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Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
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Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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FPGA Array Architecture in Low Power Flash Devices
Note: † Flash*Freeze mode is supported on IGLOO devices.
Figure 1-3 • IGLOO Device Architecture Overview with Two I/O Banks with RAM and PLL 

(60 k and 125 k gate densities)

Note: † Flash*Freeze mode is supported on IGLOO devices.
Figure 1-4 • IGLOO Device Architecture Overview with Three I/O Banks 

(AGLN015, AGLN020, A3PN015, and A3PN020)
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ProASIC3L FPGA Fabric User’s Guide
• There will be added skew and clock insertion delay due to the clock gating circuit. The user
should analyze external setup/hold times carefully. The user should also ensure the additional
skew across the clock gating filter circuit is accounted for in any paths where the launch register is
driven from the filter input clock and captured by a register driven by the gated clock filter output
clock.

Power Analysis
SmartPower identifies static and dynamic power consumption problems quickly within a design. It
provides a hierarchical view, allowing users to drill down and estimate the power consumption of
individual components or events. SmartPower analyzes power consumption for nets, gates, I/Os,
memories, clocks, cores, clock domains, power supply rails, peak power during a clock cycle, and
switching transitions. 
SmartPower generates detailed hierarchical reports of the dynamic power consumption of a design for
easy inspection. These reports include design-level power summary, average switching activity, and
ambient and junction temperature readings. Enter the target clock and data frequencies for a design, and
let SmartPower perform a detailed and accurate power analysis. SmartPower supports importing files in
the VCD (Value-Change Dump) format as specified in the IEEE 1364 standard. It also supports the
Synopsys® Switching Activity Interchange Format (SAIF) standard. Support for these formats lets
designers generate switching activity information in a variety of simulators and then import this
information directly into SmartPower. 
For portable or battery-operated applications, a power profile feature enables you to measure power and
battery life, based on a sequence of operational modes of the design. In most portable and battery-
operated applications, the system is seldom fully "on" 100 percent of the time. "On" is a combination of
fully active, standby, sleep, or other functional modes. SmartPower allows users to create a power profile
for a design by specifying operational modes and the percent of time the device will run in each of the
modes. Power is calculated for each of the modes, and total power is calculated based on the weighted
average of all modes.
SmartPower also provides an estimated battery life based on the power profile. The current capacity for
a given battery is entered and used to estimate the life of the battery. The result is an accurate and
realistic indication of battery life. 
More information on SmartPower can be found on the Microsemi SoC Products Group website:
http://www.microsemi.com/soc/products/software/libero/smartpower.aspx. 

Additional Power Conservation Techniques
IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3L, and RT ProASIC3 FPGAs provide many ways to
inherently conserve power; however, there are also several design techniques that can be used to
reduce power on the board. 

• Microsemi recommends that the designer use the minimum number of I/O banks possible and tie
any unused power supplies (such as VCCPLL, VCCI, VMV, and VPUMP) to ground.

• Leave unused I/O ports floating. Unused I/Os are configured by the software as follows:
– Output buffer is disabled (with tristate value of high impedance)
– Input buffer is disabled (with tristate value of high impedance)

• Use the lowest available voltage I/O standard, the lowest drive strength, and the slowest slew rate
to reduce I/O switching contribution to power consumption.

• Advanced and pro I/O banks may consume slightly higher static current than standard and
standard plus banks—avoid using advanced and pro banks whenever practical.
– The small static power benefit obtained by avoiding advanced or pro I/O banks is usually

negligible compared to the benefit of using a low power I/O standard.
• Deselect RAM blocks that are not being used.
• Only enable read and write ports on RAM blocks when they are needed.
• Gating clocks LOW offers improved static power of RAM blocks.
• Drive the FF port of RAM blocks with the Flash_Freeze_Enabled signal from the Flash*Freeze

management IP.
• Drive inputs to the full voltage level so that all transistors are turned on or off completely.
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Global Resources in Low Power Flash Devices
Unused Global I/O Configuration
The unused clock inputs behave similarly to the unused Pro I/Os. The Microsemi Designer software
automatically configures the unused global pins as inputs with pull-up resistors if they are not used as
regular I/O.

I/O Banks and Global I/O Standards
In low power flash devices, any I/O or internal logic can be used to drive the global network. However,
only the global macro placed at the global pins will use the hardwired connection between the I/O and
global network. Global signal (signal driving a global macro) assignment to I/O banks is no different from
regular I/O assignment to I/O banks with the exception that you are limited to the pin placement location
available. Only global signals compatible with both the VCCI and VREF standards can be assigned to the
same bank.

Differential I/O Pairs GAAO/IOuxwByVz
GAA1/IOuxwByVz

The output of the different pair will drive the global.

GABO/IOuxwByVz
GAB1/IOuxwByVz

The output of the different pair will drive the global.

GACO/IOuxwByVz
GAC1/IOuxwByVz

The output of the different pair will drive the global.

GBAO/IOuxwByVz
GBA1/IOuxwByVz

The output of the different pair will drive the global.

GBBO/IOuxwByVz
GBB1/IOuxwByVz

The output of the different pair will drive the global.

GBCO/IOuxwByVz
GBC1/IOuxwByVz

The output of the different pair will drive the global.

GDAO/IOuxwByVz
GDA1/IOuxwByVz

The output of the different pair will drive the global.

GDBO/IOuxwByVz
GDB1/IOuxwByVz

The output of the different pair will drive the global.

GDCO/IOuxwByVz
GDC1/IOuxwByVz

The output of the different pair will drive the global.

GEAO/IOuxwByVz
GEA1/IOuxwByVz

The output of the different pair will drive the global.

GEBO/IOuxwByVz
GEB1/IOuxwByVz

The output of the different pair will drive the global.

GECO/IOuxwByVz
GEC1/IOuxwByVz

The output of the different pair will drive the global.

Table 3-3 • Quadrant Global Pin Name  (continued)

Note: Only one of the I/Os can be directly connected to a quadrant at a time. 
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Global Resources in Low Power Flash Devices
Using Clock Aggregation
Clock aggregation allows for multi-spine clock domains to be assigned using hardwired connections,
without adding any extra skew. A MUX tree, shown in Figure 3-8, provides the necessary flexibility to
allow long lines, local resources, or I/Os to access domains of one, two, or four global spines. Signal
access to the clock aggregation system is achieved through long-line resources in the central rib in the
center of the die, and also through local resources in the north and south ribs, allowing I/Os to feed
directly into the clock system. As Figure 3-9 indicates, this access system is contiguous.
There is no break in the middle of the chip for the north and south I/O VersaNet access. This is different
from the quadrant clocks located in these ribs, which only reach the middle of the rib. 

Figure 3-8 • Spine Selection MUX of Global Tree

Figure 3-9 • Clock Aggregation Tree Architecture
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Core Logic Clock Source
Core logic refers to internal routed nets. Internal routed signals access the CCC via the FPGA Core 
Fabric. Similar to the External I/O option, whenever the clock source comes internally from the core itself, 
the routed signal is instantiated with a PLLINT macro before connecting to the CCC clock input (see 
Figure 4-12 for an example illustration of the connections, shown in red). 

For Fusion devices, the input reference clock can also be from the embedded RC oscillator and crystal 
oscillator. In this case, the CCC configuration is the same as the hardwired I/O clock source, and users 
are required to instantiate the RC oscillator or crystal oscillator macro and connect its output to the input 
reference clock of the CCC block.

Figure 4-12 • Illustration of Core Logic Usage
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
global assignments are not allocated properly. See the "Physical Constraints for Quadrant Clocks" 
section for information on assigning global signals to the quadrant clock networks.
Promoted global signals will be instantiated with CLKINT macros to drive these signals onto the global 
network. This is automatically done by Designer when the Auto-Promotion option is selected. If the user 
wishes to assign the signals to the quadrant globals instead of the default chip globals, this can done by 
using ChipPlanner, by declaring a physical design constraint (PDC), or by importing a PDC file.

Physical Constraints for Quadrant Clocks
If it is necessary to promote global clocks (CLKBUF, CLKINT, PLL, CLKDLY) to quadrant clocks, the user 
can define PDCs to execute the promotion. PDCs can be created using PDC commands (pre-compile) or 
the MultiView Navigator (MVN) interface (post-compile). The advantage of using the PDC flow over the 
MVN flow is that the Compile stage is able to automatically promote any regular net to a global net before 
assigning it to a quadrant. There are three options to place a quadrant clock using PDC commands:

• Place a clock core (not hardwired to an I/O) into a quadrant clock location.
• Place a clock core (hardwired to an I/O) into an I/O location (set_io) or an I/O module location 

(set_location) that drives a quadrant clock location.
• Assign a net driven by a regular net or a clock net to a quadrant clock using the following 

command:
assign_local_clock -net <net name> -type quadrant <quadrant clock region>

where
<net name> is the name of the net assigned to the local user clock region.
<quadrant clock region> defines which quadrant the net should be assigned to. Quadrant 
clock regions are defined as UL (upper left), UR (upper right), LL (lower left), and LR (lower right).

Note: If the net is a regular net, the software inserts a CLKINT buffer on the net.
For example:
assign_local_clock -net localReset -type quadrant UR

Keep in mind the following when placing quadrant clocks using MultiView Navigator:

Hardwired I/O–Driven CCCs
• Find the associated clock input port under the Ports tab, and place the input port at one of the 

Gmn* locations using PinEditor or I/O Attribute Editor, as shown in Figure 4-32. 

Figure 4-32 • Port Assignment for a CCC with Hardwired I/O Clock Input
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FlashROM in Microsemi’s Low Power Flash Devices
FlashROM Support in Flash-Based Devices 
The flash FPGAs listed in Table 5-1 support the FlashROM feature and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 5-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 5-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 5-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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ProASIC3L FPGA Fabric User’s Guide
Simulation of FlashROM Design
The MEM file has 128 rows of 8 bits, each representing the contents of the FlashROM used for
simulation. For example, the first row represents page 0, byte 0; the next row is page 0, byte 1; and so
the pattern continues. Note that the three MSBs of the address define the page number, and the four
LSBs define the byte number. So, if you send address 0000100 to FlashROM, this corresponds to the
page 0 and byte 4 location, which is the fifth row in the MEM file. SmartGen defaults to 0s for any
unspecified location of the FlashROM. Besides using the MEM file generated by SmartGen, you can
create a binary file with 128 rows of 8 bits each and use this as a MEM file. Microsemi recommends that
you use different file names if you plan to generate multiple MEM files. During simulation, Libero SoC
passes the MEM file used as the generic file in the netlist, along with the design files and testbench. If
you want to use different MEM files during simulation, you need to modify the generic file reference in the
netlist. 
…………………
UFROM0: UFROM
--generic map(MEMORYFILE => "F:\Appsnotes\FROM\test_designs\testa\smartgen\FROM_a.mem")
--generic map(MEMORYFILE => "F:\Appsnotes\FROM\test_designs\testa\smartgen\FROM_b.mem")   
…………………….

The VITAL and Verilog simulation models accept the generics passed by the netlist, read the MEM file,
and perform simulation with the data in the file. 

Programming File Generation for FlashROM Design
FlashPoint is the programming software used to generate the programming files for flash devices.
Depending on the applications, you can use the FlashPoint software to generate a STAPL file with
different FlashROM contents. In each case, optional AES decryption is available. To generate a STAPL
file that contains the same FPGA core content and different FlashROM contents, the FlashPoint software
needs an Array Map file for the core and UFC file(s) for the FlashROM. This final STAPL file represents
the combination of the logic of the FPGA core and FlashROM content. 
FlashPoint generates the STAPL files you can use to program the desired FlashROM page and/or FPGA
core of the FPGA device contents. FlashPoint supports the encryption of the FlashROM content and/or
FPGA Array configuration data. In the case of using the FlashROM for device serialization, a sequence
of unique FlashROM contents will be generated. When generating a programming file with multiple
unique FlashROM contents, you can specify in FlashPoint whether to include all FlashROM content in a
single STAPL file or generate a different STAPL file for each FlashROM (Figure 5-11). The programming
software (FlashPro) handles the single STAPL file that contains the FlashROM content from multiple
devices. It enables you to program the FlashROM content into a series of devices sequentially
(Figure 5-11). See the FlashPro User’s Guide for information on serial programming. 

Figure 5-11 • Single or Multiple Programming File Generation
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I/O Structures in IGLOO and ProASIC3 Devices
• In Active and Static modes:
– Input buffers with pull-up, driven Low
– Input buffers with pull-down, driven High
– Bidirectional buffers with pull-up, driven Low
– Bidirectional buffers with pull-down, driven High
– Output buffers with pull-up, driven Low
– Output buffers with pull-down, driven High
– Tristate buffers with pull-up, driven Low
– Tristate buffers with pull-down, driven High

• In Flash*Freeze mode:
– Input buffers with pull-up, driven Low
– Input buffers with pull-down, driven High
– Bidirectional buffers with pull-up, driven Low
– Bidirectional buffers with pull-down, driven High

Electrostatic Discharge Protection
Low power flash devices are tested per JEDEC Standard JESD22-A114-B.
These devices contain clamp diodes at every I/O, global, and power pad. Clamp diodes protect all device
pads against damage from ESD as well as from excessive voltage transients. 
All IGLOO and ProASIC3 devices are tested to the Human Body Model (HBM) and the Charged Device
Model (CDM).
Each I/O has two clamp diodes. One diode has its positive (P) side connected to the pad and its negative
(N) side connected to VCCI. The second diode has its P side connected to GND and its N side
connected to the pad. During operation, these diodes are normally biased in the off state, except when
transient voltage is significantly above VCCI or below GND levels. 
In 30K gate devices, the first diode is always off. In other devices, the clamp diode is always on and
cannot be switched off.
By selecting the appropriate I/O configuration, the diode is turned on or off. Refer to Table 7-12 on
page 193 for more information about the I/O standards and the clamp diode.
The second diode is always connected to the pad, regardless of the I/O configuration selected.
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ProASIC3L FPGA Fabric User’s Guide
Pro I/Os—IGLOOe, ProASIC3EL, and ProASIC3E 
Table 8-2 shows the voltages and compatible I/O standards for Pro I/Os. I/Os provide programmable 
slew rates, drive strengths, and weak pull-up and pull-down circuits. All I/O standards, except 3.3 V PCI 
and 3.3 V PCI-X, are capable of hot-insertion. 3.3 V PCI and 3.3 V PCI-X can be configured to be 5 V–
tolerant. See the "5 V Input Tolerance" section on page 232 for possible implementations of 5 V 
tolerance. Single-ended input buffers support both the Schmitt trigger and programmable delay options 
on a per–I/O basis.
All I/Os are in a known state during power-up, and any power-up sequence is allowed without current 
impact. Refer to the "I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial 
and Industrial)" section in the datasheet for more information. During power-up, before reaching 
activation levels, the I/O input and output buffers are disabled while the weak pull-up is enabled. 
Activation levels are described in the datasheet.

Table 8-2 • Supported I/O Standards

A3PE600 AGLE600 A3PE1500
A3PE3000/
A3PE3000L AGLE3000

Single-Ended

LVTTL/LVCMOS 3.3 V, 
LVCMOS 2.5 V / 1.8 V / 1.5 V, 
LVCMOS 2.5/5.0 V, 3.3 V PCI/PCI-X

✓ ✓ ✓ ✓ ✓

LVCMOS 1.2 V – ✓ – – ✓

Differential

LVPECL, LVDS, B-LVDS, M-LVDS ✓ ✓ ✓ ✓ ✓

Voltage-Referenced

GTL+ 2.5 V / 3.3 V, GTL 2.5 V / 3.3 V, 
HSTL Class I and II, SSTL2 Class I and II, 
SSTL3 Class I and II

✓ ✓ ✓ ✓ ✓
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I/O Structures in IGLOOe and ProASIC3E Devices
IGLOOe and ProASIC3E
For devices requiring Level 3 and/or Level 4 compliance, the board drivers connected to the I/Os must 
have 10 kΩ (or lower) output drive resistance at hot insertion, and 1 kΩ (or lower) output drive resistance 
at hot removal. This resistance is the transmitter resistance sending a signal toward the I/O, and no 
additional resistance is needed on the board. If that cannot be assured, three levels of staging can be 
used to achieve Level 3 and/or Level 4 compliance. Cards with two levels of staging should have the 
following sequence: 

• Grounds
• Powers, I/Os, and other pins

Cold-Sparing Support
Cold-sparing refers to the ability of a device to leave system data undisturbed when the system is 
powered up, while the component itself is powered down, or when power supplies are floating.
Cold-sparing is supported on ProASIC3E devices only when the user provides resistors from each power 
supply to ground. The resistor value is calculated based on the decoupling capacitance on a given power 
supply. The RC constant should be greater than 3 µs.
To remove resistor current during operation, it is suggested that the resistor be disconnected (e.g., with 
an NMOS switch) from the power supply after the supply has reached its final value. Refer to the "Power-
Up/-Down Behavior of Low Power Flash Devices" section on page 373 for details on cold-sparing. 
Cold-sparing means that a subsystem with no power applied (usually a circuit board) is electrically 
connected to the system that is in operation. This means that all input buffers of the subsystem must 
present very high input impedance with no power applied so as not to disturb the operating portion of the 
system.
The 30 k gate devices fully support cold-sparing, since the I/O clamp diode is always off (see Table 8-13 on 
page 231). If the 30 k gate device is used in applications requiring cold-sparing, a discharge path from 
the power supply to ground should be provided. This can be done with a discharge resistor or a switched 
resistor. This is necessary because the 30 k gate devices do not have built-in I/O clamp diodes. 
For other IGLOOe and ProASIC3E devices, since the I/O clamp diode is always active, cold-sparing can 
be accomplished either by employing a bus switch to isolate the device I/Os from the rest of the system 
or by driving each I/O pin to 0 V. If the resistor is chosen, the resistor value must be calculated based on 
decoupling capacitance on a given power supply on the board (this decoupling capacitance is in parallel 
with the resistor). The RC time constant should ensure full discharge of supplies before cold-sparing 
functionality is required. The resistor is necessary to ensure that the power pins are discharged to ground 
every time there is an interruption of power to the device.
IGLOOe and ProASIC3E devices support cold-sparing for all I/O configurations. Standards, such as PCI, 
that require I/O clamp diodes can also achieve cold-sparing compliance, since clamp diodes get 
disconnected internally when the supplies are at 0 V.
When targeting low power applications, I/O cold-sparing may add additional current if a pin is configured 
with either a pull-up or pull-down resistor and driven in the opposite direction. A small static current is 
induced on each I/O pin when the pin is driven to a voltage opposite to the weak pull resistor. The current 
is equal to the voltage drop across the input pin divided by the pull resistor. Refer to the "Detailed I/O DC 
Characteristics" section of the appropriate family datasheet for the specific pull resistor value for the 
corresponding I/O standard.
For example, assuming an LVTTL 3.3 V input pin is configured with a weak pull-up resistor, a current will 
flow through the pull-up resistor if the input pin is driven LOW. For LVTTL 3.3 V, the pull-up resistor is 
~45 kΩ, and the resulting current is equal to 3.3 V / 45 kΩ = 73 µA for the I/O pin. This is true also when 
a weak pull-down is chosen and the input pin is driven High. This current can be avoided by driving the 
input Low when a weak pull-down resistor is used and driving it High when a weak pull-up resistor is 
used.
230 Revision 4



I/O Structures in IGLOOe and ProASIC3E Devices
Solution 3
The board-level design must ensure that the reflected waveform at the pad does not exceed the voltage 
overshoot/undershoot limits provided in the datasheet. This is a requirement to ensure long-term 
reliability. 
This scheme will also work for a 3.3 V PCI/PCI-X configuration, but the internal diode should not be used 
for clamping, and the voltage must be limited by the bus switch, as shown in Figure 8-12. Relying on the 
diode clamping would create an excessive pad DC voltage of 3.3 V + 0.7 V = 4 V.

Figure 8-12 • Solution 3
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• Programming Centers
Microsemi programming hardware policy also applies to programming centers. Microsemi 
expects all programming centers to use certified programmers to program Microsemi devices. If a 
programming center uses noncertified programmers to program Microsemi devices, the 
"Noncertified Programmers" policy applies. 

Important Programming Guidelines

Preprogramming Setup
Before programming, several steps are required to ensure an optimal programming yield.

Use Proper Handling and Electrostatic Discharge (ESD) Precautions 
Microsemi FPGAs are sensitive electronic devices that are susceptible to damage from ESD and other 
types of mishandling. For more information about ESD, refer to the Quality and Reliability Guide, 
beginning with page 41.

Use the Latest Version of the Designer Software to Generate Your 
Programming File (recommended)
The files used to program Microsemi flash devices (*.bit, *.stp, *.pdb) contain important information about 
the switches that will be programmed in the FPGA. Find the latest version and corresponding release 
notes at http://www.microsemi.com/soc/download/software/designer/. Also, programming files must 
always be zipped during file transfer to avoid the possibility of file corruption.

Use the Latest Version of the Programming Software 
The programming software is frequently updated to accommodate yield enhancements in FPGA 
manufacturing. These updates ensure maximum programming yield and minimum programming times. 
Before programming, always check the version of software being used to ensure it is the most recent. 
Depending on the programming software, refer to one of the following:

• FlashPro: http://www.microsemi.com/soc/download/program_debug/flashpro/
• Silicon Sculptor: http://www.microsemi.com/soc/download/program_debug/ss/

Use the Most Recent Adapter Module with Silicon Sculptor
Occasionally, Microsemi makes modifications to the adapter modules to improve programming yields 
and programming times. To identify the latest version of each module before programming, visit
http://www.microsemi.com/soc/products/hardware/program_debug/ss/modules.aspx.

Perform Routine Hardware Self-Diagnostic Test
• Adapter modules must be regularly cleaned. Adapter modules need to be inserted carefully into 

the programmer to make sure the DIN connectors (pins at the back side) are not damaged.
• FlashPro

The self-test is only applicable when programming with FlashPro and FlashPro3 programmers. It 
is not supported with FlashPro4 or FlashPro Lite. To run the self-diagnostic test, follow the 
instructions given in the "Performing a Self-Test" section of
http://www.microsemi.com/soc/documents/FlashPro_UG.pdf. 

• Silicon Sculptor
The self-diagnostic test verifies correct operation of the pin drivers, power supply, CPU, memory, 
and adapter module. This test should be performed with an adapter module installed and before 
every programming session. At minimum, the test must be executed every week. To perform self-
diagnostic testing using the Silicon Sculptor software, perform the following steps, depending on 
the operating system:
– DOS: From anywhere in the software, type ALT + D.
– Windows: Click Device > choose Actel Diagnostic > select the Test tab > click OK.
Silicon Sculptor programmers must be verified annually for calibration. Refer to the Silicon 
Sculptor Verification of Calibration Work Instruction document on the website. 
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Security Architecture
Fusion, IGLOO, and ProASIC3 devices have been designed with the most comprehensive programming
logic design security in the industry. In the architecture of these devices, security has been designed into
the very fabric. The flash cells are located beneath seven metal layers, and the use of many device
design and layout techniques makes invasive attacks difficult. Since device layers cannot be removed
without disturbing the charge on the programmed (or erased) flash gates, devices cannot be easily
deconstructed to decode the design. Low power flash devices are unique in being reprogrammable and
having inherent resistance to both invasive and noninvasive attacks on valuable IP. Secure, remote ISP
is now possible with AES encryption capability for the programming file during electronic transfer.
Figure 12-2 shows a view of the AES decryption core inside an IGLOO device; Figure 12-3 on page 304
shows the AES decryption core inside a Fusion device. The AES core is used to decrypt the encrypted
programming file when programming.

Note: *ISP AES Decryption is not supported by 30 k gate devices and smaller. For details of other architecture features
by device, refer to the appropriate family datasheet. 

Figure 12-2 • Block Representation of the AES Decryption Core in IGLOO and ProASIC3 Devices 
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Security in Low Power Flash Devices
The AES key is securely stored on-chip in dedicated low power flash device flash memory and cannot be
read out. In the first step, the AES key is generated and programmed into the device (for example, at a
secure or trusted programming site). The Microsemi Designer software tool provides AES key generation
capability. After the key has been programmed into the device, the device will only correctly decrypt
programming files that have been encrypted with the same key. If the individual programming file content
is incorrect, a Message Authentication Control (MAC) mechanism inside the device will fail in
authenticating the programming file. In other words, when an encrypted programming file is being loaded
into a device that has a different programmed AES key, the MAC will prevent this incorrect data from
being loaded, preventing possible device damage. See Figure 12-3 on page 304 and Figure 12-4 on
page 306 for graphical representations of this process.
It is important to note that the user decides what level of protection will be implemented for the device.
When AES protection is desired, the FlashLock Pass Key must be set. The AES key is a content
protection mechanism, whereas the FlashLock Pass Key is a device protection mechanism. When the
AES key is programmed into the device, the device still needs the Pass Key to protect the FPGA and
FlashROM contents and the security settings, including the AES key. Using the FlashLock Pass Key
prevents modification of the design contents by means of simply programming the device with a different
AES key.

AES Decryption and MAC Authentication 
Low power flash devices have a built-in 128-bit AES decryption core, which decrypts the encrypted
programming file and performs a MAC check that authenticates the file prior to programming. 
MAC authenticates the entire programming data stream. After AES decryption, the MAC checks the data
to make sure it is valid programming data for the device. This can be done while the device is still
operating. If the MAC validates the file, the device will be erased and programmed. If the MAC fails to
validate, then the device will continue to operate uninterrupted. 
This will ensure the following:

• Correct decryption of the encrypted programming file
• Prevention of erroneous or corrupted data being programmed during the programming file

transfer
• Correct bitstream passed to the device for decryption

1. National Institute of Standards and Technology, “ADVANCED ENCRYPTION STANDARD (AES) Questions and Answers,”
28 January 2002 (10 January 2005). See http://csrc.nist.gov/archive/aes/index1.html for more information.

Figure 12-4 • Example Application Scenario Using AES in IGLOO and ProASIC3 Devices 
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Security in Low Power Flash Devices
Note: If programming the Security Header only, just perform sub-flow 1. 
If programming design content only, just perform sub-flow 2.

Figure 12-9 • Security Programming Flows
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Security in Low Power Flash Devices
It is important to note that when the security settings need to be updated, the user also needs to select
the Security settings check box in Step 1, as shown in Figure 12-10 on page 314 and Figure 12-11 on
page 314, to modify the security settings. The user must consider the following:

• If only a new AES key is necessary, the user must re-enter the same Pass Key previously
programmed into the device in Designer and then generate a programming file with the same
Pass Key and a different AES key. This ensures the programming file can be used to access and
program the device and the new AES key.

• If a new Pass Key is necessary, the user can generate a new programming file with a new Pass
Key (with the same or a new AES key if desired). However, for programming, the user must first
load the original programming file with the Pass Key that was previously used to unlock the
device. Then the new programming file can be used to program the new security settings.

Advanced Options
As mentioned, there may be applications where more complicated security settings are required. The
“Custom Security Levels” section in the FlashPro User's Guide describes different advanced options
available to aid the user in obtaining the best available security settings. 

Figure 12-19 • FlashLock Pass Key, Previously Programmed Devices 
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16 – Boundary Scan in Low Power Flash Devices 

Boundary Scan
Low power flash devices are compatible with IEEE Standard 1149.1, which defines a hardware
architecture and the set of mechanisms for boundary scan testing. JTAG operations are used during
boundary scan testing. 
The basic boundary scan logic circuit is composed of the TAP controller, test data registers, and
instruction register (Figure 16-2 on page 360). 
Low power flash devices support three types of test data registers: bypass, device identification, and
boundary scan. The bypass register is selected when no other register needs to be accessed in a device.
This speeds up test data transfer to other devices in a test data path. The 32-bit device identification
register is a shift register with four fields (LSB, ID number, part number, and version). The boundary scan
register observes and controls the state of each I/O pin. Each I/O cell has three boundary scan register
cells, each with serial-in, serial-out, parallel-in, and parallel-out pins.

TAP Controller State Machine 
The TAP controller is a 4-bit state machine (16 states) that operates as shown in Figure 16-1.
The 1s and 0s represent the values that must be present on TMS at a rising edge of TCK for the given
state transition to occur. IR and DR indicate that the instruction register or the data register is operating in
that state. 
The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals
for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset
state. To guarantee a reset of the controller from any of the possible states, TMS must remain HIGH for
five TCK cycles. The TRST pin can also be used to asynchronously place the TAP controller in the Test-
Logic-Reset state.

Figure 16-1 • TAP Controller State Machine
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UJTAG Applications in Microsemi’s Low Power Flash Devices
Conclusion
Microsemi low power flash FPGAs offer many unique advantages, such as security, nonvolatility,
reprogrammablity, and low power—all in a single chip. In addition, Fusion, IGLOO, and ProASIC3
devices provide access to the JTAG port from core VersaTiles while the device is in normal operating
mode. A wide range of available user-defined JTAG opcodes allows users to implement various types of
applications, exploiting this feature of these devices. The connection between the JTAG port and core
tiles is implemented through an embedded and hardwired UJTAG tile. A UJTAG tile can be instantiated in
designs using the UJTAG library cell. This document presents multiple examples of UJTAG applications,
such as dynamic reconfiguration, silicon test and debug, fine-tuning of the design, and RAM initialization.
Each of these applications offers many useful advantages. 

Related Documents

Application Notes
RAM Initialization and ROM Emulation in ProASICPLUS Devices
http://www.microsemi.com/soc/documents/APA_RAM_Initd_AN.pdf
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