
Microchip Technology - A3PE3000L-FG324I Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Active

Number of LABs/CLBs -

Number of Logic Elements/Cells -

Total RAM Bits 516096

Number of I/O 221

Number of Gates 3000000

Voltage - Supply 1.14V ~ 1.575V

Mounting Type Surface Mount

Operating Temperature -40°C ~ 100°C (TJ)

Package / Case 324-BGA

Supplier Device Package 324-FBGA (19x19)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/a3pe3000l-fg324i

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/a3pe3000l-fg324i-4493677
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array

ProASIC3L FPGA Fabric User’s Guide
Low Power Modes Overview
Table 2-2 summarizes the low power modes that achieve power consumption reduction when the FPGA
or system is idle.

Static (Idle) Mode
In Static (Idle) mode, none of the clock inputs is switching, and static power is the only power consumed
by the device. This mode can be achieved by switching off the incoming clocks to the FPGA, thus
benefitting from reduced power consumption. In addition, I/Os draw only minimal leakage current. In this
mode, embedded SRAM, I/Os, and registers retain their values so the device can enter and exit this
mode just by switching the clocks on or off.
If the device-embedded PLL is used as the clock source, Static (Idle) mode can easily be entered by
pulling the PLL POWERDOWN pin LOW (active Low), which will turn off the PLL.

Table 2-2 • Power Modes Summary

Mode VCCI VCC Core Clocks
ULSICC
Macro

To Enter
Mode

To Resume
Operation Trigger

Active On On On On N/A Initiate clock None –

Static Idle On On On Off N/A Stop clock Initiate
clock

External

Flash*Freeze
type 1

On On On On* N/A Assert FF
pin

Deassert
FF pin

External

Flash*Freeze
type 2

On On On On* Used to
enter

Flash*Freeze
mode

Assert FF
pin and
assert
LSICC

Deassert
FF pin

External

Sleep On Off Off Off N/A Shut down
VCC

Turn on
VCC supply

External

Shutdown Off Off Off Off N/A Shut down
VCC and

VCCI
supplies

Turn on
VCC and

VCCI
supplies

External

* External clocks can be left toggling while the device is in Flash*Freeze mode. Clocks generated by the embedded
PLL will be turned off automatically.
Revision 4 23

ProASIC3L FPGA Fabric User’s Guide
VersaNet Global Network Distribution
One of the architectural benefits of low power flash architecture is the set of powerful, low-delay
VersaNet global networks that can access the VersaTiles, SRAM, and I/O tiles of the device. Each device
offers a chip global network with six global lines (except for nano 10 k, 15 k, and 20 k gate devices) that
are distributed from the center of the FPGA array. In addition, each device (except the 10 k through 30 k
gate device) has four quadrant global networks, each consisting of three quadrant global net resources.
These quadrant global networks can only drive a signal inside their own quadrant. Each VersaTile has
access to nine global line resources—three quadrant and six chip-wide (main) global networks—and a
total of 18 globals are available on the device (3 × 4 regional from each quadrant and 6 global).
Figure 3-1 shows an overview of the VersaNet global network and device architecture for devices 60 k
and above. Figure 3-2 and Figure 3-3 on page 50 show simplified VersaNet global networks.
The VersaNet global networks are segmented and consist of spines, global ribs, and global multiplexers
(MUXes), as shown in Figure 3-1. The global networks are driven from the global rib at the center of the
die or quadrant global networks at the north or south side of the die. The global network uses the MUX
trees to access the spine, and the spine uses the clock ribs to access the VersaTile. Access is available
to the chip or quadrant global networks and the spines through the global MUXes. Access to the spine
using the global MUXes is explained in the "Spine Architecture" section on page 57.
These VersaNet global networks offer fast, low-skew routing resources for high-fanout nets, including
clock signals. In addition, these highly segmented global networks offer users the flexibility to create low-
skew local clock networks using spines for up to 252 internal/external clocks or other high-fanout nets in
low power flash devices. Optimal usage of these low-skew networks can result in significant
improvement in design performance.

Note: Not applicable to 10 k through 30 k gate devices
Figure 3-1 • Overview of VersaNet Global Network and Device Architecture

Pad Ring

Pad Ring

P
ad

 R
in

g
I/O

 R
in

g

I/O
R

ing

Chip (main)
Global Pads

Chip (main)
Global Pads

High-Performance
Global Network

Spine

Ribs

Scope of Spine
(shaded area
plus local RAMs
and I/Os)Spine-Selection

MUX

Embedded
RAM Blocks

Logic Tiles

Top Spine

Bottom Spine

T1

B1

T2

B2

T3

B3

Quadrant Global Pads
Revision 4 49

ProASIC3L FPGA Fabric User’s Guide
Figure 3-6 shows all nine global inputs for the location A connected to the top left quadrant global
network via CCC.

Since each bank can have a different I/O standard, the user should be careful to choose the correct
global I/O for the design. There are 54 global pins available to access 18 global networks. For the single-
ended and voltage-referenced I/O standards, you can use any of these three available I/Os to access the
global network. For differential I/O standards such as LVDS and LVPECL, the I/O macro needs to be
placed on (A0, A1), (B0, B1), (C0, C1), or a similar location. The unassigned global I/Os can be used
as regular I/Os. Note that pin names starting with GF and GC are associated with the chip global
networks, and GA, GB, GD, and GE are used for quadrant global networks. Table 3-2 on page 54 and
Table 3-3 on page 55 show the general chip and quadrant global pin names.

Figure 3-6 • Global Inputs

MUX

GAAO/
IOuxwByVz

IOuxwByVz

IOuxwByVz

IOuxwByVz

IOuxwByVz
GAA1/

GAA2/

MUX

GABO/

GAB1/

GAB2/

MUX

GACO/

GAC1/

GAC2/

CLKA

CLKB

CLKC

Quadrant Global for CLKA

Quadrant Global for CLKB

Quadrant Global for CLKC

CCC

IOuxwByVz

IOuxwByVz

IOuxwByVz

IOuxwByVz
Revision 4 53

Global Resources in Low Power Flash Devices
Using Clock Aggregation
Clock aggregation allows for multi-spine clock domains to be assigned using hardwired connections,
without adding any extra skew. A MUX tree, shown in Figure 3-8, provides the necessary flexibility to
allow long lines, local resources, or I/Os to access domains of one, two, or four global spines. Signal
access to the clock aggregation system is achieved through long-line resources in the central rib in the
center of the die, and also through local resources in the north and south ribs, allowing I/Os to feed
directly into the clock system. As Figure 3-9 indicates, this access system is contiguous.
There is no break in the middle of the chip for the north and south I/O VersaNet access. This is different
from the quadrant clocks located in these ribs, which only reach the middle of the rib.

Figure 3-8 • Spine Selection MUX of Global Tree

Figure 3-9 • Clock Aggregation Tree Architecture

Internal/External
Signal

Internal/External
Signal

Internal/External
Signals

Spine

Global Rib

Global Driver MUX

Tree Node MUX

Tree Node MUX

Internal/External
Signals

Tree Node MUX

Global Spine
Global Rib
Global Driver and MUX

I/O Access
Internal Signal Access

I/O Tiles

Global Signal Access
Tree Node MUX
60 Revision 4

ProASIC3L FPGA Fabric User’s Guide
Clock Aggregation Architecture
This clock aggregation feature allows a balanced clock tree, which improves clock skew. The physical
regions for clock aggregation are defined from left to right and shift by one spine. For chip global
networks, there are three types of clock aggregation available, as shown in Figure 3-10:

• Long lines that can drive up to four adjacent spines (A)
• Long lines that can drive up to two adjacent spines (B)
• Long lines that can drive one spine (C)

There are three types of clock aggregation available for the quadrant spines, as shown in Figure 3-10:
• I/Os or local resources that can drive up to four adjacent spines
• I/Os or local resources that can drive up to two adjacent spines
• I/Os or local resources that can drive one spine

As an example, A3PE600 and AFS600 devices have twelve spine locations: T1, T2, T3, T4, T5, T6, B1,
B2, B3, B4, B5, and B6. Table 3-7 shows the clock aggregation you can have in A3PE600 and
AFS600.

The clock aggregation for the quadrant spines can cross over from the left to right quadrant, but not from
top to bottom. The quadrant spine assignment T1:T4 is legal, but the quadrant spine assignment T1:B1
is not legal. Note that this clock aggregation is hardwired. You can always assign signals to spine T1 and
B2 by instantiating a buffer, but this may add skew in the signal.

Figure 3-10 • Four Spines Aggregation

Tn Tn + 1 Tn + 2 Tn + 4

A

B

C

Tn + 3

Table 3-7 • Spine Aggregation in A3PE600 or AFS600

Clock Aggregation Spine

1 spine T1, T2, T3, T4, T5, T6, B1, B2, B3, B4, B5, B6

2 spines T1:T2, T2:T3, T3:T4, T4:T5, T5:T6, B1:B2, B2:B3, B3:B4, B4:B5, B5:B6

4 spines B1:B4, B2:B5, B3:B6, T1:T4, T2:T5, T3:T6
Revision 4 61

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Implementing EXTFB in ProASIC3/E Devices
When the external feedback (EXTFB) signal of the PLL in the ProASIC3/E devices is implemented, the
phase detector of the PLL core receives the reference clock (CLKA) and EXTFB as inputs. EXTFB must
be sourced as an INBUF macro and located at the global/chip clock location associated with the target
PLL by Designer software. EXTFB cannot be sourced from the FPGA fabric.
The following example shows CLKA and EXTFB signals assigned to two global I/Os in the same global
area of ProASIC3E device.

Figure 4-5 • CLKA and EXTFB Assigned to Global I/Os

+–

+
–

Source for CCC
(CLKA or CLKB or CLKC)

To Core

GxB0

GxB1

GxB2
Routed Clok
(from FPGA core)

+–

+
–

Source for CCC
(CLKA or CLKB or CLKC)

To Core

GxA0

GxA1

GxA2
Routed Clok
(from FPGA core)

x represents global location; can be A, B, C, D, E, or F

External Feedback
(EXTFB) signal is
assigned on GxB1
by Designer automatically.

The reference clock,
CLKA, can be assigned
on GxA0 or GxA1.
86 Revision 4

ProASIC3L FPGA Fabric User’s Guide
Feedback Configuration
The PLL provides both internal and external feedback delays. Depending on the configuration, various
combinations of feedback delays can be achieved.

Internal Feedback Configuration
This configuration essentially sets the feedback multiplexer to route the VCO output of the PLL core as
the input to the feedback of the PLL. The feedback signal can be processed with the fixed system and
the adjustable feedback delay, as shown in Figure 4-24. The dividers are automatically configured by
SmartGen based on the user input.
Indicated below is the System Delay pull-down menu. The System Delay can be bypassed by setting it to
0. When set, it adds a 2 ns delay to the feedback path (which results in delay advancement of the output
clock by 2 ns).

Figure 4-25 shows the controllable Feedback Delay. If set properly in conjunction with the fixed System
Delay, the total output delay can be advanced significantly.

Figure 4-24 • Internal Feedback with Selectable System Delay

Figure 4-25 • Internal Feedback with Selectable Feedback Delay
Revision 4 113

ProASIC3L FPGA Fabric User’s Guide
DYNCCC Core(.CLKA(CLKA), .EXTFB(GND), .POWERDOWN(POWERDOWN), .GLA(GLA), .LOCK(LOCK),
.CLKB(CLKB), .GLB(GLB), .YB(), .CLKC(CLKC), .GLC(GLC), .YC(), .SDIN(SDIN),
.SCLK(SCLK), .SSHIFT(SSHIFT), .SUPDATE(SUPDATE), .MODE(MODE), .SDOUT(SDOUT),
.OADIV0(GND), .OADIV1(GND), .OADIV2(VCC), .OADIV3(GND), .OADIV4(GND), .OAMUX0(GND),
.OAMUX1(GND), .OAMUX2(VCC), .DLYGLA0(GND), .DLYGLA1(GND), .DLYGLA2(GND),
.DLYGLA3(GND), .DLYGLA4(GND), .OBDIV0(GND), .OBDIV1(GND), .OBDIV2(GND),
.OBDIV3(GND), .OBDIV4(GND), .OBMUX0(GND), .OBMUX1(GND), .OBMUX2(GND), .DLYYB0(GND),
.DLYYB1(GND), .DLYYB2(GND), .DLYYB3(GND), .DLYYB4(GND), .DLYGLB0(GND),
.DLYGLB1(GND), .DLYGLB2(GND), .DLYGLB3(GND), .DLYGLB4(GND), .OCDIV0(GND),
.OCDIV1(GND), .OCDIV2(GND), .OCDIV3(GND), .OCDIV4(GND), .OCMUX0(GND), .OCMUX1(GND),
.OCMUX2(GND), .DLYYC0(GND), .DLYYC1(GND), .DLYYC2(GND), .DLYYC3(GND), .DLYYC4(GND),
.DLYGLC0(GND), .DLYGLC1(GND), .DLYGLC2(GND), .DLYGLC3(GND), .DLYGLC4(GND),
.FINDIV0(VCC), .FINDIV1(GND), .FINDIV2(VCC), .FINDIV3(GND), .FINDIV4(GND),
.FINDIV5(GND), .FINDIV6(GND), .FBDIV0(GND), .FBDIV1(GND), .FBDIV2(GND),
.FBDIV3(GND), .FBDIV4(GND), .FBDIV5(VCC), .FBDIV6(GND), .FBDLY0(GND), .FBDLY1(GND),
.FBDLY2(GND), .FBDLY3(GND), .FBDLY4(GND), .FBSEL0(VCC), .FBSEL1(GND),
.XDLYSEL(GND), .VCOSEL0(GND), .VCOSEL1(GND), .VCOSEL2(VCC));

defparam Core.VCOFREQUENCY = 165.000;

endmodule

Delayed Clock Configuration
The CLKDLY macro can be generated with the desired delay and input clock source (Hardwired I/O,
External I/O, or Core Logic), as in Figure 4-28.

After setting all the required parameters, users can generate one or more PLL configurations with HDL or
EDIF descriptions by clicking the Generate button. SmartGen gives the option of saving session results
and messages in a log file:

Macro Parameters

Name : delay_macro
Family : ProASIC3
Output Format : Verilog
Type : Delayed Clock
Delay Index : 2
CLKA Source : Hardwired I/O

Total Clock Delay = 0.935 ns.

The resultant CLKDLY macro Verilog netlist is as follows:

module delay_macro(GL,CLK);

output GL;
input CLK;

Figure 4-28 • Delayed Clock Configuration Dialog Box
Revision 4 119

ProASIC3L FPGA Fabric User’s Guide
The following is an example of a PLL configuration utilizing the clock frequency synthesis and clock delay
adjustment features. The steps include generating the PLL core with SmartGen, performing simulation
for verification with ModelSim, and performing static timing analysis with SmartTime in Designer.
Parameters of the example PLL configuration:

Input Frequency – 20 MHz
Primary Output Requirement – 20 MHz with clock advancement of 3.02 ns
Secondary 1 Output Requirement – 40 MHz with clock delay of 2.515 ns

Figure 4-29 shows the SmartGen settings. Notice that the overall delays are calculated automatically,
allowing the user to adjust the delay elements appropriately to obtain the desired delays.

After confirming the correct settings, generate a structural netlist of the PLL and verify PLL core settings
by checking the log file:
Name : test_pll_delays
Family : ProASIC3E
Output Format : VHDL
Type : Static PLL
Input Freq(MHz) : 20.000
CLKA Source : Hardwired I/O
Feedback Delay Value Index : 21
Feedback Mux Select : 2
XDLY Mux Select : No
Primary Freq(MHz) : 20.000
Primary PhaseShift : 0
Primary Delay Value Index : 1
Primary Mux Select : 4
Secondary1 Freq(MHz) : 40.000
Use GLB : YES
Use YB : NO
…
…
…
Primary Clock frequency 20.000
Primary Clock Phase Shift 0.000

Figure 4-29 • SmartGen Settings
Revision 4 121

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Primary Clock Output Delay from CLKA -3.020

Secondary1 Clock frequency 40.000
Secondary1 Clock Phase Shift 0.000
Secondary1 Clock Global Output Delay from CLKA 2.515

Next, perform simulation in ModelSim to verify the correct delays. Figure 4-30 shows the simulation
results. The delay values match those reported in the SmartGen PLL Wizard.

The timing can also be analyzed using SmartTime in Designer. The user should import the synthesized
netlist to Designer, perform Compile and Layout, and then invoke SmartTime. Go to Tools > Options
and change the maximum delay operating conditions to Typical Case. Then expand the Clock-to-Out
paths of GLA and GLB and the individual components of the path delays are shown. The path of GLA is
shown in Figure 4-31 on page 123 displaying the same delay value.

Figure 4-30 • ModelSim Simulation Results

Primary Clock Output Time
Advancement from CLKA

Secondary1 Clock Global
Output Delay from CLKA
122 Revision 4

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Using internal feedback, we know from EQ 4-1 on page 102 that the maximum achievable output
frequency from the primary output is

fGLA = fCLKA × m / (n × u) = 2 MHz × 128 / (1 × 1) = 256 MHz

EQ 4-5
Figure 4-35 shows the settings of the initial PLL. When configuring the initial PLL, specify the input to be
either Hardwired I/O–Driven or External I/O–Driven. This generates a netlist with the initial PLL routed
from an I/O. Do not specify the input to be Core Logic–Driven, as this prohibits the connection from the
I/O pin to the input of the PLL.

A second PLL can be connected serially to achieve the required frequency. EQ 4-1 on page 102 to
EQ 4-3 on page 102 are extended as follows:

fGLA2 = fGLA × m2 / (n2 × u2) = fCLKA1 × m1 × m2 / (n1 × u1 × n2 × u2) – Primary PLL Output Clock

EQ 4-6

fGLB2 = fYB2 = fCLKA1 × m1 × m2 / (n1 × n2 × v1 × v2) – Secondary 1 PLL Output Clock(s)

EQ 4-7

fGLC2 = fYC2 = fCLKA1 × m1 × m2 / (n1 × n2 × w1 × w2) – Secondary 2 PLL Output Clock(s)

EQ 4-8
In the example, the final output frequency (foutput) from the primary output of the second PLL will be as
follows (EQ 4-9):

foutput = fGLA2 = fGLA × m2 / (n2 × u2) = 256 MHz × 70 / (64 × 1) = 280 MHz

EQ 4-9
Figure 4-36 on page 127 shows the settings of the second PLL. When configuring the second PLL (or
any subsequent-stage PLLs), specify the input to be Core Logic–Driven. This generates a netlist with the
second PLL routed internally from the core. Do not specify the input to be Hardwired I/O–Driven or
External I/O–Driven, as these options prohibit the connection from the output of the first PLL to the input
of the second PLL.

Figure 4-34 • Cascade PLL Configuration

Figure 4-35 • First-Stage PLL Showing Input of 2 MHz and Output of 256 MHz
126 Revision 4

ProASIC3L FPGA Fabric User’s Guide
Figure 5-2 • Fusion Device Architecture Overview (AFS600)

Figure 5-3 • ProASIC3 and IGLOO Device Architecture

VersaTile

CCC

CCC

I/Os

OSC

CCC/PLL

Bank 0

B
an

k
4 B

ank 2

Bank 1

Bank 3

SRAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block

SRAM Block
4,608-Bit Dual-Port SRAM
or FIFO Block

Flash Memory Blocks Flash Memory BlocksADC

Analog
Quad

ISP AES
Decryption

User Nonvolatile
FlashROM Charge Pumps

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

Analog
Quad

4,608-Bit Dual-Port SRAM
or FIFO Block

VersaTile

RAM Block

CCC

I/Os

ISP AES Decryption Nonvolatile Memory
FlashROM Charge Pumps

4,608-Bit Dual-Port SRAM
or FIFO Block

RAM Block
Revision 4 135

ProASIC3L FPGA Fabric User’s Guide
SRAM and FIFO Architecture
To meet the needs of high-performance designs, the memory blocks operate strictly in synchronous
mode for both read and write operations. The read and write clocks are completely independent, and
each can operate at any desired frequency up to 250 MHz.

• 4k×1, 2k×2, 1k×4, 512×9 (dual-port RAM—2 read / 2 write or 1 read / 1 write)
• 512×9, 256×18 (2-port RAM—1 read / 1 write)
• Sync write, sync pipelined / nonpipelined read

Automotive ProASIC3 devices support single-port SRAM capabilities or dual-port SRAM only under
specific conditions. Dual-port mode is supported if the clocks to the two SRAM ports are the same and
180° out of phase (i.e., the port A clock is the inverse of the port B clock). The Libero SoC software
macro libraries support a dual-port macro only. For use of this macro as a single-port SRAM, the inputs
and clock of one port should be tied off (grounded) to prevent errors during design compile. For use in
dual-port mode, the same clock with an inversion between the two clock pins of the macro should be
used in the design to prevent errors during compile.
The memory block includes dedicated FIFO control logic to generate internal addresses and external flag
logic (FULL, EMPTY, AFULL, AEMPTY).
Simultaneous dual-port read/write and write/write operations at the same address are allowed when
certain timing requirements are met.
During RAM operation, addresses are sourced by the user logic, and the FIFO controller is ignored. In
FIFO mode, the internal addresses are generated by the FIFO controller and routed to the RAM array by
internal MUXes.
The low power flash device architecture enables the read and write sizes of RAMs to be organized
independently, allowing for bus conversion. For example, the write size can be set to 256×18 and the
read size to 512×9.
Both the write width and read width for the RAM blocks can be specified independently with the WW
(write width) and RW (read width) pins. The different D×W configurations are 256×18, 512×9, 1k×4,
2k×2, and 4k×1. When widths of one, two, or four are selected, the ninth bit is unused. For example,
when writing nine-bit values and reading four-bit values, only the first four bits and the second four bits of
each nine-bit value are addressable for read operations. The ninth bit is not accessible.
Conversely, when writing four-bit values and reading nine-bit values, the ninth bit of a read operation will
be undefined. The RAM blocks employ little-endian byte order for read and write operations.

Memory Blocks and Macros
Memory blocks can be configured with many different aspect ratios, but are generically supported in the
macro libraries as one of two memory elements: RAM4K9 or RAM512X18. The RAM4K9 is configured
as a true dual-port memory block, and the RAM512X18 is configured as a two-port memory block. Dual-
port memory allows the RAM to both read from and write to either port independently. Two-port memory
allows the RAM to read from one port and write to the other using a common clock or independent read
and write clocks. If needed, the RAM4K9 blocks can be configured as two-port memory blocks. The
memory block can be configured as a FIFO by combining the basic memory block with dedicated FIFO
controller logic. The FIFO macro is named FIFO4KX18 (Figure 6-3 on page 152).
Clocks for the RAM blocks can be driven by the VersaNet (global resources) or by regular nets. When
using local clock segments, the clock segment region that encompasses the RAM blocks can drive the
RAMs. In the dual-port configuration (RAM4K9), each memory block port can be driven by either rising-
edge or falling-edge clocks. Each port can be driven by clocks with different edges. Though only a rising-
edge clock can drive the physical block itself, the Microsemi Designer software will automatically bubble-
push the inversion to properly implement the falling-edge trigger for the RAM block.
Revision 4 151

ProASIC3L FPGA Fabric User’s Guide
Temporary overshoots are allowed according to the overshoot and undershoot table in the datasheet.

Solution 2
The board-level design must ensure that the reflected waveform at the pad does not exceed the voltage
overshoot/undershoot limits provided in the datasheet. This is a requirement to ensure long-term
reliability.
This scheme will also work for a 3.3 V PCI/PCI-X configuration, but the internal diode should not be used
for clamping, and the voltage must be limited by the external resistors and Zener, as shown in
Figure 7-10. Relying on the diode clamping would create an excessive pad DC voltage of
3.3 V + 0.7 V = 4 V.

Figure 7-9 • Solution 1

Figure 7-10 • Solution 2

Solution 1

5.5 V 3.3 V

Requires two board resistors,
LVCMOS 3.3 V I/Os

I/O Input

Rext1
Rext2

Solution 2

5.5 V 3.3 V

Requires one board resistor, one
Zener 3.3 V diode, LVCMOS 3.3 V I/Os

I/O Input

Rext1

Zener
3.3 V
Revision 4 195

I/O Structures in IGLOOe and ProASIC3E Devices
Board-Level Considerations
Low power flash devices have robust I/O features that can help in reducing board-level components. The
devices offer single-chip solutions, which makes the board layout simpler and more immune to signal
integrity issues. Although, in many cases, these devices resolve board-level issues, special attention
should always be given to overall signal integrity. This section covers important board-level
considerations to facilitate optimum device performance.

Termination
Proper termination of all signals is essential for good signal quality. Nonterminated signals, especially
clock signals, can cause malfunctioning of the device.
For general termination guidelines, refer to the Board-Level Considerations application note for
Microsemi FPGAs. Also refer to the "Pin Descriptions" chapter of the appropriate datasheet for
termination requirements for specific pins.
Low power flash I/Os are equipped with on-chip pull-up/-down resistors. The user can enable these
resistors by instantiating them either in the top level of the design (refer to the IGLOO, Fusion, and
ProASIC3 Macro Library Guide for the available I/O macros with pull-up/-down) or in the I/O Attribute
Editor in Designer if generic input or output buffers are instantiated in the top level. Unused I/O pins are
configured as inputs with pull-up resistors.
As mentioned earlier, low power flash devices have multiple programmable drive strengths, and the user
can eliminate unwanted overshoot and undershoot by adjusting the drive strengths.

Figure 8-20 • User I/O Naming Conventions of IGLOOe and ProASIC3E Devices – Top View

GNDQ
VMV7

VMV6
GNDQ

V
M

V
0

G
N

D
Q

G
N

D

G
N

D

G
N

D
Q

V
M

V
1

V
M

V
4

TM
S

TD
I

TC
K

G
N

D
Q

G
N

D

G
N

D

G
N

D
Q

V
M

V
5

VCC

VCC

VCOMPLF
VCCPLF

VCOMPLE
VCCPLE

VCOMPLA
VCCPLA

GND
VCCIB7

VCCIB6
GND

VCC
V

C
C

V
C

C
IB

0

V
C

C

V
C

C
IB

1

V
C

C

V
C

C
IB

4

V
C

C
IB

5

V
C

C

GNDQ
VMV2

GND

TRST
TDO

VMV3

GNDQ

VCOMPLB

VCOMPLC

VCCPLB

VCCPLC

VJTAG

VCC

VCC

VCOMPLD
VPUMP

VCCPLD

VCCIB2

GND
VCC

VCCIB3

CCC/PLL
“D”

Bank 5 Bank 4

JTA
G

B
an

k
3

B
an

k
2

JTAG

B
an

k
6

B
an

k
7

AGLE600/A3PE600
A3PE1500

AGLE3000A3PE3000

Bank 0 Bank 1

CCC/PLL
“C”

CCC/PLL
“B”

CCC/PLL
“E”

CCC/PLL
“F”

CCC/PLL
“A”
246 Revision 4

http://www.microsemi.com/soc/documents/ALL_AC276_AN.pdf
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf

I/O Software Control in Low Power Flash Devices
those banks, the user does not need to assign the same VCCI voltage to another bank. The user needs
to assign the other three VCCI voltages to three more banks.

Assigning Technologies and VREF to I/O Banks
Low power flash devices offer a wide variety of I/O standards, including voltage-referenced standards.
Before proceeding to Layout, each bank must have the required VCCI voltage assigned for the
corresponding I/O technologies used for that bank. The voltage-referenced standards require the use of
a reference voltage (VREF). This assignment can be done manually or automatically. The following
sections describe this in detail.

Manually Assigning Technologies to I/O Banks
The user can import the PDC at this point and resolve this requirement. The PDC command is
set_iobank [bank name] –vcci [vcci value]

Another method is to use the I/O Bank Settings dialog box (MVN > Edit > I/O Bank Settings) to set up
the VCCI voltage for the bank (Figure 9-12).

Figure 9-12 • Setting VCCI for a Bank
264 Revision 4

Security in Low Power Flash Devices
Figure 12-10 • All Silicon Features Selected for IGLOO and ProASIC3 Devices

Figure 12-11 • All Silicon Features Selected for Fusion
314 Revision 4

15 – Microprocessor Programming of Microsemi’s
Low Power Flash Devices

Introduction
The Fusion, IGLOO, and ProASIC3 families of flash FPGAs support in-system programming (ISP) with
the use of a microprocessor. Flash-based FPGAs store their configuration information in the actual cells
within the FPGA fabric. SRAM-based devices need an external configuration memory, and hybrid
nonvolatile devices store the configuration in a flash memory inside the same package as the SRAM
FPGA. Since the programming of a true flash FPGA is simpler, requiring only one stage, it makes sense
that programming with a microprocessor in-system should be simpler than with other SRAM FPGAs.
This reduces bill-of-materials costs and printed circuit board (PCB) area, and increases system reliability.
Nonvolatile flash technology also gives the low power flash devices the advantage of a secure, low
power, live-at-power-up, and single-chip solution. Low power flash devices are reprogrammable and offer
time-to-market benefits at an ASIC-level unit cost. These features enable engineers to create high-
density systems using existing ASIC or FPGA design flows and tools.
This document is an introduction to microprocessor programming only. To explain the difference between
the options available, user's guides for DirectC and STAPL provide more detail on implementing each
style.

Figure 15-1 • ISP Using Microprocessor

Microprocessor

Internal RAM

I/O Functions

JTAG Bus

Flash
Device

Internal/External
Memory Running

DirectC

On-Board
Memory
Device
.dat file
Revision 4 349

ProASIC3L FPGA Fabric User’s Guide
UJTAG Port Usage
UIREG[7:0] hold the contents of the JTAG instruction register. The UIREG vector value is updated when
the TAP Controller state machine enters the Update_IR state. Instructions 16 to 127 are user-defined and
can be employed to encode multiple applications and commands within an application. Loading new
instructions into the UIREG vector requires users to send appropriate logic to TMS to put the TAP
Controller in a full IR cycle starting from the Select IR_Scan state and ending with the Update_IR state.
UTDI, UTDO, and UDRCK are directly connected to the JTAG TDI, TDO, and TCK ports, respectively.
The TDI input can be used to provide either data (TAP Controller in the Shift_DR state) or the new
contents of the instruction register (TAP Controller in the Shift_IR state).
UDRSH, UDRUPD, and UDRCAP are HIGH when the TAP Controller state machine is in the Shift_DR,
Update_DR, and Capture_DR states, respectively. Therefore, they act as flags to indicate the stages of
the data shift process. These flags are useful for applications in which blocks of data are shifted into the
design from JTAG pins. For example, an active UDRSH can indicate that UTDI contains the data
bitstream, and UDRUPD is a candidate for the end-of-data-stream flag.
As mentioned earlier, users should not connect the TDI, TDO, TCK, TMS, and TRST ports of the UJTAG
macro to any port or net of the design netlist. The Designer software will automatically handle the port
connection.

Figure 17-4 • TAP Controller State Diagram

Run_Test/
Idle0

Test_Logic_Reset1

0
1 Select_

DR_Scan

Update_DR

Exit2_DR

Pause_DR

Exit1_DR

Shift_DR

Capture_DR

Select_
IR_Scan

Update_IR

Exit2_IR

Pause_IR

Exit1_IR

Shift_IR

Capture_IR

0

0

00

0

0

1
0

0

00

0

0

0

11

1

1

1

1

1

0

1

11

1

11
Revision 4 367

