious thought and
planning should go into the decision.
290 Revision 4

Security in Low Power Flash Devices
Security Features
IGLOO and ProASIC3 devices have two entities inside: FlashROM and the FPGA core fabric. Fusion
devices contain three entities: FlashROM, FBs, and the FPGA core fabric. The parts can be programmed
or updated independently with a STAPL programming file. The programming files can be AES-encrypted
or plaintext. This allows maximum flexibility in providing security to the entire device. Refer to the
"Programming Flash Devices" section on page 287 for information on the FlashROM structure.
Unlike SRAM-based FPGA devices, which require a separate boot PROM to store programming data,
low power flash devices are nonvolatile, and the secured configuration data is stored in on-chip flash
cells that are part of the FPGA fabric. Once programmed, this data is an inherent part of the FPGA array
and does not need to be loaded at system power-up. SRAM-based FPGAs load the configuration
bitstream upon power-up; therefore, the configuration is exposed and can be read easily.
The built-in FPGA core, FBs, and FlashROM support programming files encrypted with the 128-bit AES
(FIPS-192) block ciphers. The AES key is stored in dedicated, on-chip flash memory and can be
programmed before the device is shipped to other parties (allowing secure remote field updates).

Security in ARM-Enabled Low Power Flash Devices
There are slight differences between the regular flash devices and the ARM®-enabled flash devices,
which have the M1 and M7 prefix.
The AES key is used by Microsemi and preprogrammed into the device to protect the ARM IP. As a
result, the design is encrypted along with the ARM IP, according to the details below.

Figure 12-3 • Block Representation of the AES Decryption Core in a Fusion AFS600 FPGA

VersaTile

CCC

CCC

I/Os

OSC

CCC/PLL

Bank 0

B
an

k
4 B

ank 2

Bank 1

Bank 3

SRAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block

SRAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block

Flash Memory Blocks Flash Memory BlocksADC

Analog
Quad

ISP AES
Decryption

User Nonvolatile
FlashROM Charge Pumps

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad
304 Revision 4

Security in Low Power Flash Devices
3. Choose the desired settings for the FlashROM configurations to be programmed (Figure 12-13).
Click Finish to generate the STAPL programming file for the design.

Generation of Security Header Programming File Only—
Application 2
As mentioned in the "Application 2: Nontrusted Environment—Unsecured Location" section on page 309,
the designer may employ FlashLock Pass Key protection or FlashLock Pass Key with AES encryption on
the device before sending it to a nontrusted or unsecured location for device programming. To achieve
this, the user needs to generate a programming file containing only the security settings desired (Security
Header programming file).
Note: If AES encryption is configured, FlashLock Pass Key protection must also be configured.
The available security options are indicated in Table 12-4 and Table 12-5 on page 317.

Figure 12-13 • FlashROM Configuration Settings for Low Power Flash Devices

Table 12-4 • FlashLock Security Options for IGLOO and ProASIC3

Security Option FlashROM Only FPGA Core Only
Both FlashROM

and FPGA

No AES / no FlashLock – – –

FlashLock only ✓ ✓ ✓

AES and FlashLock ✓ ✓ ✓
316 Revision 4

ProASIC3L FPGA Fabric User’s Guide
Table 12-6 and Table 12-7 show all available options. If you want to implement custom levels,
refer to the "Advanced Options" section on page 322 for information on each option and how to
set it.

3. When done, click Finish to generate the Security Header programming file.

Generation of Programming Files with AES Encryption—
Application 3
This section discusses how to generate design content programming files needed specifically at
unsecured or remote locations to program devices with a Security Header (FlashLock Pass Key and AES
key) already programmed ("Application 2: Nontrusted Environment—Unsecured Location" section on
page 309 and "Application 3: Nontrusted Environment—Field Updates/Upgrades" section on page 310).
In this case, the encrypted programming file must correspond to the AES key already programmed into
the device. If AES encryption was previously selected to encrypt the FlashROM, FBs, and FPGA array,
AES encryption must be set when generating the programming file for them. AES encryption can be
applied to the FlashROM only, the FBs only, the FPGA array only, or all. The user must ensure both the
FlashLock Pass Key and the AES key match those already programmed to the device(s), and all security
settings must match what was previously programmed. Otherwise, the encryption and/or device
unlocking will not be recognized when attempting to program the device with the programming file.
The generated programming file will be AES-encrypted.
In this scenario, generate the programming file as follows:

1. Deselect Security settings and select the portion of the device to be programmed (Figure 12-17
on page 320). Select Programming previously secured device(s). Click Next.

Table 12-6 • All IGLOO and ProASIC3 Header File Security Options

Security Option FlashROM Only FPGA Core Only
Both FlashROM

and FPGA

No AES / no FlashLock ✓ ✓ ✓

FlashLock only ✓ ✓ ✓

AES and FlashLock ✓ ✓ ✓

Note: ✓ = options that may be used

Table 12-7 • All Fusion Header File Security Options

Security Option FlashROM Only FPGA Core Only FB Core Only All

No AES / No FlashLock ✓ ✓ ✓ ✓

FlashLock ✓ ✓ ✓ ✓

AES and FlashLock ✓ ✓ ✓ ✓
Revision 4 319

ProASIC3L FPGA Fabric User’s Guide
ISP Programming Header Information
The FlashPro4/3/3X programming cable connector can be connected with a 10-pin, 0.1"-pitch
programming header. The recommended programming headers are manufactured by AMP (103310-1)
and 3M (2510-6002UB). If you have limited board space, you can use a compact programming header
manufactured by Samtec (FTSH-105-01-L-D-K). Using this compact programming header, you are
required to order an additional header adapter manufactured by Microsemi SoC Products Group (FP3-
10PIN-ADAPTER-KIT).
Existing ProASICPLUS family customers who are using the Samtec Small Programming Header
(FTSH-113-01-L-D-K) and are planning to migrate to IGLOO or ProASIC3 devices can also use
FP3-10PIN-ADAPTER-KIT.

Table 13-3 • Programming Header Ordering Codes

Manufacturer Part Number Description

AMP 103310-1 10-pin, 0.1"-pitch cable header (right-angle PCB mount
angle)

3M 2510-6002UB 10-pin, 0.1"-pitch cable header (straight PCB mount
angle)

Samtec FTSH-113-01-L-D-K Small programming header supported by FlashPro and
Silicon Sculptor

Samtec FTSH-105-01-L-D-K Compact programming header

Samtec FFSD-05-D-06.00-01-N 10-pin cable with 50 mil pitch sockets; included in FP3-
10PIN-ADAPTER-KIT.

Microsemi FP3-10PIN-ADAPTER-KIT Transition adapter kit to allow FP3 to be connected to a
micro 10-pin header (50 mil pitch). Includes a 6 inch
Samtec FFSD-05-D-06.00-01-N cable in the kit. The
transition adapter board was previously offered as
FP3-26PIN-ADAPTER and includes a 26-pin adapter for
design transitions from ProASICPLUS based boards to
ProASIC3 based boards.

Note: *Prog_Mode on FlashPro4 is an output signal that goes High during device programming and
returns to Low when programming is complete. This signal can be used to drive a system to provide
a 1.5 V programming signal to IGLOO nano, ProASIC3L, and RT ProASIC3 devices that can run
with 1.2 V core voltage but require 1.5 V for programming. IGLOO nano V2 devices can be
programmed at 1.2 V core voltage (when using FlashPro4 only), but IGLOO nano V5 devices are
programmed with a VCC core voltage of 1.5 V.

Figure 13-5 • Programming Header (top view)

1 2
3 4
5 6
7 8
9

TCK
TDO
TMS
VPUMP
TDI

GND
NC (FlashPro3/3X); Prog_Mode* (FlashPro4)

TRST
GND10

VJTAG
Revision 4 335

Microprocessor Programming of Microsemi’s Low Power Flash Devices
Microprocessor Programming Support in Flash Devices
The flash-based FPGAs listed in Table 15-1 support programming with a microprocessor and the
functions described in this document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 15-1. Where the information applies to only one device or limited devices, these exclusions will
be explicitly stated.

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 15-1. Where the information applies to only one device or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 15-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
350 Revision 4

http://www.microsemi.com/soc/documents/Fusion_DS.pdf
http://www.microsemi.com/soc/documents/IGLOO_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOe_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOPLUS_DS.pdf
http://www.microsemi.com/soc/documents/PA3_DS.pdf
http://www.microsemi.com/soc/documents/PA3E_DS.pdf
http://www.microsemi.com/soc/documents/PA3L_DS.pdf
http://www.microsemi.com/soc/documents/PA3_Auto_DS.pdf
http://www.microsemi.com/soc/documents/Mil_PA3_EL_DS.pdf
http://www.microsemi.com/soc/documents/RTPA3_DS.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/IGLOO_nano_DS.pdf
http://www.microsemi.com/soc/documents/PA3_nano_DS.pdf

ProASIC3L FPGA Fabric User’s Guide
Programming Algorithm

JTAG Interface
The low power flash families are fully compliant with the IEEE 1149.1 (JTAG) standard. They support all
the mandatory boundary scan instructions (EXTEST, SAMPLE/PRELOAD, and BYPASS) as well as six
optional public instructions (USERCODE, IDCODE, HIGHZ, and CLAMP).

IEEE 1532
The low power flash families are also fully compliant with the IEEE 1532 programming standard. The
IEEE 1532 standard adds programming instructions and associated data registers to devices that comply
with the IEEE 1149.1 standard (JTAG). These instructions and registers extend the capabilities of the
IEEE 1149.1 standard such that the Test Access Port (TAP) can be used for configuration activities. The
IEEE 1532 standard greatly simplifies the programming algorithm, reducing the amount of time needed
to implement microprocessor ISP.

Implementation Overview
To implement device programming with a microprocessor, the user should first download the C-based
STAPL player or DirectC code from the Microsemi SoC Products Group website. Refer to the website for
future updates regarding the STAPL player and DirectC code.

http://www.microsemi.com/soc/download/program_debug/stapl/default.aspx
http://www.microsemi.com/soc/download/program_debug/directc/default.aspx

Using the easy-to-follow user's guide, create the low-level application programming interface (API) to
provide the necessary basic functions. These API functions act as the interface between the
programming software and the actual hardware (Figure 15-2).

The API is then linked with the STAPL player or DirectC and compiled using the microprocessor's
compiler. Once the entire code is compiled, the user must download the resulting binary into the MCU
system's program memory (such as ROM, EEPROM, or flash). The system is now ready for
programming.
To program a design into the FPGA, the user creates a bitstream or STAPL file using the Microsemi
Designer software, downloads it into the MCU system's volatile memory, and activates the stored
programming binary file (Figure 15-3 on page 352). Once the programming is completed, the bitstream
or STAPL file can be removed from the system, as the configuration profile is stored in the flash FPGA
fabric and does not need to be reloaded at every system power-on.

Figure 15-2 • Device Programming Code Relationship

STAPL File

STAPL Player or DirectC

API

Programming
Algorithm and Data

Programming
Software

I/O and Memory
Functions
Revision 4 351

http://www.microsemi.com/soc/download/program_debug/directc/default.aspx
http://www.microsemi.com/soc/download/program_debug/stapl/default.aspx

Index
FlashLock
IGLOO and ProASIC devices 307
permanent 307

FlashROM
access using JTAG port 139
architecture 333
architecture of user nonvolatile 133
configuration 136
custom serialization 145
design flow 140
generation 141
programming and accessing 138
programming file 143
programming files 333
SmartGen 142

FlashROM read-back 371

G
global architecture 47
global buffers

no programmable delays 80
with PLL function 83
with programmable delays 80

global macros
Synplicity 66

globals
designer flow 69
networks 74
spines and rows 57

H
HLD code

instantiating 258
hot-swapping 383

I
I/O banks

standards 56
I/O standards 93

global macros 62
I/Os

assigning technologies 264
assignments defined in PDC file 259
automatically assigning 268
behavior at power-up/-down 377
buffer schematic cell 257
cell architecture 273
configuration with SmartGen 254
global, naming 51
manually assigning technologies 264
software-controlled attributes 253
user I/O assignment flow chart 251

idle mode 23
INBUF_FF 39
ISP 289, 290

architecture 327
board-level considerations 337

circuit 343
microprocessor 349

J
JTAG 1532 327
JTAG interface 351

L
layout

device-specific 94
LTC3025 linear voltage regulator 343

M
MAC validation/authentication 354
macros

CLKBUF 93
CLKBUF_LVDS/LVPECL 93
CLKDLY 81, 89
FIFO4KX18 157
PLL 89
PLL macro signal descriptions 84
RAM4K9 153
RAM512X18 155
supported basic RAM macros 152
UJTAG 365
ULSICC 40

MCU FPGA programming model 352
memory availability 162
memory blocks 151
microprocessor programming 349
Microsemi SoC Products Group

email 387
web-based technical support 387
website 387

O
OTP 289

P
PDC

global promotion and demotion 67
place-and-route 259
PLL

behavior at brownout condition 381
configuration bits 106
core specifications 100
dynamic PLL configuration 103
functional description 101
power supply decoupling scheme 128

PLL block signals 84
PLL macro block diagram 85
power conservation 41
power modes

Flash*Freeze 24
idle 23
shutdown 32
390 Revision 4

