
Microchip Technology - A3PE3000L-FGG484 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Active

Number of LABs/CLBs -

Number of Logic Elements/Cells -

Total RAM Bits 516096

Number of I/O 341

Number of Gates 3000000

Voltage - Supply 1.14V ~ 1.575V

Mounting Type Surface Mount

Operating Temperature 0°C ~ 85°C (TJ)

Package / Case 484-BGA

Supplier Device Package 484-FPBGA (23x23)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/a3pe3000l-fgg484

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/a3pe3000l-fgg484-4486641
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array

ProASIC3L FPGA Fabric User’s Guide
Note: Flash*Freeze technology only applies to IGLOO and ProASIC3L families.
Figure 1-5 • IGLOO, IGLOO nano, ProASIC3 nano, and ProASIC3/L Device Architecture Overview with Four

I/O Banks (AGL600 device is shown)

Note: * AGLP030 does not contain a PLL or support AES security.
Figure 1-6 • IGLOO PLUS Device Architecture Overview with Four I/O Banks

ISP AES
Decryption*

User Nonvolatile
FlashRom

Flash*Freeze†

Technology
Charge
Pumps

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

VersaTile

CCC

I/Os

Bank 0
B

an
k

3
B

an
k

3 B
ank 1

B
ank 1

Bank 2

RAM Block
4,608-Bit Dual-Port
SRAM or FIFO Block

VersaTile

CCC*

I/Os

ISP AES
Decryption*

User Nonvolatile
FlashRom

Flash*Freeze
Technology

Charge
Pumps

Bank 0

B
ank 1

B
ank 1B

an
k

3
B

an
k

3

Bank 2
Revision 4 13

ProASIC3L FPGA Fabric User’s Guide
Spine Architecture
The low power flash device architecture allows the VersaNet global networks to be segmented. Each of
these networks contains spines (the vertical branches of the global network tree) and ribs that can reach
all the VersaTiles inside its region. The nine spines available in a vertical column reside in global
networks with two separate regions of scope: the quadrant global network, which has three spines, and
the chip (main) global network, which has six spines. Note that the number of quadrant globals and
globals/spines per tree varies depending on the specific device. Refer to Table 3-4 for the clocking
resources available for each device. The spines are the vertical branches of the global network tree,
shown in Figure 3-3 on page 50. Each spine in a vertical column of a chip (main) global network is further
divided into two spine segments of equal lengths: one in the top and one in the bottom half of the die
(except in 10 k through 30 k gate devices).
Top and bottom spine segments radiating from the center of a device have the same height. However,
just as in the ProASICPLUS® family, signals assigned only to the top and bottom spine cannot access the
middle two rows of the die. The spines for quadrant clock networks do not cross the middle of the die and
cannot access the middle two rows of the architecture.
Each spine and its associated ribs cover a certain area of the device (the "scope" of the spine; see
Figure 3-3 on page 50). Each spine is accessed by the dedicated global network MUX tree architecture,
which defines how a particular spine is driven—either by the signal on the global network from a CCC, for
example, or by another net defined by the user. Details of the chip (main) global network spine-selection
MUX are presented in Figure 3-8 on page 60. The spine drivers for each spine are located in the middle
of the die.
Quadrant spines can be driven from user I/Os or an internal signal from the north and south sides of the
die. The ability to drive spines in the quadrant global networks can have a significant effect on system
performance for high-fanout inputs to a design. Access to the top quadrant spine regions is from the top
of the die, and access to the bottom quadrant spine regions is from the bottom of the die. The A3PE3000
device has 28 clock trees and each tree has nine spines; this flexible global network architecture enables
users to map up to 252 different internal/external clocks in an A3PE3000 device.

Table 3-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices

ProASIC3/
ProASIC3L
Devices

IGLOO
Devices

Chip
Globals

Quadrant
Globals

(4×3)
Clock
Trees

Globals/
Spines

per
Tree

Total
Spines

per
Device

VersaTiles
in Each

Tree
Total

VersaTiles

Rows
in

Each
Spine

A3PN010 AGLN010 4 0 1 0 0 260 260 4

A3PN015 AGLN015 4 0 1 0 0 384 384 6

A3PN020 AGLN020 4 0 1 0 0 520 520 6

A3PN060 AGLN060 6 12 4 9 36 384 1,536 12

A3PN125 AGLN125 6 12 8 9 72 384 3,072 12

A3PN250 AGLN250 6 12 8 9 72 768 6,144 24

A3P015 AGL015 6 0 1 9 9 384 384 12

A3P030 AGL030 6 0 2 9 18 384 768 12

A3P060 AGL060 6 12 4 9 36 384 1,536 12

A3P125 AGL125 6 12 8 9 72 384 3,072 12

A3P250/L AGL250 6 12 8 9 72 768 6,144 24

A3P400 AGL400 6 12 12 9 108 768 9,216 24

A3P600/L AGL600 6 12 12 9 108 1,152 13,824 36

A3P1000/L AGL1000 6 12 16 9 144 1,536 24,576 48

A3PE600/L AGLE600 6 12 12 9 108 1,120 13,440 35

A3PE1500 6 12 20 9 180 1,888 37,760 59

A3PE3000/L AGLE3000 6 12 28 9 252 2,656 74,368 83
Revision 4 57

ProASIC3L FPGA Fabric User’s Guide
standard for CLKBUF is LVTTL in the current Microsemi Libero® System-on-Chip (SoC) and Designer
software.

The current synthesis tool libraries only infer the CLKBUF or CLKINT macros in the netlist. All other
global macros must be instantiated manually into your HDL code. The following is an example of
CLKBUF_LVCMOS25 global macro instantiations that you can copy and paste into your code:

VHDL
component clkbuf_lvcmos25

port (pad : in std_logic; y : out std_logic);
end component

begin
-- concurrent statements
u2 : clkbuf_lvcmos25 port map (pad => ext_clk, y => int_clk);
end

Verilog
module design (______);

input _____;
output ______;

clkbuf_lvcmos25 u2 (.y(int_clk), .pad(ext_clk);

endmodule

Table 3-9 • I/O Standards within CLKBUF

Name Description

CLKBUF_LVCMOS5 LVCMOS clock buffer with 5.0 V CMOS voltage level

CLKBUF_LVCMOS33 LVCMOS clock buffer with 3.3 V CMOS voltage level

CLKBUF_LVCMOS25 LVCMOS clock buffer with 2.5 V CMOS voltage level1

CLKBUF_LVCMOS18 LVCMOS clock buffer with 1.8 V CMOS voltage level

CLKBUF_LVCMOS15 LVCMOS clock buffer with 1.5 V CMOS voltage level

CLKBUF_LVCMOS12 LVCMOS clock buffer with 1.2 V CMOS voltage level

CLKBUF_PCI PCI clock buffer

CLKBUF_PCIX PCIX clock buffer

CLKBUF_GTL25 GTL clock buffer with 2.5 V CMOS voltage level1

CLKBUF_GTL33 GTL clock buffer with 3.3 V CMOS voltage level1

CLKBUF_GTLP25 GTL+ clock buffer with 2.5 V CMOS voltage level1

CLKBUF_GTLP33 GTL+ clock buffer with 3.3 V CMOS voltage level1

CLKBUF_ HSTL _I HSTL Class I clock buffer1

CLKBUF_ HSTL _II HSTL Class II clock buffer1

CLKBUF_SSTL2_I SSTL2 Class I clock buffer1

CLKBUF_SSTL2_II SSTL2 Class II clock buffer1

CLKBUF_SSTL3_I SSTL3 Class I clock buffer1

CLKBUF_SSTL3_II SSTL3 Class II clock buffer1

Notes:
1. Supported in only the IGLOOe, ProASIC3E, AFS600, and AFS1500 devices
2. By default, the CLKBUF macro uses the 3.3 V LVTTL I/O technology.
Revision 4 63

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Note: Fusion CCCs have additional source selections (RCOSC, XTAL).
Figure 4-9 • Illustration of Hardwired I/O (global input pins) Usage for IGLOO and ProASIC3 devices 60 k Gates

and Larger

Figure 4-10 • Illustration of Hardwired I/O (global input pins) Usage for IGLOO and ProASIC3 devices 30 k
Gates and Smaller

+
_

PLL or CLKDLY
Macro

Routed Clock
(from FPGA core)

Gmn0

Gmn1

Gmn2

To Core

To Global (or local)
Routing NetworkCLKA

PLLINT

Multiplexer
Tree

+
_

IOuxwByVz
Gmn* = Global Input Pin
IOuxwByVz = Regular I/O Pin

Routed Clock
(from the FPGA core)

Directly Drives Global Network
(GLA or GLC)

Dedicated I/O Pad

Sample Pin Names

GEC0/IO37RSB1

To Core
90 Revision 4

FlashROM in Microsemi’s Low Power Flash Devices
FlashROM Design Flow
The Microsemi Libero System-on-Chip (SoC) software has extensive FlashROM support, including
FlashROM generation, instantiation, simulation, and programming. Figure 5-9 shows the user flow
diagram. In the design flow, there are three main steps:

1. FlashROM generation and instantiation in the design
2. Simulation of FlashROM design
3. Programming file generation for FlashROM design

Figure 5-9 • FlashROM Design Flow

Simulator

FlashPoint

SmartGen

Programmer

Synthesis

Designer

Security
Header
Options

Programming
Files

UFC
File

FlashROM
Netlist

User
Design

User
Netlist

Core
Map

MEM
File

Back-
Annotated

Netlist
140 Revision 4

ProASIC3L FPGA Fabric User’s Guide
FlashROM Generation and Instantiation in the Design
The SmartGen core generator, available in Libero SoC and Designer, is the only tool that can be used to
generate the FlashROM content. SmartGen has several user-friendly features to help generate the
FlashROM contents. Instead of selecting each byte and assigning values, you can create a region within
a page, modify the region, and assign properties to that region. The FlashROM user interface, shown in
Figure 5-10, includes the configuration grid, existing regions list, and properties field. The properties field
specifies the region-specific information and defines the data used for that region. You can assign values
to the following properties:

1. Static Fixed Data—Enables you to fix the data so it cannot be changed during programming time.
This option is useful when you have fixed data stored in this region, which is required for the
operation of the design in the FPGA. Key storage is one example.

2. Static Modifiable Data—Select this option when the data in a particular region is expected to be
static data (such as a version number, which remains the same for a long duration but could
conceivably change in the future). This option enables you to avoid changing the value every time
you enter new data.

3. Read from File—This provides the full flexibility of FlashROM usage to the customer. If you have
a customized algorithm for generating the FlashROM data, you can specify this setting. You can
then generate a text file with data for as many devices as you wish to program, and load that into
the FlashPoint programming file generation software to get programming files that include all the
data. SmartGen will optionally pass the location of the file where the data is stored if the file is
specified in SmartGen. Each text file has only one type of data format (binary, decimal, hex, or
ASCII text). The length of each data file must be shorter than or equal to the selected region
length. If the data is shorter than the selected region length, the most significant bits will be
padded with 0s. For multiple text files for multiple regions, the first lines are for the first device. In
SmartGen, Load Sim. Value From File allows you to load the first device data in the MEM file for
simulation.

4. Auto Increment/Decrement—This scenario is useful when you specify the contents of FlashROM
for a large number of devices in a series. You can specify the step value for the serial number and
a maximum value for inventory control. During programming file generation, the actual number of
devices to be programmed is specified and a start value is fed to the software.

Figure 5-10 • SmartGen GUI of the FlashROM
Revision 4 141

ProASIC3L FPGA Fabric User’s Guide
SRAM Usage
The following descriptions refer to the usage of both RAM4K9 and RAM512X18.

Clocking
The dual-port SRAM blocks are only clocked on the rising edge. SmartGen allows falling-edge-triggered
clocks by adding inverters to the netlist, hence achieving dual-port SRAM blocks that are clocked on
either edge (rising or falling). For dual-port SRAM, each port can be clocked on either edge and by
separate clocks by port. Note that for Automotive ProASIC3, the same clock, with an inversion between
the two clock pins of the macro, should be used in design to prevent errors during compile.
Low power flash devices support inversion (bubble-pushing) throughout the FPGA architecture, including
the clock input to the SRAM modules. Inversions added to the SRAM clock pin on the design schematic
or in the HDL code will be automatically accounted for during design compile without incurring additional
delay in the clock path.
The two-port SRAM can be clocked on the rising or falling edge of WCLK and RCLK.
If negative-edge RAM and FIFO clocking is selected for memory macros, clock edge inversion
management (bubble-pushing) is automatically used within the development tools, without performance
penalty.

Modes of Operation
There are two read modes and one write mode:

• Read Nonpipelined (synchronous—1 clock edge): In the standard read mode, new data is driven
onto the RD bus in the same clock cycle following RA and REN valid. The read address is
registered on the read port clock active edge, and data appears at RD after the RAM access time.
Setting PIPE to OFF enables this mode.

• Read Pipelined (synchronous—2 clock edges): The pipelined mode incurs an additional clock
delay from address to data but enables operation at a much higher frequency. The read address
is registered on the read port active clock edge, and the read data is registered and appears at
RD after the second read clock edge. Setting PIPE to ON enables this mode.

• Write (synchronous—1 clock edge): On the write clock active edge, the write data is written into
the SRAM at the write address when WEN is HIGH. The setup times of the write address, write
enables, and write data are minimal with respect to the write clock.

RAM Initialization
Each SRAM block can be individually initialized on power-up by means of the JTAG port using the UJTAG
mechanism. The shift register for a target block can be selected and loaded with the proper bit
configuration to enable serial loading. The 4,608 bits of data can be loaded in a single operation.

FIFO Features
The FIFO4KX18 macro is created by merging the RAM block with dedicated FIFO logic (Figure 6-6 on
page 158). Since the FIFO logic can only be used in conjunction with the memory block, there is no
separate FIFO controller macro. As with the RAM blocks, the FIFO4KX18 nomenclature does not refer to
a possible aspect ratio, but rather to the deepest possible data depth and the widest possible data width.
FIFO4KX18 can be configured into the following aspect ratios: 4,096×1, 2,048×2, 1,024×4, 512×9, and
256×18. In addition to being fully synchronous, the FIFO4KX18 also has the following features:

• Four FIFO flags: Empty, Full, Almost-Empty, and Almost-Full
• Empty flag is synchronized to the read clock
• Full flag is synchronized to the write clock
• Both Almost-Empty and Almost-Full flags have programmable thresholds
• Active-low asynchronous reset
• Active-low block enable
• Active-low write enable
• Active-high read enable
• Ability to configure the FIFO to either stop counting after the empty or full states are reached or to

allow the FIFO counters to continue
Revision 4 157

ProASIC3L FPGA Fabric User’s Guide
List of Changes
The following table lists critical changes that were made in each revision of the document.

Date Changes Page

August 2012 Figure 8-1 • DDR Configured I/O Block Logical Representation and Figure 8-3 •
DDR Configured I/O Block Logical Representation were revised to indicate that
resets on registers 1, 3, 4, and 5 are active high rather than active low. The title of
the figures was revised from "I/O Block Logical Representation" (SAR 40685).

213, 220

AGLE1500 was removed from Table 8-2 • Supported I/O Standards because it is
not a valid offering. LVCMOS 1.2 was added to the single-ended standards.
LVCMOS 1.2 was added to Table 8-3 • VCCI Voltages and Compatible IGLOOe
and ProASIC3E Standards (SAR 33207).

215, 217

Lack of a heading for the "User I/O Naming Convention" section made the
information difficult to locate. A heading now introduces the user I/O naming
conventions (SAR 38059).

245

Figure 8-5 • Simplified I/O Buffer Circuitry and Table 8-8 • Programmable I/O
Features (user control via I/O Attribute Editor) were modified to indicate that
programmable input delay control is applicable only to ProASIC3E, IGLOOe,
ProASIC3EL, and RT ProASIC3 devices (SAR 39666).

222, 227

The hyperlink for the Board-Level Considerations application note was corrected
(SAR 36663).

246, 248

June 2011 Figure 8-1 • DDR Configured I/O Block Logical Representation and Figure 8-3 •
DDR Configured I/O Block Logical Representation were revised so that the
I/O_CLR and I/O_OCLK nets are no longer joined in front of Input Register 3 but
instead on the branch of the CLR/PRE signal (SAR 26052).

213, 220

The "Pro I/Os—IGLOOe, ProASIC3EL, and ProASIC3E" section was revised.
Formerly it stated, "3.3 V PCI and 3.3 V PCI-X are 5 V–tolerant." This sentence
now reads, "3.3 V PCI and 3.3 V PCI-X can be configured to be 5 V–tolerant" (SAR
20983).

215

Table 8-5 • Legal IGLOOe and ProASIC3E I/O Usage Matrix within the Same Bank
was revised as follows (SAR 22467):
The combination of 3.3 V I/O bank voltage with 1.50 V minibank voltage and LVDS,
B-LVDS, M-LVDS, and DDR was made an illegal combination (now gray instead of
white).
The combination of 2.5 V I/O bank voltage with no minibank voltage and LVDS,
B-LVDS, M-LVDS, and DDR was made a valid combination (now white instead of
gray).

217

The following sentence was removed from the "LVCMOS (Low-Voltage CMOS)"
section (SAR 22634): "All these versions use a 3.3 V–tolerant CMOS input buffer
and a push-pull output buffer."

223

The "Electrostatic Discharge Protection" section was revised to remove references
to tolerances (refer to the Reliability Report for tolerances). The Machine Model
(MM) is not supported and was deleted from this section (SAR 24385).

231

The "I/O Interfacing" section was revised to state that low power flash devices are
5 V–input– and 5 V–output–tolerant if certain I/O standards are selected, removing
"without adding any extra circuitry," which was incorrect (SAR 21404).

247

July 2010 This chapter is no longer published separately with its own part number and
version but is now part of several FPGA fabric user’s guides.

N/A

v1.4
(December 2008)

The terminology in the "Low Power Flash Device I/O Support" section was revised. 214
Revision 4 249

http://www.microsemi.com/soc/documents/ORT_Report.pdf
http://www.microsemi.com/soc/documents/ALL_AC276_AN.pdf

I/O Software Control in Low Power Flash Devices
Output Buffers
There are two variations: Regular and Special.
If the Regular variation is selected, only the Width (1 to 128) needs to be entered. The default value for
Width is 1.
The Special variation has Width, Technology, Output Drive, and Slew Rate options.

Bidirectional Buffers
There are two variations: Regular and Special.
The Regular variation has Enable Polarity (Active High, Active Low) in addition to the Width option.
The Special variation has Width, Technology, Output Drive, Slew Rate, and Resistor Pull-Up/-Down
options.

Tristate Buffers
Same as Bidirectional Buffers.

DDR
There are eight variations: DDR with Regular Input Buffers, Special Input Buffers, Regular Output
Buffers, Special Output Buffers, Regular Tristate Buffers, Special Tristate Buffers, Regular Bidirectional
Buffers, and Special Bidirectional Buffers.
These variations resemble the options of the previous I/O macro. For example, the Special Input Buffers
variation has Width, Technology, Voltage Level, and Resistor Pull-Up/-Down options. DDR is not
available on IGLOO PLUS devices.

4. Once the desired configuration is selected, click the Generate button. The Generate Core
window opens (Figure 9-4).

5. Enter a name for the macro. Click OK. The core will be generated and saved to the appropriate
location within the project files (Figure 9-5 on page 257).

6. Instantiate the I/O macro in the top-level code.
The user must instantiate the DDR_REG or DDR_OUT macro in the design. Use SmartGen to
generate both these macros and then instantiate them in your top level. To combine the DDR
macros with the I/O, the following rules must be met:

Figure 9-4 • Generate Core Window
256 Revision 4

ProASIC3L FPGA Fabric User’s Guide
If the assignment is not successful, an error message appears in the Output window.
To undo the I/O bank assignments, choose Undo from the Edit menu. Undo removes the I/O
technologies assigned by the IOBA. It does not remove the I/O technologies previously assigned.
To redo the changes undone by the Undo command, choose Redo from the Edit menu.
To clear I/O bank assignments made before using the Undo command, manually unassign or reassign
I/O technologies to banks. To do so, choose I/O Bank Settings from the Edit menu to display the I/O
Bank Settings dialog box.

Conclusion
Fusion, IGLOO, and ProASIC3 support for multiple I/O standards minimizes board-level components and
makes possible a wide variety of applications. The Microsemi Designer software, integrated with Libero
SoC, presents a clear visual display of I/O assignments, allowing users to verify I/O and board-level
design requirements before programming the device. The device I/O features and functionalities ensure
board designers can produce low-cost and low power FPGA applications fulfilling the complexities of
contemporary design needs.

Related Documents

User’s Guides
Libero SoC User’s Guide
http://www.microsemi.com/soc/documents/libero_ug.pdf
IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
SmartGen Core Reference Guide
http://www.microsemi.com/soc/documents/genguide_ug.pdf
Revision 4 269

http://www.microsemi.com/soc/documents/genguide_ug.pdf
http://www.microsemi.com/soc/documents/libero_ug.pdf
http://www.microsemi.com/soc/documents/libero_ug.pdf
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
http://www.microsemi.com/soc/documents/genguide_ug.pdf

ProASIC3L FPGA Fabric User’s Guide
VHDL
library ieee;
use ieee.std_logic_1164.all;
library proasic3; use proasic3.all;

entity DDR_BiDir_HSTL_I_LowEnb is
port(DataR, DataF, CLR, CLK, Trien : in std_logic; QR, QF : out std_logic;

PAD : inout std_logic) ;
end DDR_BiDir_HSTL_I_LowEnb;

architecture DEF_ARCH of DDR_BiDir_HSTL_I_LowEnb is

component INV
port(A : in std_logic := 'U'; Y : out std_logic) ;

end component;

component DDR_OUT
port(DR, DF, CLK, CLR : in std_logic := 'U'; Q : out std_logic) ;

end component;

component DDR_REG
port(D, CLK, CLR : in std_logic := 'U'; QR, QF : out std_logic) ;

end component;

component BIBUF_HSTL_I
port(PAD : inout std_logic := 'U'; D, E : in std_logic := 'U'; Y : out std_logic) ;

end component;

signal TrienAux, D, Q : std_logic ;

begin

Inv_Tri : INV
port map(A => Trien, Y => TrienAux);
DDR_OUT_0_inst : DDR_OUT
port map(DR => DataR, DF => DataF, CLK => CLK, CLR => CLR, Q => Q);
DDR_REG_0_inst : DDR_REG
port map(D => D, CLK => CLK, CLR => CLR, QR => QR, QF => QF);
BIBUF_HSTL_I_0_inst : BIBUF_HSTL_I
port map(PAD => PAD, D => Q, E => TrienAux, Y => D);

end DEF_ARCH;
Revision 4 281

DDR for Microsemi’s Low Power Flash Devices
module ddr_test(DIN, CLK, CLR, DOUT);

input DIN, CLK, CLR;
output DOUT;

Inbuf_ddr Inbuf_ddr (.PAD(DIN), .CLR(clr), .CLK(clk), .QR(qr), .QF(qf));
Outbuf_ddr Outbuf_ddr (.DataR(qr),.DataF(qf), .CLR(clr), .CLK(clk),.PAD(DOUT));

INBUF INBUF_CLR (.PAD(CLR), .Y(clr));
INBUF INBUF_CLK (.PAD(CLK), .Y(clk));

endmodule

Simulation Consideration
Microsemi DDR simulation models use inertial delay modeling by default (versus transport delay
modeling). As such, pulses that are shorter than the actual gate delays should be avoided, as they will
not be seen by the simulator and may be an issue in post-routed simulations. The user must be aware of
the default delay modeling and must set the correct delay model in the simulator as needed.

Conclusion
Fusion, IGLOO, and ProASIC3 devices support a wide range of DDR applications with different I/O
standards and include built-in DDR macros. The powerful capabilities provided by SmartGen and its GUI
can simplify the process of including DDR macros in designs and minimize design errors. Additional
considerations should be taken into account by the designer in design floorplanning and placement of I/O
flip-flops to minimize datapath skew and to help improve system timing margins. Other system-related
issues to consider include PLL and clock partitioning.
284 Revision 4

Programming Flash Devices
Programming Support in Flash Devices
The flash FPGAs listed in Table 11-1 support flash in-system programming and the functions described in
this document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 11-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated.

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 11-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 11-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution, supporting 1.2 V to 1.5 V
core voltage with Flash*Freeze technology

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V core voltage with Flash*Freeze
technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications

SmartFusion SmartFusion Mixed-signal FPGA integrating FPGA fabric, programmable microcontroller
subsystem (MSS), including programmable analog and ARM® Cortex™-M3
hard processor and flash memory in a monolithic device

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

ProASIC ProASIC First generation ProASIC devices

ProASICPLUS Second generation ProASIC devices

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
288 Revision 4

http://www.microsemi.com/soc/documents/Fusion_DS.pdf
http://www.microsemi.com/soc/documents/IGLOO_DS.pdf
http://www.microsemi.com/soc/documents/ProASIC_DS.pdf
http://www.microsemi.com/soc/documents/ProASICPlus_DS.pdf
http://www.microsemi.com/soc/documents/ProASICPlus_DS.pdf
http://www.microsemi.com/soc/documents/PA3_nano_DS.pdf
http://www.microsemi.com/soc/documents/IGLOO_nano_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOPLUS_DS.pdf
http://www.microsemi.com/soc/documents/RTPA3_DS.pdf
http://www.microsemi.com/soc/documents/Mil_PA3_EL_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOe_DS.pdf
http://www.microsemi.com/soc/documents/PA3_DS.pdf
http://www.microsemi.com/soc/documents/PA3E_DS.pdf
http://www.microsemi.com/soc/documents/PA3L_DS.pdf
http://www.microsemi.com/soc/documents/PA3_Auto_DS.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/SmartFusion_DS.pdf

Programming Flash Devices
Types of Programming for Flash Devices
The number of devices to be programmed will influence the optimal programming methodology. Those
available are listed below:

• In-system programming
– Using a programmer
– Using a microprocessor or microcontroller

• Device programmers
– Single-site programmers
– Multi-site programmers, batch programmers, or gang programmers
– Automated production (robotic) programmers

• Volume programming services
– Microsemi in-house programming
– Programming centers

In-System Programming
Device Type Supported: Flash
ISP refers to programming the FPGA after it has been mounted on the system printed circuit board. The
FPGA may be preprogrammed and later reprogrammed using ISP.
The advantage of using ISP is the ability to update the FPGA design many times without any changes to
the board. This eliminates the requirement of using a socket for the FPGA, saving cost and improving
reliability. It also reduces programming hardware expenses, as the ISP methodology is die-/package-
independent.
There are two methods of in-system programming: external and internal.

• Programmer ISP—Refer to the "In-System Programming (ISP) of Microsemi’s Low Power Flash
Devices Using FlashPro4/3/3X" section on page 327 for more information.
Using an external programmer and a cable, the device can be programmed through a header on
the system board. In Microsemi SoC Products Group documentation, this is referred to as
external ISP. Microsemi provides FlashPro4, FlashPro3, FlashPro Lite, or Silicon Sculptor 3 to
perform external ISP. Note that Silicon Sculptor II and Silicon Sculptor 3 can only provide ISP for
ProASIC and ProASICPLUS® families, not for SmartFusion, Fusion, IGLOO, or ProASIC3. Silicon
Sculptor II and Silicon Sculptor 3 can be used for programming ProASIC and ProASICPLUS
devices by using an adapter module (part number SMPA-ISP-ACTEL-3).
– Advantages: Allows local control of programming and data files for maximum security. The

programming algorithms and hardware are available from Microsemi. The only hardware
required on the board is a programming header.

– Limitations: A negligible board space requirement for the programming header and JTAG
signal routing

• Microprocessor ISP—Refer to the "Microprocessor Programming of Microsemi’s Low Power
Flash Devices" chapter of an appropriate FPGA fabric user’s guide for more information.
Using a microprocessor and an external or internal memory, you can store the program in
memory and use the microprocessor to perform the programming. In Microsemi documentation,
this is referred to as internal ISP. Both the code for the programming algorithm and the FPGA
programming file must be stored in memory on the board. Programming voltages must also be
generated on the board.
– Advantages: The programming code is stored in the system memory. An external programmer

is not required during programming.
– Limitations: This is the approach that requires the most design work, since some way of

getting and/or storing the data is needed; a system interface to the device must be designed;
and the low-level API to the programming firmware must be written and linked into the code
provided by Microsemi. While there are benefits to this methodology, serious thought and
planning should go into the decision.
290 Revision 4

ProASIC3L FPGA Fabric User’s Guide
Device Programmers
Single Device Programmer
Single device programmers are used to program a device before it is mounted on the system board.
The advantage of using device programmers is that no programming hardware is required on the system
board. Therefore, no additional components or board space are required.
Adapter modules are purchased with single device programmers to support the FPGA packages used.
The FPGA is placed in the adapter module and the programming software is run from a PC. Microsemi
supplies the programming software for all of the Microsemi programmers. The software allows for the
selection of the correct die/package and programming files. It will then program and verify the device.

• Single-site programmers
A single-site programmer programs one device at a time. Microsemi offers Silicon Sculptor 3, built
by BP Microsystems, as a single-site programmer. Silicon Sculptor 3 and associated software are
available only from Microsemi.
– Advantages: Lower cost than multi-site programmers. No additional overhead for

programming on the system board. Allows local control of programming and data files for
maximum security. Allows on-demand programming on-site.

– Limitations: Only programs one device at a time.
• Multi-site programmers

Often referred to as batch or gang programmers, multi-site programmers can program multiple devices at
the same time using the same programming file. This is often used for large volume programming and by
programming houses. The sites often have independent processors and memory enabling the sites to
operate concurrently, meaning each site may start programming the same file independently. This
enables the operator to change one device while the other sites continue programming, which increases
throughput. Multiple adapter modules for the same package are required when using a multi-site
programmer. Silicon Sculptor I, II, and 3 programmers can be cascaded to program multiple devices in a
chain. Multi-site programmers, such as the BP2610 and BP2710, can also be purchased from BP
Microsystems. When using BP Microsystems multi-site programmers, users must use programming
adapter modules available only from Microsemi. Visit the Microsemi SoC Products Group website to view
the part numbers of the desired adapter module:

http://www.microsemi.com/soc/products/hardware/program_debug/ss/modules.aspx.
Also when using BP Microsystems programmers, customers must use Microsemi
programming software to ensure the best programming result will occur.
– Advantages: Provides the capability of programming multiple devices at the same time. No

additional overhead for programming on the system board. Allows local control of
programming and data files for maximum security.

– Limitations: More expensive than a single-site programmer
• Automated production (robotic) programmers

Automated production programmers are based on multi-site programmers. They consist of a large input
tray holding multiple parts and a robotic arm to select and place parts into appropriate programming
sockets automatically. When the programming of the parts is complete, the parts are removed and
placed in a finished tray. The automated programmers are often used in volume programming houses to
program parts for which the programming time is small. BP Microsystems part number BP4710, BP4610,
BP3710 MK2, and BP3610 are available for this purpose. Auto programmers cannot be used to program
RTAX-S devices.
Where an auto-programmer is used, the appropriate open-top adapter module from BP Microsystems
must be used.
Revision 4 291

http://www.microsemi.com/soc/products/hardware/program_debug/ss/modules.aspx

ProASIC3L FPGA Fabric User’s Guide
Cortex-M1 Device Security
Cortex-M1–enabled devices are shipped with the following security features:

• FPGA array enabled for AES-encrypted programming and verification
• FlashROM enabled for AES-encrypted Write and Verify
• Fusion Embedded Flash Memory enabled for AES-encrypted Write

AES Encryption of Programming Files
Low power flash devices employ AES as part of the security mechanism that prevents invasive and
noninvasive attacks. The mechanism entails encrypting the programming file with AES encryption and
then passing the programming file through the AES decryption core, which is embedded in the device.
The file is decrypted there, and the device is successfully programmed. The AES master key is stored in
on-chip nonvolatile memory (flash). The AES master key can be preloaded into parts in a secure
programming environment (such as the Microsemi In-House Programming center), and then "blank"
parts can be shipped to an untrusted programming or manufacturing center for final personalization with
an AES-encrypted bitstream. Late-stage product changes or personalization can be implemented easily
and securely by simply sending a STAPL file with AES-encrypted data. Secure remote field updates over
public networks (such as the Internet) are possible by sending and programming a STAPL file with AES-
encrypted data.
The AES key protects the programming data for file transfer into the device with 128-bit AES encryption.
If AES encryption is used, the AES key is stored or preprogrammed into the device. To program, you
must use an AES-encrypted file, and the encryption used on the file must match the encryption key
already in the device.
The AES key is protected by a FlashLock security Pass Key that is also implemented in each device. The
AES key is always protected by the FlashLock Key, and the AES-encrypted file does NOT contain the
FlashLock Key. This FlashLock Pass Key technology is exclusive to the Microsemi flash-based device
families. FlashLock Pass Key technology can also be implemented without the AES encryption option,
providing a choice of different security levels.
In essence, security features can be categorized into the following three options:

• AES encryption with FlashLock Pass Key protection
• FlashLock protection only (no AES encryption)
• No protection

Each of the above options is explained in more detail in the following sections with application examples
and software implementation options.

Advanced Encryption Standard
The 128-bit AES standard (FIPS-192) block cipher is the NIST (National Institute of Standards and
Technology) replacement for DES (Data Encryption Standard FIPS46-2). AES has been designed to
protect sensitive government information well into the 21st century. It replaces the aging DES, which
NIST adopted in 1977 as a Federal Information Processing Standard used by federal agencies to protect
sensitive, unclassified information. The 128-bit AES standard has 3.4 × 1038 possible 128-bit key
variants, and it has been estimated that it would take 1,000 trillion years to crack 128-bit AES cipher text
using exhaustive techniques. Keys are stored (securely) in low power flash devices in nonvolatile flash
memory. All programming files sent to the device can be authenticated by the part prior to programming
to ensure that bad programming data is not loaded into the part that may possibly damage it. All
programming verification is performed on-chip, ensuring that the contents of low power flash devices
remain secure.
Microsemi has implemented the 128-bit AES (Rijndael) algorithm in low power flash devices. With this
key size, there are approximately 3.4 × 1038 possible 128-bit keys. DES has a 56-bit key size, which
provides approximately 7.2 × 1016 possible keys. In their AES fact sheet, the National Institute of
Standards and Technology uses the following hypothetical example to illustrate the theoretical security
provided by AES. If one were to assume that a computing system existed that could recover a DES key
in a second, it would take that same machine approximately 149 trillion years to crack a 128-bit AES key.
NIST continues to make their point by stating the universe is believed to be less than 20 billion years
old.1
Revision 4 305

ProASIC3L FPGA Fabric User’s Guide
Security in ARM-Enabled Low Power Flash Devices
There are slight differences between the regular flash device and the ARM-enabled flash devices, which
have the M1 prefix.
The AES key is used by Microsemi and preprogrammed into the device to protect the ARM IP. As a
result, the design will be encrypted along with the ARM IP, according to the details below.

Cortex-M1 and Cortex-M3 Device Security
Cortex-M1–enabled and Cortex-M3 devices are shipped with the following security features:

• FPGA array enabled for AES-encrypted programming and verification
• FlashROM enabled for AES-encrypted write and verify
• Embedded Flash Memory enabled for AES encrypted write

Figure 13-1 • AES-128 Security Features

Designer
Software

Programming
File Generation

with AES
Encryption

Flash Device

Decrypted
 Bitstream

MAC
Validation

AES
Decryption

FPGA Core,
FlashROM,

FBs

Transmit Medium /
Public Network

Encrypted Bistream

User Encryption AES Key
Revision 4 331

ProASIC3L FPGA Fabric User’s Guide
Programming Algorithm

JTAG Interface
The low power flash families are fully compliant with the IEEE 1149.1 (JTAG) standard. They support all
the mandatory boundary scan instructions (EXTEST, SAMPLE/PRELOAD, and BYPASS) as well as six
optional public instructions (USERCODE, IDCODE, HIGHZ, and CLAMP).

IEEE 1532
The low power flash families are also fully compliant with the IEEE 1532 programming standard. The
IEEE 1532 standard adds programming instructions and associated data registers to devices that comply
with the IEEE 1149.1 standard (JTAG). These instructions and registers extend the capabilities of the
IEEE 1149.1 standard such that the Test Access Port (TAP) can be used for configuration activities. The
IEEE 1532 standard greatly simplifies the programming algorithm, reducing the amount of time needed
to implement microprocessor ISP.

Implementation Overview
To implement device programming with a microprocessor, the user should first download the C-based
STAPL player or DirectC code from the Microsemi SoC Products Group website. Refer to the website for
future updates regarding the STAPL player and DirectC code.

http://www.microsemi.com/soc/download/program_debug/stapl/default.aspx
http://www.microsemi.com/soc/download/program_debug/directc/default.aspx

Using the easy-to-follow user's guide, create the low-level application programming interface (API) to
provide the necessary basic functions. These API functions act as the interface between the
programming software and the actual hardware (Figure 15-2).

The API is then linked with the STAPL player or DirectC and compiled using the microprocessor's
compiler. Once the entire code is compiled, the user must download the resulting binary into the MCU
system's program memory (such as ROM, EEPROM, or flash). The system is now ready for
programming.
To program a design into the FPGA, the user creates a bitstream or STAPL file using the Microsemi
Designer software, downloads it into the MCU system's volatile memory, and activates the stored
programming binary file (Figure 15-3 on page 352). Once the programming is completed, the bitstream
or STAPL file can be removed from the system, as the configuration profile is stored in the flash FPGA
fabric and does not need to be reloaded at every system power-on.

Figure 15-2 • Device Programming Code Relationship

STAPL File

STAPL Player or DirectC

API

Programming
Algorithm and Data

Programming
Software

I/O and Memory
Functions
Revision 4 351

http://www.microsemi.com/soc/download/program_debug/directc/default.aspx
http://www.microsemi.com/soc/download/program_debug/stapl/default.aspx

ProASIC3L FPGA Fabric User’s Guide
useless to the thief. To learn more about the low power flash devices’ security features, refer to the
"Security in Low Power Flash Devices" section on page 301.

Conclusion
The Fusion, IGLOO, and ProASIC3 FPGAs are ideal for applications that require field upgrades. The
single-chip devices save board space by eliminating the need for EEPROM. The built-in AES with MAC
enables transmission of programming data over any network without fear of design theft. Fusion, IGLOO,
and ProASIC3 FPGAs are IEEE 1532–compliant and support STAPL, making the target programming
software easy to implement.

Figure 15-5 • ProASIC3 Device Encryption Flow

ProASIC3

AES
Encryption

Encrypted Stream

AES
Decryption

Encrypted Stream

Designer Software Decrypted Stream

MAC
Validation

Programming
Control

AES KEY

TCP/IP
Public Network
Revision 4 355

ProASIC3L FPGA Fabric User’s Guide
Figure 18-4 • I/O State as a Function of VCCI and VCC Voltage Levels for IGLOO V5, IGLOO nano V5,
IGLOO PLUS V5, ProASIC3L, and ProASIC3 Devices Running at VCC = 1.5 V ± 0.075 V

Region 1: I/O buffers are OFF

Region 2: I/O buffers are ON.
I/Os are functional (except differential inputs)
but slower because VCCI / VCC are below
specification. For the same reason, input
 buffers do not meet VIH / VIL levels, and
output buffers do not meet VOH / VOL levels.

Min VCCI datasheet specification
voltage at a selected I/O

standard; i.e., 1.425 V or 1.7 V
or 2.3 V or 3.0 V

VCC

VCC = 1.425 V

Region 1: I/O Buffers are OFF

Activation trip point:
Va = 0.85 V ± 0.25 V

Deactivation trip point:
Vd = 0.75 V ± 0.25 V

Activation trip point:
Va = 0.9 V ± 0.3 V

Deactivation trip point:
Vd = 0.8 V ± 0.3 V

VCC = 1.575 V

Region 5: I/O buffers are ON
and power supplies are within
specification.
I/Os meet the entire datasheet
and timer specifications for
speed, VIH/VIL , VOH /VOL , etc.

 but slower because VCCI is
below specifcation. For the

same reason, input buffers do not
meet VIH/VIL levels, and output

buffers do not meet VOH/VOL levels.

Region 4: I/O
buffers are ON.

I/Os are functional
(except differential inputs)

Where VT can be from 0.58 V to 0.9 V (typically 0.75 V)
VCC = VCCI + VT

VCCI

Region 3: I/O buffers are ON.
I/Os are functional; I/O DC
specifications are met,
but I/Os are slower because
the VCC is below specification
Revision 4 379

