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Core Architecture
VersaTile
The proprietary IGLOO and ProASIC3 device architectures provide granularity comparable to gate
arrays. The device core consists of a sea-of-VersaTiles architecture.
As illustrated in Figure 1-8, there are four inputs in a logic VersaTile cell, and each VersaTile can be
configured using the appropriate flash switch connections: 

• Any 3-input logic function 
• Latch with clear or set
• D-flip-flop with clear or set 
• Enable D-flip-flop with clear or set (on a 4th input)

VersaTiles can flexibly map the logic and sequential gates of a design. The inputs of the VersaTile can be
inverted (allowing bubble pushing), and the output of the tile can connect to high-speed, very-long-line
routing resources. VersaTiles and larger functions can be connected with any of the four levels of routing
hierarchy.
When the VersaTile is used as an enable D-flip-flop, SET/CLR is supported by a fourth input. The
SET/CLR signal can only be routed to this fourth input over the VersaNet (global) network. However, if, in
the user’s design, the SET/CLR signal is not routed over the VersaNet network, a compile warning
message will be given, and the intended logic function will be implemented by two VersaTiles instead of
one.
The output of the VersaTile is F2 when the connection is to the ultra-fast local lines, or YL when the
connection is to the efficient long-line or very-long-line resources.

* This input can only be connected to the global clock distribution network.
Figure 1-8 • Low Power Flash Device Core VersaTile
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Flash*Freeze Technology and Low Power Modes
Set/Reset
Since all I/Os and globals are tied High in Flash*Freeze mode (unless hold state is used on IGLOO nano
or IGLOO PLUS), Microsemi recommends using active low set/reset at the top-level port. If needed, the
signal can be inverted internally.

• If the intention is to always set/reset in Flash*Freeze mode, a self set/reset circuit may be
implemented to accomplish this, as shown in Figure 2-9. Configure an active High set/reset input
pin so it uses the internal pull-up during Flash*Freeze mode, and drives Low during active mode.
When the device exits Flash*Freeze mode, the input will transition from High to Low, releasing the
set/reset. Note that this circuit may release set/reset before all outputs become active, since
outputs are enabled up to 200 ns after inputs when exiting Flash*Freeze mode.

I/Os
• Floating inputs can cause totem pole currents on the input I/O circuitry when the device is in

active mode. If inputs will be released (undriven) during Flash*Freeze mode, Microsemi
recommends that they are only released after the device enters Flash*Freeze mode.

• As mentioned earlier, asynchronous input to output paths are subject to possible glitching when
entering Flash*Freeze mode. For example, on a direct in-to-out path, if the current state is '0' and
the input bank deactivates first, the input and then the output will transition to '1' before the output
enters its Flash*Freeze state. This can be prevented by using latches along with Flash*Freeze
management IP to gate asynchronous in-to-out paths prior to entering Flash*Freeze mode.

JTAG
• The JTAG state machine is powered but not active during Flash*Freeze mode. 
• TCK should be held in a static state to prevent dynamic power consumption of the JTAG circuit

during Flash*Freeze.
• Specific JTAG pin tie-off recommendations suitable for Flash*Freeze mode can be found in the

"Pin Descriptions and Packaging" chapter of the device datasheet.

ULSICC
• The User Low Static ICC (ULSICC) macro acts as an access point to the hard Flash*Freeze

technology block in the device. The ULSICC macro represents a hard, fixed location block in the
device. When the LSICC input of the ULSICC macro is driven Low, the Flash*Freeze pin is
blocked, and when LSICC is driven High, the Flash*Freeze pin is enabled.

• If the user decides to build his/her own Flash*Freeze type 2 clock and data management logic,
note that the LSICC signal on the ULSICC macro is ANDed internally with the Flash*Freeze
signal. In order to reliably enter Flash*Freeze, the LSICC signal must remain asserted High while
entering and during Flash*Freeze mode. 

Flash*Freeze Management IP
One of the key benefits of Microsemi's Flash*Freeze mode is the ability to preserve the state of all
internal registers, SRAM content, and I/Os (IGLOO nano and IGLOO PLUS only). This feature enables
seamless continuation of data processing before and after Flash*Freeze, without the need to reload or
reinitialize the FPGA system. Microsemi's Flash*Freeze management IP, available for type 2
implementation, offers a robust RTL block that ensures clean clock gating of all system clocks before
entering and upon exiting Flash*Freeze mode. This IP also gives users the option to perform
housekeeping prior to entering Flash*Freeze mode. This section will provide an overview of the

Figure 2-9 • Flash*Freeze Self-Reset Circuit

Input 
Pull-Up

Set/Reset
'0'
36 Revision 4



Flash*Freeze Technology and Low Power Modes
Figure 2-11 • FSM State Diagram
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Global Resources in Low Power Flash Devices
Table 3-5 • Globals/Spines/Rows for IGLOO PLUS Devices

IGLOO 
PLUS 
Devices

Chip
Globals 

Quadrant
Globals 

(4×3)
Clock
Trees 

Globals/
Spines

per Tree

Total 
Spines

per Device
VersaTiles

in Each Tree 
Total

VersaTiles 

Rows
in 

Each
Spine

AGLP030 6 0 2 9 18 384* 792 12

AGLP060 6 12 4 9 36 384* 1,584 12

AGLP125 6 12 8 9 72 384* 3,120 12

Note: *Clock trees that are located at far left and far right will support more VersaTiles.

Table 3-6 • Globals/Spines/Rows for Fusion Devices

Fusion
Device

Chip
Globals

Quadrant
Globals

(4×3)
Clock
Trees

Globals/
Spines

per
Tree

Total
Spines

per
Device

VersaTiles
in

Each
Tree

Total
VersaTiles

Rows
in

Each
Spine

AFS090 6 12 6 9 54 384 2,304 12

AFS250 6 12 8 9 72 768 6,144 24

AFS600 6 12 12 9 108 1,152 13,824 36

AFS1500 6 12 20 9 180 1,920 38,400 60
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Global Resources in Low Power Flash Devices
The following will happen during demotion of a global signal to regular nets:
• CLKBUF_x becomes INBUF_x; CLKINT is removed from the netlist.
• The essential global macro, such as the output of the Clock Conditioning Circuit, cannot be

demoted.
• No automatic buffering will happen.

Since no automatic buffering happens when a signal is demoted, this net may have a high delay due to
large fanout. This may have a negative effect on the quality of the results. Microsemi recommends that
the automatic global demotion only be used on small-fanout nets. Use clock networks for high-fanout
nets to improve timing and routability.

Spine Assignment
The low power flash device architecture allows the global networks to be segmented and used as clock
spines. These spines, also called local clock networks, enable the use of PDC or MVN to assign a signal
to a spine. 
PDC syntax to promote a net to a spine/local clock:
assign_local_clock –net netname –type [quadrant|chip] Tn|Bn|Tn:Bm

If the net is driven by a clock macro, Designer automatically demotes the clock net to a regular net before
it is assigned to a spine. Nets driven by a PLL or CLKDLY macro cannot be assigned to a local clock. 
When assigning a signal to a spine or quadrant global network using PDC (pre-compile), the Designer
software will legalize the shared instances. The number of shared instances to be legalized can be
controlled by compile options. If these networks are created in MVN (only quadrant globals can be
created), no legalization is done (as it is post-compile). Designer does not do legalization between non-
clock nets.
As an example, consider two nets, net_clk and net_reset, driving the same flip-flop. The following PDC
constraints are used:
assign_local_clock –net net_clk –type chip T3
assign_local_clock –net net_reset –type chip T1:T2 

During Compile, Designer adds a buffer in the reset net and places it in the T1 or T2 region, and places
the flip-flop in the T3 spine region (Figure 3-16). 

Figure 3-16 • Adding a Buffer for Shared Instances
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83  RXCSEL1 CLKC input selection Select the CLKC input clock source between 
RC oscillator and crystal oscillator (refer to 
Table 4-16 on page 110).2

82  RXBSEL1 CLKB input selection Select the CLKB input clock source between 
RC oscillator and crystal oscillator (refer to 
Table 4-16 on page 110).2

81  RXASEL1 CLKA input selection Select the CLKA input clock source between 
RC oscillator and crystal oscillator (refer to 
Table 4-16 on page 110).2

80 RESETEN Reset Enable Enables (active high) the synchronization of 
PLL output dividers after dynamic 
reconfiguration (SUPDATE). The Reset 
Enable signal is READ-ONLY.

79 DYNCSEL Clock Input C Dynamic 
Select

Configures clock input C to be sent to GLC for 
dynamic control.2

78 DYNBSEL Clock Input B Dynamic 
Select

Configures clock input B to be sent to GLB for 
dynamic control.2

77 DYNASEL Clock Input A Dynamic 
Select

Configures clock input A for dynamic PLL 
configuration.2

<76:74> VCOSEL[2:0] VCO Gear Control Three-bit VCO Gear Control for four frequency 
ranges (refer to Table 4-19 on page 111 and 
Table 4-20 on page 111).

73 STATCSEL MUX Select on Input C MUX selection for clock input C2

72 STATBSEL MUX Select on Input B MUX selection for clock input B2

71 STATASEL MUX Select on Input A MUX selection for clock input A2

<70:66> DLYC[4:0] YC Output Delay Sets the output delay value for YC.

<65:61> DLYB[4:0] YB Output Delay Sets the output delay value for YB.

<60:56> DLYGLC[4:0] GLC Output Delay Sets the output delay value for GLC.

<55:51> DLYGLB[4:0] GLB Output Delay Sets the output delay value for GLB.

<50:46> DLYGLA[4:0] Primary Output Delay Primary GLA output delay

45 XDLYSEL System Delay Select When selected, inserts System Delay in the 
feedback path in Figure 4-20 on page 101.

<44:40> FBDLY[4:0] Feedback Delay Sets the feedback delay value for the 
feedback element in Figure 4-20 on page 101.

<39:38> FBSEL[1:0] Primary Feedback Delay 
Select

Controls the feedback MUX: no delay, include 
programmable delay element, or use external 
feedback.

<37:35> OCMUX[2:0] Secondary 2 Output 
Select

Selects from the VCO’s four phase outputs for 
GLC/YC.

<34:32> OBMUX[2:0] Secondary 1 Output 
Select

Selects from the VCO’s four phase outputs for 
GLB/YB.

Table 4-8 • Configuration Bit Descriptions for the CCC Blocks (continued)
Config.
Bits Signal Name Description

Notes:
1. The <88:81> configuration bits are only for the Fusion dynamic CCC.
2. This value depends on the input clock source, so Layout must complete before these bits can be set. 

After completing Layout in Designer, generate the "CCC_Configuration" report by choosing Tools > 
Report > CCC_Configuration. The report contains the appropriate settings for these bits.
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DYNCCC Core(.CLKA(CLKA), .EXTFB(GND), .POWERDOWN(POWERDOWN), .GLA(GLA), .LOCK(LOCK),
.CLKB(CLKB), .GLB(GLB), .YB(), .CLKC(CLKC), .GLC(GLC), .YC(), .SDIN(SDIN),
.SCLK(SCLK), .SSHIFT(SSHIFT), .SUPDATE(SUPDATE), .MODE(MODE), .SDOUT(SDOUT),
.OADIV0(GND), .OADIV1(GND), .OADIV2(VCC), .OADIV3(GND), .OADIV4(GND), .OAMUX0(GND),
.OAMUX1(GND), .OAMUX2(VCC), .DLYGLA0(GND), .DLYGLA1(GND), .DLYGLA2(GND),
.DLYGLA3(GND), .DLYGLA4(GND), .OBDIV0(GND), .OBDIV1(GND), .OBDIV2(GND),
.OBDIV3(GND), .OBDIV4(GND), .OBMUX0(GND), .OBMUX1(GND), .OBMUX2(GND), .DLYYB0(GND),
.DLYYB1(GND), .DLYYB2(GND), .DLYYB3(GND), .DLYYB4(GND), .DLYGLB0(GND),
.DLYGLB1(GND), .DLYGLB2(GND), .DLYGLB3(GND), .DLYGLB4(GND), .OCDIV0(GND),
.OCDIV1(GND), .OCDIV2(GND), .OCDIV3(GND), .OCDIV4(GND), .OCMUX0(GND), .OCMUX1(GND),
.OCMUX2(GND), .DLYYC0(GND), .DLYYC1(GND), .DLYYC2(GND), .DLYYC3(GND), .DLYYC4(GND),
.DLYGLC0(GND), .DLYGLC1(GND), .DLYGLC2(GND), .DLYGLC3(GND), .DLYGLC4(GND),
.FINDIV0(VCC), .FINDIV1(GND), .FINDIV2(VCC), .FINDIV3(GND), .FINDIV4(GND),
.FINDIV5(GND), .FINDIV6(GND), .FBDIV0(GND), .FBDIV1(GND), .FBDIV2(GND),
.FBDIV3(GND), .FBDIV4(GND), .FBDIV5(VCC), .FBDIV6(GND), .FBDLY0(GND), .FBDLY1(GND),
.FBDLY2(GND), .FBDLY3(GND), .FBDLY4(GND), .FBSEL0(VCC), .FBSEL1(GND), 
.XDLYSEL(GND), .VCOSEL0(GND), .VCOSEL1(GND), .VCOSEL2(VCC));

defparam Core.VCOFREQUENCY = 165.000; 

endmodule

Delayed Clock Configuration
The CLKDLY macro can be generated with the desired delay and input clock source (Hardwired I/O, 
External I/O, or Core Logic), as in Figure 4-28. 

After setting all the required parameters, users can generate one or more PLL configurations with HDL or 
EDIF descriptions by clicking the Generate button. SmartGen gives the option of saving session results 
and messages in a log file:
****************
Macro Parameters
****************

Name                            : delay_macro
Family                          : ProASIC3
Output Format                   : Verilog
Type                            : Delayed Clock
Delay Index                     : 2
CLKA Source                     : Hardwired I/O

Total Clock Delay = 0.935 ns.

The resultant CLKDLY macro Verilog netlist is as follows:

module delay_macro(GL,CLK);

output GL;
input  CLK;

Figure 4-28 • Delayed Clock Configuration Dialog Box
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Figure 6-2 • Fusion Device Architecture Overview (AFS600) 
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Conclusion
Fusion, IGLOO, and ProASIC3 devices provide users with extremely flexible SRAM blocks for most
design needs, with the ability to choose between an easy-to-use dual-port memory or a wide-word two-
port memory. Used with the built-in FIFO controllers, these memory blocks also serve as highly efficient
FIFOs that do not consume user gates when implemented. The SmartGen core generator provides a fast
and easy way to configure these memory elements for use in designs.

List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

August 2012 The note connected with Figure 6-3 • Supported Basic RAM Macros, regarding
RAM4K9, was revised to explain that it applies only to part numbers of certain
revisions and earlier (SAR 29574).

152

July 2010 This chapter is no longer published separately with its own part number and
version but is now part of several FPGA fabric user’s guides.

N/A

v1.5
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 6-1 • Flash-Based
FPGAs.

150

IGLOO nano and ProASIC3 nano devices were added to Figure 6-8 • Interfacing
TAP Ports and SRAM Blocks.

164

v1.4
(October 2008)

The "SRAM/FIFO Support in Flash-Based Devices" section was revised to
include new families and make the information more concise.

150

The "SRAM and FIFO Architecture" section was modified to remove "IGLOO and
ProASIC3E" from the description of what the memory block includes, as this
statement applies to all memory blocks.

151

Wording in the "Clocking" section was revised to change "IGLOO and ProASIC3
devices support inversion" to "Low power flash devices support inversion." The
reference to IGLOO and ProASIC3 development tools in the last paragraph of the
section was changed to refer to development tools in general.

157

The "ESTOP and FSTOP Usage" section was updated to refer to FIFO counters
in devices in general rather than only IGLOO and ProASIC3E devices.

160

v1.3
(August 2008)

The note was removed from Figure 6-7 • RAM Block with Embedded FIFO
Controller and placed in the WCLK and RCLK description.

158

The "WCLK and RCLK" description was revised. 159

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 6-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V. 
• The number of PLLs for ProASIC3E was changed from five to six.

150

v1.1
(March 2008)

The "Introduction" section was updated to include the IGLOO PLUS family. 147

The "Device Architecture" section was updated to state that 15 k gate devices do
not support SRAM and FIFO.

147

The first note in Figure 6-1 • IGLOO and ProASIC3 Device Architecture Overview
was updated to include mention of 15 k gate devices, and IGLOO PLUS was
added to the second note.

149
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I/O Structures in IGLOOe and ProASIC3E Devices
I/O Banks and I/O Standards Compatibility
I/Os are grouped into I/O voltage banks. 
Each I/O voltage bank has dedicated I/O supply and ground voltages (VMV/GNDQ for input buffers and 
VCCI/GND for output buffers). Because of these dedicated supplies, only I/Os with compatible standards 
can be assigned to the same I/O voltage bank. Table 8-3 on page 217 shows the required voltage 
compatibility values for each of these voltages.
There are eight I/O banks (two per side).
Every I/O bank is divided into minibanks. Any user I/O in a VREF minibank (a minibank is the region of 
scope of a VREF pin) can be configured as a VREF pin (Figure 8-2). Only one VREF pin is needed to 
control the entire VREF minibank. The location and scope of the VREF minibanks can be determined by 
the I/O name. For details, see the user I/O naming conventions for "IGLOOe and ProASIC3E" on 
page 245. Table 8-5 on page 217 shows the I/O standards supported by IGLOOe and ProASIC3E 
devices, and the corresponding voltage levels. 
I/O standards are compatible if they comply with the following:

• Their VCCI and VMV values are identical.
• Both of the standards need a VREF, and their VREF values are identical.
• All inputs and disabled outputs are voltage tolerant up to 3.3 V.

For more information about I/O and global assignments to I/O banks in a device, refer to the specific pin 
table for the device in the packaging section of the datasheet, and see the user I/O naming conventions 
for "IGLOOe and ProASIC3E" on page 245.  

Figure 8-2 • Typical IGLOOe and ProASIC3E I/O Bank Detail Showing VREF Minibanks
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Power-Up Behavior 
Low power flash devices are power-up/-down friendly; i.e., no particular sequencing is required for 
power-up and power-down. This eliminates extra board components for power-up sequencing, such as a 
power-up sequencer.
During power-up, all I/Os are tristated, irrespective of I/O macro type (input buffers, output buffers, I/O 
buffers with weak pull-ups or weak pull-downs, etc.). Once I/Os become activated, they are set to the 
user-selected I/O macros. Refer to the "Power-Up/-Down Behavior of Low Power Flash Devices" section 
on page 373 for details. 

Drive Strength
Low power flash devices have up to seven programmable output drive strengths. The user can select the 
drive strength of a particular output in the I/O Attribute Editor or can instantiate a specialized I/O macro, 
such as OUTBUF_S_12 (slew = low, out_drive = 12 mA).
The maximum available drive strength is 24 mA per I/O. Though no I/O should be forced to source or 
sink more than 24 mA indefinitely, I/Os may handle a higher amount of current (refer to the device IBIS 
model for maximum source/sink current) during signal transition (AC current). Every device package has 
its own power dissipation limit; hence, power calculation must be performed accurately to determine how 
much current can be tolerated per I/O within that limit.

I/O Interfacing 
Low power flash devices are 5 V–input– and 5 V–output–tolerant if certain I/O standards are selected 
(refer to the "5 V Input and Output Tolerance" section on page 232). Along with other low-voltage I/O 
macros, this 5 V tolerance makes these devices suitable for many types of board component interfacing.
Table 8-19 shows some high-level interfacing examples using low power flash devices. 

Table 8-19 • High-Level Interface Examples

Interface

Clock I/O

Type Frequency Type Signals In Signals Out Data I/O

GM Src Sync 125 MHz LVTTL 8 8 125 Mbps

TBI Src Sync 125 MHz LVTTL 10 10 125 Mbps

XSBI Src Sync 644 MHz LVDS 16 16 644 Mbps

XGMI Src Sync DDR 156 MHz HSTL1 32 32 312 Mbps

FlexBus 3 Sys Sync 104 MHz LVTTL ≤ 32 ≤ 32 ≤ 104

Pos-PHY3/SPI-3 Sys Sync 104 LVTTL 8,16,32 8,16,32 ≤ 104 Mbps

FlexBus 4/SPI-4.1 Src Sync 200 MHz HSTL1 16,64 16,64 200 Mbps

Pos-PHY4/SPI-4.2 Src Sync DDR ≥ 311 MHz LVDS 16 16 ≥ 622 Mbps

SFI-4.1 Src Sync 622 MHz LVDS 16 16 622 Mbps

CSIX L1 Sys Sync ≤ 250 MHz HSTL1 32,64,96,128 32,64,96,128 ≤ 250 Mbps

Hyper Transport Sys Sync DDR ≤ 800 MHz LVDS 2,4,8,16 2,4,8,16 ≤ 1.6 Gbps

Rapid I/O Parallel Sys Sync DDR 250 MHz – 1 GHz LVDS 8,16 8,16 ≤ 2 Gbps

Star Fabric CDR LVDS 4 4 622 Mbps

Note: Sys Sync = System Synchronous Clocking, Src Sync = Source Synchronous Clocking, and CDR = Clock and 
Data Recovery.
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I/O Software Control in Low Power Flash Devices
Flash FPGAs I/O Support 
The flash FPGAs listed in Table 9-1 support I/Os and the functions described in this document. 

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 9-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 9-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 9-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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The procedure is as follows:
1. Select the bank to which you want VCCI to be assigned from the Choose Bank list.
2. Select the I/O standards for that bank. If you select any standard, the tool will automatically show

all compatible standards that have a common VCCI voltage requirement.
3. Click Apply.
4. Repeat steps 1–3 to assign VCCI voltages to other banks. Refer to Figure 9-11 on page 263 to

find out how many I/O banks are needed for VCCI bank assignment.

Manually Assigning VREF Pins
Voltage-referenced inputs require an input reference voltage (VREF). The user must assign VREF pins
before running Layout. Before assigning a VREF pin, the user must set a VREF technology for the bank
to which the pin belongs.

VREF Rules for the Implementation of Voltage-Referenced I/O 
Standards
The VREF rules are as follows:

1. Any I/O (except JTAG I/Os) can be used as a VREF pin.
2. One VREF pin can support up to 15 I/Os. It is recommended, but not required, that eight of them

be on one side and seven on the other side (in other words, all 15 can still be on one side of
VREF). 

3. SSTL3 (I) and (II): Up to 40 I/Os per north or south bank in any position
4. LVPECL / GTL+ 3.3 V / GTL 3.3 V: Up to 48 I/Os per north or south bank in any position (not

applicable for IGLOO nano and ProASIC3 nano devices)
5. SSTL2 (I) and (II) / GTL+ 2.5 V / GTL 2.5 V: Up to 72 I/Os per north or south bank in any position
6. VREF minibanks partition rule: Each I/O bank is physically partitioned into VREF minibanks. The

VREF pins within a VREF minibank are interconnected internally, and consequently, only one
VREF voltage can be used within each VREF minibank. If a bank does not require a VREF signal,
the VREF pins of that bank are available as user I/Os.

7. The first VREF minibank includes all I/Os starting from one end of the bank to the first power triple
and eight more I/Os after the power triple. Therefore, the first VREF minibank may contain (0 + 8),
(2 + 8), (4 + 8), (6 + 8), or (8 + 8) I/Os.
The second VREF minibank is adjacent to the first VREF minibank and contains eight I/Os, a
power triple, and eight more I/Os after the triple. An analogous rule applies to all other VREF
minibanks but the last.
The last VREF minibank is adjacent to the previous one but contains eight I/Os, a power triple,
and all I/Os left at the end of the bank. This bank may also contain (8 + 0), (8 + 2), (8 + 4), (8 + 6),
or (8 + 8) available I/Os.
Example:
4 I/Os →  Triple →  8 I/Os, 8 I/Os →  Triple →  8 I/Os, 8 I/Os →  Triple →  2 I/Os
That is, minibank A = (4 + 8) I/Os, minibank B = (8 + 8) I/Os, minibank C = (8 + 2) I/Os.

8. Only minibanks that contain input or bidirectional I/Os require a VREF. A VREF is not needed for
minibanks composed of output or tristated I/Os. 

Assigning the VREF Voltage to a Bank
When importing the PDC file, the VREF voltage can be assigned to the I/O bank. The PDC command is
as follows:
set_iobank –vref [value]

Another method for assigning VREF is by using MVN > Edit > I/O Bank Settings (Figure 9-13 on
page 266).
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4. Right-click and then choose Highlight VREF range. All the pins covered by that VREF pin will be
highlighted (Figure 9-14).  

Using PinEditor or ChipPlanner, VREF pins can also be assigned (Figure 9-15).  

To unassign a VREF pin:
1. Select the pin to unassign.
2. Right-click and choose Use Pin for VREF. The check mark next to the command disappears. The

VREF pin is now a regular pin.
Resetting the pin may result in unassigning I/O cores, even if they are locked. In this case, a warning
message appears so you can cancel the operation.
After you assign the VREF pins, right-click a VREF pin and choose Highlight VREF Range to see how
many I/Os are covered by that pin. To unhighlight the range, choose Unhighlight All from the Edit
menu.

Figure 9-14 • VREF Range

Figure 9-15 • Assigning VREF from PinEditor
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Programming Flash Devices
Signal Integrity While Using ISP
For ISP of flash devices, customers are expected to follow the board-level guidelines provided on the 
Microsemi SoC Products Group website. These guidelines are discussed in the datasheets and 
application notes (refer to the “Related Documents” section of the datasheet for application note links). 
Customers are also expected to troubleshoot board-level signal integrity issues by measuring voltages 
and taking oscilloscope plots.

Programming Failure Allowances
Microsemi has strict policies regarding programming failure allowances. Please refer to Programming 
and Functional Failure Guidelines on the Microsemi SoC Products Group website for details.

Contacting the Customer Support Group
Highly skilled engineers staff the Customer Applications Center from 7:00 A.M. to 6:00 P.M., Pacific time, 
Monday through Friday. You can contact the center by one of the following methods:

Electronic Mail 
You can communicate your technical questions to our email address and receive answers back by email, 
fax, or phone. Also, if you have design problems, you can email your design files to receive assistance. 
Microsemi monitors the email account throughout the day. When sending your request to us, please be 
sure to include your full name, company name, and contact information for efficient processing of your 
request. The technical support email address is soc_tech@microsemi.com.

Telephone 
Our Technical Support Hotline answers all calls. The center retrieves information, such as your name, 
company name, telephone number, and question. Once this is done, a case number is assigned. Then 
the center forwards the information to a queue where the first available applications engineer receives 
the data and returns your call. The phone hours are from 7:00 A.M. to 6:00 P.M., Pacific time, Monday 
through Friday.
The Customer Applications Center number is (800) 262-1060.
European customers can call +44 (0) 1256 305 600.
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ISP Programming Header Information
The FlashPro4/3/3X programming cable connector can be connected with a 10-pin, 0.1"-pitch
programming header. The recommended programming headers are manufactured by AMP (103310-1)
and 3M (2510-6002UB). If you have limited board space, you can use a compact programming header
manufactured by Samtec (FTSH-105-01-L-D-K). Using this compact programming header, you are
required to order an additional header adapter manufactured by Microsemi SoC Products Group (FP3-
10PIN-ADAPTER-KIT).
Existing ProASICPLUS family customers who are using the Samtec Small Programming Header
(FTSH-113-01-L-D-K) and are planning to migrate to IGLOO or ProASIC3 devices can also use
FP3-10PIN-ADAPTER-KIT.

Table 13-3 • Programming Header Ordering Codes

Manufacturer Part Number Description

AMP 103310-1 10-pin, 0.1"-pitch cable header (right-angle PCB mount
angle)

3M 2510-6002UB 10-pin, 0.1"-pitch cable header (straight PCB mount
angle)

Samtec FTSH-113-01-L-D-K Small programming header supported by FlashPro and
Silicon Sculptor 

Samtec FTSH-105-01-L-D-K Compact programming header

Samtec FFSD-05-D-06.00-01-N 10-pin cable with 50 mil pitch sockets; included in FP3-
10PIN-ADAPTER-KIT.

Microsemi FP3-10PIN-ADAPTER-KIT Transition adapter kit to allow FP3 to be connected to a
micro 10-pin header (50 mil pitch). Includes a 6 inch
Samtec FFSD-05-D-06.00-01-N cable in the kit. The
transition adapter board was previously offered as
FP3-26PIN-ADAPTER and includes a 26-pin adapter for
design transitions from ProASICPLUS based boards to
ProASIC3 based boards.

Note: *Prog_Mode on FlashPro4 is an output signal that goes High during device programming and
returns to Low when programming is complete. This signal can be used to drive a system to provide
a 1.5 V programming signal to IGLOO nano, ProASIC3L, and RT ProASIC3 devices that can run
with 1.2 V core voltage but require 1.5 V for programming. IGLOO nano V2 devices can be
programmed at 1.2 V core voltage (when using FlashPro4 only), but IGLOO nano V5 devices are
programmed with a VCC core voltage of 1.5 V.

Figure 13-5 • Programming Header (top view)
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Core Voltage Switching Circuit for IGLOO and ProASIC3L In-System Programming
Microsemi’s Flash Families Support Voltage Switching Circuit 
The flash FPGAs listed in Table 14-1 support the voltage switching circuit feature and the functions
described in this document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 14-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 14-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 14-1 • Flash-Based FPGAs Supporting Voltage Switching Circuit

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

v1.1
(October 2008)

The "Introduction" was revised to include information about the core supply voltage
range of operation in V2 devices.

341

IGLOO nano device support was added to Table 14-1 • Flash-Based FPGAs
Supporting Voltage Switching Circuit.

342

The "Circuit Description" section was updated to include IGLOO PLUS core
operation from 1.2 V to 1.5 V in 50 mV increments.

343

v1.0
(August 2008)

The "Microsemi’s Flash Families Support Voltage Switching Circuit" section was
revised to include new families and make the information more concise.

342
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15 – Microprocessor Programming of Microsemi’s 
Low Power Flash Devices

Introduction
The Fusion, IGLOO, and ProASIC3 families of flash FPGAs support in-system programming (ISP) with
the use of a microprocessor. Flash-based FPGAs store their configuration information in the actual cells
within the FPGA fabric. SRAM-based devices need an external configuration memory, and hybrid
nonvolatile devices store the configuration in a flash memory inside the same package as the SRAM
FPGA. Since the programming of a true flash FPGA is simpler, requiring only one stage, it makes sense
that programming with a microprocessor in-system should be simpler than with other SRAM FPGAs.
This reduces bill-of-materials costs and printed circuit board (PCB) area, and increases system reliability.
Nonvolatile flash technology also gives the low power flash devices the advantage of a secure, low
power, live-at-power-up, and single-chip solution. Low power flash devices are reprogrammable and offer
time-to-market benefits at an ASIC-level unit cost. These features enable engineers to create high-
density systems using existing ASIC or FPGA design flows and tools.
This document is an introduction to microprocessor programming only. To explain the difference between
the options available, user's guides for DirectC and STAPL provide more detail on implementing each
style.

Figure 15-1 • ISP Using Microprocessor 
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FlashROM
Microsemi low power flash devices have 1 kbit of user-accessible, nonvolatile, FlashROM on-chip. This
nonvolatile FlashROM can be programmed along with the core or on its own using the standard IEEE
1532 JTAG programming interface. 
The FlashROM is architected as eight pages of 128 bits. Each page can be individually programmed
(erased and written). Additionally, on-chip AES security decryption can be used selectively to load data
securely into the FlashROM (e.g., over public or private networks, such as the Internet). Refer to the
"FlashROM in Microsemi’s Low Power Flash Devices" section on page 133.

Figure 15-3 • MCU FPGA Programming Model
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