
Microchip Technology - A3PE3000L-FGG324 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Active

Number of LABs/CLBs -

Number of Logic Elements/Cells -

Total RAM Bits 516096

Number of I/O 221

Number of Gates 3000000

Voltage - Supply 1.14V ~ 1.575V

Mounting Type Surface Mount

Operating Temperature 0°C ~ 85°C (TJ)

Package / Case 324-BGA

Supplier Device Package 324-FBGA (19x19)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/a3pe3000l-fgg324

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/a3pe3000l-fgg324-4486637
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array


ProASIC3L FPGA Fabric User’s Guide
Device Overview
Low power flash devices consist of multiple distinct programmable architectural features (Figure 1-5 on
page 13 through Figure 1-7 on page 14):

• FPGA fabric/core (VersaTiles)
• Routing and clock resources (VersaNets)
• FlashROM
• Dedicated SRAM and/or FIFO 

– 30 k gate and smaller device densities do not support SRAM or FIFO.
– Automotive devices do not support FIFO operation.

• I/O structures
• Flash*Freeze technology and low power modes

Notes: * Bank 0 for the 30 k devices
† Flash*Freeze mode is supported on IGLOO devices.

Figure 1-2 • IGLOO and ProASIC3 nano Device Architecture Overview with Two I/O Banks (applies to 10 k and 
30 k device densities, excluding IGLOO PLUS devices)
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FPGA Array Architecture in Low Power Flash Devices
I/O State of Newly Shipped Devices
Devices are shipped from the factory with a test design in the device. The power-on switch for VCC is
OFF by default in this test design, so I/Os are tristated by default. Tristated means the I/O is not actively
driven and floats. The exact value cannot be guaranteed when it is floating. Even in simulation software,
a tristate value is marked as unknown. Due to process variations and shifts, tristated I/Os may float
toward High or Low, depending on the particular device and leakage level. 
If there is concern regarding the exact state of unused I/Os, weak pull-up/pull-down should be added to
the floating I/Os so their state is controlled and stabilized.

Note: Flash*Freeze technology only applies to IGLOOe devices.
Figure 1-7 • IGLOOe and ProASIC3E Device Architecture Overview (AGLE600 device is shown)

4,608-Bit Dual-Port SRAM 
or FIFO Block

VersaTile

RAM Block

CCC

Pro I/Os

4,608-Bit Dual-Port SRAM 
or FIFO Block

RAM Block

ISP AES
Decryption

User Nonvolatile
FlashRom

Flash*Freeze†

Technology
Charge
Pumps

B
ank 3

B
ank 2

Bank 0 Bank 1

Bank 5 Bank 4

B
an

k 
7

B
an

k 
6

14 Revision 4



ProASIC3L FPGA Fabric User’s Guide
Figure 2-1 shows the concept of FF pin control in Flash*Freeze mode type 1. 

Figure 2-2 shows the timing diagram for entering and exiting Flash*Freeze mode type 1.

Figure 2-1 • Flash*Freeze Mode Type 1 – Controlled by the Flash*Freeze Pin
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Figure 2-2 • Flash*Freeze Mode Type 1 – Timing Diagram
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Flash*Freeze Technology and Low Power Modes
power supply and board-level configurations, the user can easily calculate how long it will take for the
core to become inactive or active. For more information, refer to the "Power-Up/-Down Behavior of Low
Power Flash Devices" section on page 373. 

Context Save and Restore in Sleep or Shutdown Mode 
In Sleep mode or Shutdown mode, the contents of the SRAM, state of the I/Os, and state of the registers
are lost when the device is powered off, if no other measure is taken. A low-cost external serial EEPROM
can be used to save and restore the contents of the device when entering and exiting Sleep mode or
Shutdown mode. In the Embedded SRAM Initialization Using External Serial EEPROM application note,
detailed information and a reference design are provided for initializing the embedded SRAM using an
external serial EEPROM. The user can easily customize the reference design to save and restore the
FPGA state when entering and exiting Sleep mode or Shutdown mode. The microcontroller will need to
manage this activity; hence, before powering down VCC, the data will be read from the FPGA and stored
externally. In a similar way, after the FPGA is powered up, the microcontroller will allow the FPGA to load
the data from external memory and restore its original state.

Flash*Freeze Design Guide
This section describes how designers can create reliable designs that use ultra-low power Flash*Freeze
modes optimally. The section below provides guidance on how to select the best Flash*Freeze mode for
any application. The "Design Solutions" section on page 35 gives specific recommendations on how to
design and configure clocks, set/reset signals, and I/Os. This section also gives an overview of the
design flow and provides details concerning Microsemi's Flash*Freeze Management IP, which enables
clean clock gating and housekeeping. The "Additional Power Conservation Techniques" section on
page 41 describes board-level considerations for entering and exiting Flash*Freeze mode.

Selecting the Right Flash*Freeze Mode
Both Flash*Freeze modes will bring an FPGA into an ultra-low power static mode that retains register
and SRAM content and sets I/Os to a predetermined configuration. There are two primary differences
that distinguish type 2 mode from type 1, and they must be considered when creating a design using
Flash*Freeze technology. 
First, with type 2 mode, the device has an opportunity to wait for a second signal to enable activation of
Flash*Freeze mode. This allows processes to complete prior to deactivating the device, and can be
useful to control task completion, data preservation, accidental Flash*Freeze activation, system
shutdown, or any other housekeeping function. The second signal may be derived from an external or in-
to-out internal source. The second difference between type 1 and type 2 modes is that a design for type
2 mode has an opportunity to cleanly manage clocks and data activity before entering and exiting
Flash*Freeze mode. This is particularly important when data preservation is needed, as it ensures valid
data is stored prior to entering, and upon exiting, Flash*Freeze mode.
Type 1 Flash*Freeze mode is ideally suited for applications with the following design criteria:

• Entering Flash*Freeze mode is not dependent on any signal other than the external FF pin.
• Internal housekeeping is not required prior to entering Flash*Freeze.

Figure 2-8 • Entering and Exiting Sleep Mode, Typical Timing Diagram
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Global Resources in Low Power Flash Devices
Global Resource Support in Flash-Based Devices
The flash FPGAs listed in Table 3-1 support the global resources and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO products as
listed in Table 3-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 3-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 3-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

IGLOO nano The industry’s lowest-power, smallest-size solution

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Each CCC can implement up to three independent global buffers (with or without programmable delay) 
or a PLL function (programmable frequency division/multiplication, phase shift, and delays) with up to 
three global outputs. Unused global outputs of a PLL can be used to implement independent global 
buffers, up to a maximum of three global outputs for a given CCC.

CCC Programming
The CCC block is fully configurable, either via flash configuration bits set in the programming bitstream or 
through an asynchronous interface. This asynchronous dedicated shift register interface is dynamically 
accessible from inside the low power flash devices to permit parameter changes, such as PLL divide 
ratios and delays, during device operation. 
To increase the versatility and flexibility of the clock conditioning system, the CCC configuration is 
determined either by the user during the design process, with configuration data being stored in flash 
memory as part of the device programming procedure, or by writing data into a dedicated shift register 
during normal device operation.
This latter mode allows the user to dynamically reconfigure the CCC without the need for core 
programming. The shift register is accessed through a simple serial interface. Refer to the "UJTAG 
Applications in Microsemi’s Low Power Flash Devices" section on page 363 or the application note Using 
Global Resources in Actel Fusion Devices.

Global Resources 
Low power flash and mixed signal devices provide three global routing networks (GLA, GLB, and GLC) 
for each of the CCC locations. There are potentially many I/O locations; each global I/O location can be 
chosen from only one of three possibilities. This is controlled by the multiplexer tree circuitry in each 
global network. Once the I/O location is selected, the user has the option to utilize the CCCs before the 
signals are connected to the global networks. The CCC in each location (up to six) has the same 
structure, so generating the CCC macros is always done with an identical software GUI. The CCCs in the 
corner locations drive the quadrant global networks, and the CCCs in the middle of the east and west 
chip sides drive the chip global networks. The quadrant global networks span only a quarter of the 
device, while the chip global networks span the entire device. For more details on global resources 
offered in low power flash devices, refer to the "Global Resources in Low Power Flash Devices" section 
on page 47. 
A global buffer can be placed in any of the three global locations (CLKA-GLA, CLKB-GLB, or 
CLKC-GLC) of a given CCC. A PLL macro uses the CLKA CCC input to drive its reference clock. It uses 
the GLA and, optionally, the GLB and GLC global outputs to drive the global networks. A PLL macro can 
also drive the YB and YC regular core outputs. The GLB (or GLC) global output cannot be reused if the 
YB (or YC) output is used. Refer to the "PLL Macro Signal Descriptions" section on page 84 for more 
information. 
Each global buffer, as well as the PLL reference clock, can be driven from one of the following: 

• 3 dedicated single-ended I/Os using a hardwired connection
• 2 dedicated differential I/Os using a hardwired connection (not supported for IGLOO nano or 

ProASIC3 nano devices)
• The FPGA core
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ProASIC3L FPGA Fabric User’s Guide
CCC Support in Microsemi’s Flash Devices
The flash FPGAs listed in Table 4-1 support the CCC feature and the functions described in this 
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed 
in Table 4-1. Where the information applies to only one product line or limited devices, these exclusions 
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices 
as listed in Table 4-1. Where the information applies to only one product line or limited devices, these 
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s 
Lowest Power FPGAs Portfolio.

Table 4-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

IGLOO nano The industry’s lowest-power, smallest-size solution

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable 
analog block, support for ARM® Cortex™-M1 soft processors, and flash 
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics, 
and packaging information.
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Device-Specific Layout 
Two kinds of CCCs are offered in low power flash devices: CCCs with integrated PLLs, and CCCs 
without integrated PLLs (simplified CCCs). Table 4-5 lists the number of CCCs in various devices. 

Note: nano 10 k, 15 k, and 20 k offer 6 global MUXes instead of CCCs.

Table 4-5 • Number of CCCs by Device Size and Package
Device

Package

CCCs with
Integrated 

PLLs

CCCs without 
Integrated PLLs 
(simplified CCC)ProASIC3 IGLOO

A3PN010 AGLN010 All 0 2

A3PN015 AGLN015 All 0 2

A3PN020 AGLN020 All 0 2

AGLN060 CS81 0 6

A3PN060 AGLN060 All other 
packages

1 5

AGLN125 CS81 0 6

A3PN125 AGLN125 All other 
packages

1 5

AGLN250 CS81 0 6

A3PN250 AGLN250 All other 
packages

1 5

A3P015 AGL015 All 0 2

A3P030 AGL030/AGLP030 All 0 2

AGL060/AGLP060 CS121/CS201 0 6

A3P060 AGL060/AGLP060 All other 
packages

1 5

A3P125 AGL125/AGLP125 All 1 5

A3P250/L AGL250 All 1 5

A3P400 AGL400 All 1 5

A3P600/L AGL600 All 1 5

A3P1000/L AGL1000 All 1 5

A3PE600 AGLE600 PQ208 2 4

A3PE600/L All other 
packages

6 0

A3PE1500 PQ208 2 4

A3PE1500 All other 
packages

6 0

A3PE3000/L PQ208 2 4

A3PE3000/L AGLE3000 All other 
packages

6 0

Fusion Devices
AFS090 All 1 5

AFS250, M1AFS250 All 1 5

AFS600, M7AFS600, M1AFS600 All 2 4

AFS1500, M1AFS1500 All 2 4
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
PLL Core Specifications
PLL core specifications can be found in the DC and Switching Characteristics chapter of the appropriate 
family datasheet.

Loop Bandwidth
Common design practice for systems with a low-noise input clock is to have PLLs with small loop 
bandwidths to reduce the effects of noise sources at the output. Table 4-6 shows the PLL loop 
bandwidth, providing a measure of the PLL's ability to track the input clock and jitter.  

PLL Core Operating Principles
This section briefly describes the basic principles of PLL operation. The PLL core is composed of a 
phase detector (PD), a low-pass filter (LPF), and a four-phase voltage-controlled oscillator (VCO). 
Figure 4-19 illustrates a basic single-phase PLL core with a divider and delay in the feedback path. 

The PLL is an electronic servo loop that phase-aligns the PD feedback signal with the reference input. To 
achieve this, the PLL dynamically adjusts the VCO output signal according to the average phase 
difference between the input and feedback signals. 
The first element is the PD, which produces a voltage proportional to the phase difference between its 
inputs. A simple example of a digital phase detector is an Exclusive-OR gate. The second element, the 
LPF, extracts the average voltage from the phase detector and applies it to the VCO. This applied voltage 
alters the resonant frequency of the VCO, thus adjusting its output frequency. 
Consider Figure 4-19 with the feedback path bypassing the divider and delay elements. If the LPF 
steadily applies a voltage to the VCO such that the output frequency is identical to the input frequency, 
this steady-state condition is known as lock. Note that the input and output phases are also identical. The 
PLL core sets a LOCK output signal HIGH to indicate this condition.
Should the input frequency increase slightly, the PD detects the frequency/phase difference between its 
reference and feedback input signals. Since the PD output is proportional to the phase difference, the 
change causes the output from the LPF to increase. This voltage change increases the resonant 
frequency of the VCO and increases the feedback frequency as a result. The PLL dynamically adjusts in 
this manner until the PD senses two phase-identical signals and steady-state lock is achieved. The 
opposite (decreasing PD output signal) occurs when the input frequency decreases.
Now suppose the feedback divider is inserted in the feedback path. As the division factor M (shown in 
Figure 4-20 on page 101) is increased, the average phase difference increases. The average phase 

Table 4-6 • –3 dB Frequency of the PLL
Minimum

(Ta = +125°C, VCCA = 1.4 V)
Typical

(Ta = +25°C, VCCA = 1.5 V)
Maximum

(Ta = –55°C, VCCA = 1.6 V)
–3 dB 
Frequency

15 kHz 25 kHz 45 kHz

Figure 4-19 • Simplified PLL Core with Feedback Divider and Delay

Frequency
Reference
Input FIN

Phase
Detector

Low-Pass
Filter

Voltage
Controlled
Oscillator

Divide by M
Counter Delay

Frequency
Output
M × FIN
100 Revision 4



Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
DLYGLC[4:0]     00000
DLYYB[4:0]      00000
DLYYC[4:0]      00000
VCOSEL[2:0]     100

Primary Clock Frequency 33.000
Primary Clock Phase Shift 0.000
Primary Clock Output Delay from CLKA 1.695

Secondary1 Clock Frequency 40.000
Secondary1 Clock Phase Shift 0.000
Secondary1 Clock Global Output Delay from CLKB 0.200

Secondary2 Clock Frequency 50.000
Secondary2 Clock Phase Shift 0.000
Secondary2 Clock Global Output Delay from CLKC 0.200

######################################
# Dynamic Stream Data
######################################
--------------------------------------
|NAME    |SDIN     |VALUE   |TYPE     |
--------------------------------------
|FINDIV  |[6:0]    |0000101 |EDIT     |
|FBDIV   |[13:7]   |0100000 |EDIT     |
|OADIV   |[18:14]  |00100   |EDIT     |
|OBDIV   |[23:19]  |00000   |EDIT     |
|OCDIV   |[28:24]  |00000   |EDIT     |
|OAMUX   |[31:29]  |100     |EDIT     |
|OBMUX   |[34:32]  |000     |EDIT     |
|OCMUX   |[37:35]  |000     |EDIT     |
|FBSEL   |[39:38]  |01      |EDIT     |
|FBDLY   |[44:40]  |00000   |EDIT     |
|XDLYSEL |[45]     |0       |EDIT     |
|DLYGLA  |[50:46]  |00000   |EDIT     |
|DLYGLB  |[55:51]  |00000   |EDIT     |
|DLYGLC  |[60:56]  |00000   |EDIT     |
|DLYYB   |[65:61]  |00000   |EDIT     |
|DLYYC   |[70:66]  |00000   |EDIT     |
|STATASEL|[71]     |X       |MASKED   |
|STATBSEL|[72]     |X       |MASKED   |
|STATCSEL|[73]     |X       |MASKED   |
|VCOSEL  |[76:74]  |100     |EDIT     |
|DYNASEL |[77]     |X       |MASKED   |
|DYNBSEL |[78]     |X       |MASKED   |
|DYNCSEL |[79]     |X       |MASKED   |
|RESETEN |[80]     |1       |READONLY |

Below is the resultant Verilog HDL description of a legal dynamic PLL core configuration generated by 
SmartGen:
module dyn_pll_macro(POWERDOWN, CLKA, LOCK, GLA, GLB, GLC, SDIN, SCLK, SSHIFT, SUPDATE,

MODE, SDOUT, CLKB, CLKC);

input POWERDOWN, CLKA;
output  LOCK, GLA, GLB, GLC;
input  SDIN, SCLK, SSHIFT, SUPDATE, MODE;
output  SDOUT;
input  CLKB, CLKC;

wire VCC, GND;

VCC VCC_1_net(.Y(VCC));
GND GND_1_net(.Y(GND));
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
global assignments are not allocated properly. See the "Physical Constraints for Quadrant Clocks" 
section for information on assigning global signals to the quadrant clock networks.
Promoted global signals will be instantiated with CLKINT macros to drive these signals onto the global 
network. This is automatically done by Designer when the Auto-Promotion option is selected. If the user 
wishes to assign the signals to the quadrant globals instead of the default chip globals, this can done by 
using ChipPlanner, by declaring a physical design constraint (PDC), or by importing a PDC file.

Physical Constraints for Quadrant Clocks
If it is necessary to promote global clocks (CLKBUF, CLKINT, PLL, CLKDLY) to quadrant clocks, the user 
can define PDCs to execute the promotion. PDCs can be created using PDC commands (pre-compile) or 
the MultiView Navigator (MVN) interface (post-compile). The advantage of using the PDC flow over the 
MVN flow is that the Compile stage is able to automatically promote any regular net to a global net before 
assigning it to a quadrant. There are three options to place a quadrant clock using PDC commands:

• Place a clock core (not hardwired to an I/O) into a quadrant clock location.
• Place a clock core (hardwired to an I/O) into an I/O location (set_io) or an I/O module location 

(set_location) that drives a quadrant clock location.
• Assign a net driven by a regular net or a clock net to a quadrant clock using the following 

command:
assign_local_clock -net <net name> -type quadrant <quadrant clock region>

where
<net name> is the name of the net assigned to the local user clock region.
<quadrant clock region> defines which quadrant the net should be assigned to. Quadrant 
clock regions are defined as UL (upper left), UR (upper right), LL (lower left), and LR (lower right).

Note: If the net is a regular net, the software inserts a CLKINT buffer on the net.
For example:
assign_local_clock -net localReset -type quadrant UR

Keep in mind the following when placing quadrant clocks using MultiView Navigator:

Hardwired I/O–Driven CCCs
• Find the associated clock input port under the Ports tab, and place the input port at one of the 

Gmn* locations using PinEditor or I/O Attribute Editor, as shown in Figure 4-32. 

Figure 4-32 • Port Assignment for a CCC with Hardwired I/O Clock Input
124 Revision 4



SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
v1.1
(continued)

Table 6-1 • Flash-Based FPGAs and associated text were updated to include the
IGLOO PLUS family. The "IGLOO Terminology" section and "ProASIC3
Terminology" section are new.

150

The text introducing Table 6-8 • Memory Availability per IGLOO and ProASIC3
Device was updated to replace "A3P030 and AGL030" with "15 k and 30 k gate
devices." Table 6-8 • Memory Availability per IGLOO and ProASIC3 Device was
updated to remove AGL400 and AGLE1500 and include IGLOO PLUS and
ProASIC3L devices. 

162
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I/O Structures in IGLOO and ProASIC3 Devices
Simultaneously Switching Outputs (SSOs) and Printed Circuit 
Board Layout

Each I/O voltage bank has a separate ground and power plane for input and output circuits (VMV/GNDQ
for input buffers and VCCI/GND for output buffers). This isolation is necessary to minimize simultaneous
switching noise from the input and output (SSI and SSO). The switching noise (ground bounce and
power bounce) is generated by the output buffers and transferred into input buffer circuits, and vice
versa.
Since voltage bounce originates on the package inductance, the VMV and VCCI supplies have separate
package pin assignments. For the same reason, GND and GNDQ also have separate pin assignments.
The VMV and VCCI pins must be shorted to each other on the board. Also, the GND and GNDQ pins
must be shorted to each other on the board. This will prevent unwanted current draw from the power
supply.
SSOs can cause signal integrity problems on adjacent signals that are not part of the SSO bus. Both
inductive and capacitive coupling parasitics of bond wires inside packages and of traces on PCBs will
transfer noise from SSO busses onto signals adjacent to those busses. Additionally, SSOs can produce
ground bounce noise and VCCI dip noise. These two noise types are caused by rapidly changing
currents through GND and VCCI package pin inductances during switching activities (EQ 2 and EQ 3).

Ground bounce noise voltage = L(GND) × di/dt
EQ 2

VCCI dip noise voltage = L(VCCI) × di/dt
EQ 3

Any group of four or more input pins switching on the same clock edge is considered an SSO bus. The
shielding should be done both on the board and inside the package unless otherwise described. 
In-package shielding can be achieved in several ways; the required shielding will vary depending on
whether pins next to the SSO bus are LVTTL/LVCMOS inputs, LVTTL/LVCMOS outputs, or
GTL/SSTL/HSTL/LVDS/LVPECL inputs and outputs. Board traces in the vicinity of the SSO bus have to
be adequately shielded from mutual coupling and inductive noise that can be generated by the SSO bus.
Also, noise generated by the SSO bus needs to be reduced inside the package. 
PCBs perform an important function in feeding stable supply voltages to the IC and, at the same time,
maintaining signal integrity between devices.
Key issues that need to be considered are as follows:

• Power and ground plane design and decoupling network design
• Transmission line reflections and terminations

For extensive data per package on the SSO and PCB issues, refer to the "ProASIC3/E SSO and Pin
Placement and Guidelines" chapter of the ProASIC3 FPGA Fabric User’s Guide. 
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I/O Structures in IGLOOe and ProASIC3E Devices
I/O Registers
Each I/O module contains several input, output, and enable registers. Refer to Figure 8-5 for a simplified 
representation of the I/O block. The number of input registers is selected by a set of switches (not shown 
in Figure 8-3 on page 220) between registers to implement single-ended or differential data transmission 
to and from the FPGA core. The Designer software sets these switches for the user. A common 
CLR/PRE signal is employed by all I/O registers when I/O register combining is used. Input Register 2 
does not have a CLR/PRE pin, as this register is used for DDR implementation. The I/O register 
combining must satisfy certain rules.

Notes:
1. All NMOS transistors connected to the I/O pad serve as ESD protection.
2. See Table 8-2 on page 215 for available I/O standards.
3. Programmable input delay is applicable only to ProASIC3E, IGLOOe, ProASIC3EL, and RT ProASIC3 devices.
Figure 8-5 • Simplified I/O Buffer Circuitry
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ProASIC3L FPGA Fabric User’s Guide
At the system level, the skew circuit can be used in applications where transmission activities on 
bidirectional data lines need to be coordinated. This circuit, when selected, provides a timing margin that 
can prevent bus contention and subsequent data loss and/or transmitter over-stress due to transmitter-
to-transmitter current shorts. Figure 8-17 presents an example of the skew circuit implementation in a 
bidirectional communication system. Figure 8-18 on page 238 shows how bus contention is created, and 
Figure 8-19 on page 238 shows how it can be avoided with the skew circuit.  

Figure 8-15 • Timing Diagram (option 1: bypasses skew circuit)

Figure 8-16 • Timing Diagram (option 2: enables skew circuit)
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Figure 8-17 • Example of Implementation of Skew Circuits in Bidirectional Transmission Systems Using 
IGLOO or ProASIC3 Devices
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ProASIC3L FPGA Fabric User’s Guide
– The I/O standard of technology-specific I/O macros cannot be changed in the I/O Attribute
Editor (see Figure 9-6).

– The user MUST instantiate differential I/O macros (LVDS/LVPECL) in the design. This is the
only way to use these standards in the design (IGLOO nano and ProASIC3 nano devices do
not support differential inputs).

– To implement the DDR I/O function, the user must instantiate a DDR_REG or DDR_OUT
macro. This is the only way to use a DDR macro in the design.  

Performing Place-and-Route on the Design
The netlist created by the synthesis tool should now be imported into Designer and compiled. During
Compile, the user can specify the I/O placement and attributes by importing the PDC file. The user can
also specify the I/O placement and attributes using ChipPlanner and the I/O Attribute Editor under MVN.

Defining I/O Assignments in the PDC File
A PDC file is a Tcl script file specifying physical constraints. This file can be imported to and exported
from Designer. 
Table 9-3 shows I/O assignment constraints supported in the PDC file.

Figure 9-6 • Assigning a Different I/O Standard to the Generic I/O Macro

Table 9-3 • PDC I/O Constraints

Command Action Example Comment

I/O Banks Setting Constraints

set_iobank Sets the I/O supply
voltage, VCCI, and the
input reference voltage,
VREF, for the specified I/O
bank.

set_iobank bankname
[-vcci vcci_voltage]
[-vref vref_voltage]

set_iobank Bank7 -vcci 1.50 
-vref 0.75 

Must use in case of mixed I/O
voltage (VCCI) design

set_vref Assigns a VREF pin to a
bank. 

set_vref -bank [bankname]
[pinnum]

set_vref -bank Bank0
685 704 723 742 761

Must use if voltage-
referenced I/Os are used

set_vref_defaults Sets the default VREF
pins for the specified
bank. This command is
ignored if the bank does
not need a VREF pin. 

set_vref_defaults bankname

set_vref_defaults bank2

Note: Refer to the Libero SoC User’s Guide for detailed rules on PDC naming and syntax conventions.
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In-System Programming (ISP) of Microsemi’s Low Power Flash Devices Using FlashPro4/3/3X
Figure 13-2 shows different applications for ISP programming.
1. In a trusted programming environment, you can program the device using the unencrypted

(plaintext) programming file.
2. You can program the AES Key in a trusted programming environment and finish the final

programming in an untrusted environment using the AES-encrypted (cipher text) programming
file.

3. For the remote ISP updating/reprogramming, the AES Key stored in the device enables the
encrypted programming bitstream to be transmitted through the untrusted network connection. 

Microsemi low power flash devices also provide the unique Microsemi FlashLock feature, which protects
the Pass Key and AES Key. Unless the original FlashLock Pass Key is used to unlock the device,
security settings cannot be modified. Microsemi does not support read-back of FPGA core-programmed
data; however, the FlashROM contents can selectively be read back (or disabled) via the JTAG port
based on the security settings established by the Microsemi Designer software. Refer to the "Security in
Low Power Flash Devices" section on page 301 for more information.

Figure 13-2 • Different ISP Use Models
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Boundary Scan in Low Power Flash Devices
List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

August 2012 In the "Boundary Scan Chain" section, the reference made to the datasheet for
pull-up/-down recommendations was changed to mention TCK and TRST pins
rather than TDO and TCK pins. TDO is an output, so no pull resistor is needed
(SAR 35937).

359

The "Advanced Boundary Scan Register Settings" section is new (SAR 38432). 361

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

Table 16-3 • TRST and TCK Pull-Down Recommendations was revised to add
VJTAG at 1.2 V.

360

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 16-1 • Flash-Based
FPGAs.

358

v1.3
(October 2008)

The "Boundary Scan Support in Low Power Devices" section was revised to include
new families and make the information more concise.

359

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 16-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V. 
• The number of PLLs for ProASIC3E was changed from five to six.

358

v1.1
(March 2008)

The chapter was updated to include the IGLOO PLUS family and information
regarding 15 k gate devices.

N/A

The "IGLOO Terminology" section and "ProASIC3 Terminology" section are new. 358
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UJTAG Applications in Microsemi’s Low Power Flash Devices
UJTAG Support in Flash-Based Devices
The flash-based FPGAs listed in Table 17-1 support the UJTAG feature and the functions described in
this document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 17-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 17-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 17-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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UJTAG Applications in Microsemi’s Low Power Flash Devices
Typical UJTAG Applications
Bidirectional access to the JTAG port from VersaTiles—without putting the device into test mode—
creates flexibility to implement many different applications. This section describes a few of these. All are
based on importing/exporting data through the UJTAG tiles. 

Clock Conditioning Circuitry—Dynamic Reconfiguration
In low power flash devices, CCCs, which include PLLs, can be configured dynamically through either an
81-bit embedded shift register or static flash programming switches. These 81 bits control all the
characteristics of the CCC: routing MUX architectures, delay values, divider values, etc. Table 17-3 lists
the 81 configuration bits in the CCC. 

The embedded 81-bit shift register (for the dynamic configuration of the CCC) is accessible to the
VersaTiles, which, in turn, have access to the UJTAG tiles. Therefore, the CCC configuration shift
register can receive and load the new configuration data stream from JTAG. 
Dynamic reconfiguration eliminates the need to reprogram the device when reconfiguration of the CCC
functional blocks is needed. The CCC configuration can be modified while the device continues to
operate. Employing the UJTAG core requires the user to design a module to provide the configuration
data and control the CCC configuration shift register. In essence, this is a user-designed TAP Controller
requiring chip resources. 
Similar reconfiguration capability exists in the ProASICPLUS® family. The only difference is the number of
shift register bits controlling the CCC (27 in ProASICPLUS and 81 in IGLOO, ProASIC3, and Fusion). 

Table 17-3 • Configuration Bits of Fusion, IGLOO, and ProASIC3 CCC Blocks
Bit Number(s) Control Function
80 RESET ENABLE

79 DYNCSEL

78 DYNBSEL

77 DYNASEL

<76:74> VCOSEL [2:0]

73 STATCSEL

72 STATBSEL

71 STATASEL

<70:66> DLYC [4:0]

<65:61> DLYB {4:0]

<60:56> DLYGLC [4:0]

<55:51> DLYGLB [4:0]

<50:46> DLYGLA [4:0]

45 XDLYSEL

<44:40> FBDLY [4:0]

<39:38> FBSEL

<37:35> OCMUX [2:0]

<34:32> OBMUX [2:0]

<31:29> OAMUX [2:0]

<28:24> OCDIV [4:0]

<23:19> OBDIV [4:0]

<18:14> OADIV [4:0]

<13:7> FBDIV [6:0]

<6:0> FINDIV [6:0]
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