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Flash*Freeze Technology and Low Power Modes
Sleep and Shutdown Modes

Sleep Mode
IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3L, and RT ProASIC3 FPGAs support Sleep mode when
device functionality is not required. In Sleep mode, VCC (core voltage), VJTAG (JTAG DC voltage), and
VPUMP (programming voltage) are grounded, resulting in the FPGA core being turned off to reduce
power consumption. While the device is in Sleep mode, the rest of the system can still be operating and
driving the input buffers of the device. The driven inputs do not pull up the internal power planes, and the
current draw is limited to minimal leakage current.
Table 2-7 shows the power supply status in Sleep mode.

Refer to the "Power-Up/-Down Behavior" section on page 33 for more information about I/O states during
Sleep mode and the timing diagram for entering and exiting Sleep mode.

Shutdown Mode
Shutdown mode is supported for all IGLOO nano and IGLOO PLUS devices as well the following
IGLOO/e devices: AGL015, AGL030, AGLE600, AGLE3000, and A3PE3000L. Shutdown mode can be
used by turning off all power supplies when the device function is not needed. Cold-sparing and hot-
insertion features enable these devices to be powered down without turning off the entire system. When
power returns, the live-at-power-up feature enables operation of the device after reaching the voltage
activation point.

Table 2-7 • Sleep Mode—Power Supply Requirement for IGLOO, IGLOO nano, IGLOO PLUS, 
ProASIC3L, and RT ProASIC3 Devices

Power Supplies Power Supply State 
VCC Powered off

VCCI = VMV Powered on

VJTAG Powered off

VPUMP Powered off
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power supply and board-level configurations, the user can easily calculate how long it will take for the
core to become inactive or active. For more information, refer to the "Power-Up/-Down Behavior of Low
Power Flash Devices" section on page 373. 

Context Save and Restore in Sleep or Shutdown Mode 
In Sleep mode or Shutdown mode, the contents of the SRAM, state of the I/Os, and state of the registers
are lost when the device is powered off, if no other measure is taken. A low-cost external serial EEPROM
can be used to save and restore the contents of the device when entering and exiting Sleep mode or
Shutdown mode. In the Embedded SRAM Initialization Using External Serial EEPROM application note,
detailed information and a reference design are provided for initializing the embedded SRAM using an
external serial EEPROM. The user can easily customize the reference design to save and restore the
FPGA state when entering and exiting Sleep mode or Shutdown mode. The microcontroller will need to
manage this activity; hence, before powering down VCC, the data will be read from the FPGA and stored
externally. In a similar way, after the FPGA is powered up, the microcontroller will allow the FPGA to load
the data from external memory and restore its original state.

Flash*Freeze Design Guide
This section describes how designers can create reliable designs that use ultra-low power Flash*Freeze
modes optimally. The section below provides guidance on how to select the best Flash*Freeze mode for
any application. The "Design Solutions" section on page 35 gives specific recommendations on how to
design and configure clocks, set/reset signals, and I/Os. This section also gives an overview of the
design flow and provides details concerning Microsemi's Flash*Freeze Management IP, which enables
clean clock gating and housekeeping. The "Additional Power Conservation Techniques" section on
page 41 describes board-level considerations for entering and exiting Flash*Freeze mode.

Selecting the Right Flash*Freeze Mode
Both Flash*Freeze modes will bring an FPGA into an ultra-low power static mode that retains register
and SRAM content and sets I/Os to a predetermined configuration. There are two primary differences
that distinguish type 2 mode from type 1, and they must be considered when creating a design using
Flash*Freeze technology. 
First, with type 2 mode, the device has an opportunity to wait for a second signal to enable activation of
Flash*Freeze mode. This allows processes to complete prior to deactivating the device, and can be
useful to control task completion, data preservation, accidental Flash*Freeze activation, system
shutdown, or any other housekeeping function. The second signal may be derived from an external or in-
to-out internal source. The second difference between type 1 and type 2 modes is that a design for type
2 mode has an opportunity to cleanly manage clocks and data activity before entering and exiting
Flash*Freeze mode. This is particularly important when data preservation is needed, as it ensures valid
data is stored prior to entering, and upon exiting, Flash*Freeze mode.
Type 1 Flash*Freeze mode is ideally suited for applications with the following design criteria:

• Entering Flash*Freeze mode is not dependent on any signal other than the external FF pin.
• Internal housekeeping is not required prior to entering Flash*Freeze.

Figure 2-8 • Entering and Exiting Sleep Mode, Typical Timing Diagram

Activation Trip Point
Va = 0.85 ± 0.25 V

Deactivation Trip Point
Vd = 0.75 ± 0.25 V

VCC = 1.5 V

VCC

Sleep Modet = 50 μs t = 56.6 μs
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ProASIC3L FPGA Fabric User’s Guide
This section outlines the following device information: CCC features, PLL core specifications, functional 
descriptions, software configuration information, detailed usage information, recommended board-level 
considerations, and other considerations concerning global networks in low power flash devices. 

Clock Conditioning Circuits with Integrated PLLs
Each of the CCCs with integrated PLLs includes the following:

• 1 PLL core, which consists of a phase detector, a low-pass filter, and a four-phase voltage-
controlled oscillator

• 3 global multiplexer blocks that steer signals from the global pads and the PLL core onto the 
global networks

• 6 programmable delays and 1 fixed delay for time advance/delay adjustments
• 5 programmable frequency divider blocks to provide frequency synthesis (automatically 

configured by the SmartGen macro builder tool)

Clock Conditioning Circuits without Integrated PLLs
There are two types of simplified CCCs without integrated PLLs in low power flash devices.

1. The simplified CCC with programmable delays, which is composed of the following: 
– 3 global multiplexer blocks that steer signals from the global pads and the programmable 

delay elements onto the global networks
– 3 programmable delay elements to provide time delay adjustments

2. The simplified CCC (referred to as CCC-GL) without programmable delay elements, which is 
composed of the following: 
– A global multiplexer block that steer signals from the global pads onto the global networks
Revision 4 95



Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Dividers n and m (the input divider and feedback divider, respectively) provide integer frequency division 
factors from 1 to 128. The output dividers u, v, and w provide integer division factors from 1 to 32. 
Frequency scaling of the reference clock CLKA is performed according to the following formulas:

fGLA = fCLKA × m / (n × u) – GLA Primary PLL Output Clock

EQ 4-1

fGLB = fYB = fCLKA × m / (n × v) – GLB Secondary 1 PLL Output Clock(s)

EQ 4-2

fGLC = fYC = fCLKA × m / (n × w) – GLC Secondary 2 PLL Output Clock(s)

EQ 4-3
SmartGen provides a user-friendly method of generating the configured PLL netlist, which includes 
automatically setting the division factors to achieve the closest possible match to the requested 
frequencies. Since the five output clocks share the n and m dividers, the achievable output frequencies 
are interdependent and related according to the following formula:

fGLA = fGLB × (v / u) = fGLC × (w / u)

EQ 4-4

Clock Delay Adjustment
There are a total of seven configurable delay elements implemented in the PLL architecture. 
Two of the delays are located in the feedback path, entitled System Delay and Feedback Delay. System 
Delay provides a fixed delay of 2 ns (typical), and Feedback Delay provides selectable delay values from 
0.6 ns to 5.56 ns in 160 ps increments (typical). For PLLs, delays in the feedback path will effectively 
advance the output signal from the PLL core with respect to the reference clock. Thus, the System and 
Feedback delays generate negative delay on the output clock. Additionally, each of these delays can be 
independently bypassed if necessary.
The remaining five delays perform traditional time delay and are located at each of the outputs of the 
PLL. Besides the fixed global driver delay of 0.755 ns for each of the global networks, the global 
multiplexer outputs (GLA, GLB, and GLC) each feature an additional selectable delay value, as given in 
Table 4-7.

The additional YB and YC signals have access to a selectable delay from 0.6 ns to 5.56 ns in 160 ps 
increments (typical). This is the same delay value as the CLKDLY macro. It is similar to CLKDLY, which 
bypasses the PLL core just to take advantage of the phase adjustment option with the delay value.
The following parameters must be taken into consideration to achieve minimum delay at the outputs 
(GLA, GLB, GLC, YB, and YC) relative to the reference clock: routing delays from the PLL core to CCC 
outputs, core outputs and global network output delays, and the feedback path delay. The feedback path 
delay acts as a time advance of the input clock and will offset any delays introduced beyond the PLL core 
output. The routing delays are determined from back-annotated simulation and are configuration-
dependent. 

Table 4-7 • Delay Values in Libero SoC Software per Device Family

Device Typical Starting Values Increments Ending Value

ProASIC3 200 ps 0 to 735 ps 200 ps 6.735 ns

IGLOO/ProASIC3L 1.5 V 360 ps 0 to 1.610 ns 360 ps 12.410 ns

IGLOO/ProASIC3L 1.2 V 580 ps 0 to 2.880 ns 580 ps 20.280 ns
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v1.2
(June 2008)

The following changes were made to the family descriptions in Figure 4-1 • Overview 
of the CCCs Offered in Fusion, IGLOO, and ProASIC3:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

77

v1.1
(March 2008)

Table 4-1 • Flash-Based FPGAs and the associated text were updated to include the 
IGLOO PLUS family. The "IGLOO Terminology" section and "ProASIC3 Terminology" 
section are new.

79

The "Global Input Selections" section was updated to include 15 k gate devices as 
supported I/O types for globals, for CCC only.

87

Table 4-5 • Number of CCCs by Device Size and Package was revised to include 
ProASIC3L, IGLOO PLUS, A3P015, AGL015, AGLP030, AGLP060, and AGLP125.

94

The "IGLOO and ProASIC3 CCC Locations" section was revised to include 15 k gate 
devices in the exception statements, as they do not contain PLLs.

97

v1.0
(January 2008)

Information about unlocking the PLL was removed from the "Dynamic PLL 
Configuration" section. 

103

In the "Dynamic PLL Configuration" section, information was added about running 
Layout and determining the exact setting of the ports.

116

In Table 4-8 • Configuration Bit Descriptions for the CCC Blocks, the following bits 
were updated to delete "transport to the user" and reference the footnote at the bottom 
of the table: 79 to 71.

106

Date Changes Page
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5 – FlashROM in Microsemi’s Low Power Flash 
Devices

Introduction 
The Fusion, IGLOO, and ProASIC3 families of low power flash-based devices have a dedicated
nonvolatile FlashROM memory of 1,024 bits, which provides a unique feature in the FPGA market. The
FlashROM can be read, modified, and written using the JTAG (or UJTAG) interface. It can be read but
not modified from the FPGA core. Only low power flash devices contain on-chip user nonvolatile memory
(NVM). 

Architecture of User Nonvolatile FlashROM
Low power flash devices have 1 kbit of user-accessible nonvolatile flash memory on-chip that can be
read from the FPGA core fabric. The FlashROM is arranged in eight banks of 128 bits (16 bytes) during
programming. The 128 bits in each bank are addressable as 16 bytes during the read-back of the
FlashROM from the FPGA core. Figure 5-1 shows the FlashROM logical structure. 
The FlashROM can only be programmed via the IEEE 1532 JTAG port. It cannot be programmed directly
from the FPGA core. When programming, each of the eight 128-bit banks can be selectively
reprogrammed. The FlashROM can only be reprogrammed on a bank boundary. Programming involves
an automatic, on-chip bank erase prior to reprogramming the bank. The FlashROM supports
synchronous read. The address is latched on the rising edge of the clock, and the new output data is
stable after the falling edge of the same clock cycle. For more information, refer to the timing diagrams in
the DC and Switching Characteristics chapter of the appropriate datasheet. The FlashROM can be read
on byte boundaries. The upper three bits of the FlashROM address from the FPGA core define the bank
being accessed. The lower four bits of the FlashROM address from the FPGA core define which of the 16
bytes in the bank is being accessed.

Figure 5-1 • FlashROM Architecture
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SRAM Usage
The following descriptions refer to the usage of both RAM4K9 and RAM512X18.

Clocking
The dual-port SRAM blocks are only clocked on the rising edge. SmartGen allows falling-edge-triggered
clocks by adding inverters to the netlist, hence achieving dual-port SRAM blocks that are clocked on
either edge (rising or falling). For dual-port SRAM, each port can be clocked on either edge and by
separate clocks by port. Note that for Automotive ProASIC3, the same clock, with an inversion between
the two clock pins of the macro, should be used in design to prevent errors during compile.
Low power flash devices support inversion (bubble-pushing) throughout the FPGA architecture, including
the clock input to the SRAM modules. Inversions added to the SRAM clock pin on the design schematic
or in the HDL code will be automatically accounted for during design compile without incurring additional
delay in the clock path.
The two-port SRAM can be clocked on the rising or falling edge of WCLK and RCLK. 
If negative-edge RAM and FIFO clocking is selected for memory macros, clock edge inversion
management (bubble-pushing) is automatically used within the development tools, without performance
penalty. 

Modes of Operation
There are two read modes and one write mode:

• Read Nonpipelined (synchronous—1 clock edge): In the standard read mode, new data is driven
onto the RD bus in the same clock cycle following RA and REN valid. The read address is
registered on the read port clock active edge, and data appears at RD after the RAM access time.
Setting PIPE to OFF enables this mode.

• Read Pipelined (synchronous—2 clock edges): The pipelined mode incurs an additional clock
delay from address to data but enables operation at a much higher frequency. The read address
is registered on the read port active clock edge, and the read data is registered and appears at
RD after the second read clock edge. Setting PIPE to ON enables this mode.

• Write (synchronous—1 clock edge): On the write clock active edge, the write data is written into
the SRAM at the write address when WEN is HIGH. The setup times of the write address, write
enables, and write data are minimal with respect to the write clock. 

RAM Initialization
Each SRAM block can be individually initialized on power-up by means of the JTAG port using the UJTAG
mechanism. The shift register for a target block can be selected and loaded with the proper bit
configuration to enable serial loading. The 4,608 bits of data can be loaded in a single operation. 

FIFO Features
The FIFO4KX18 macro is created by merging the RAM block with dedicated FIFO logic (Figure 6-6 on
page 158). Since the FIFO logic can only be used in conjunction with the memory block, there is no
separate FIFO controller macro. As with the RAM blocks, the FIFO4KX18 nomenclature does not refer to
a possible aspect ratio, but rather to the deepest possible data depth and the widest possible data width.
FIFO4KX18 can be configured into the following aspect ratios: 4,096×1, 2,048×2, 1,024×4, 512×9, and
256×18. In addition to being fully synchronous, the FIFO4KX18 also has the following features:

• Four FIFO flags: Empty, Full, Almost-Empty, and Almost-Full
• Empty flag is synchronized to the read clock
• Full flag is synchronized to the write clock
• Both Almost-Empty and Almost-Full flags have programmable thresholds
• Active-low asynchronous reset
• Active-low block enable
• Active-low write enable
• Active-high read enable
• Ability to configure the FIFO to either stop counting after the empty or full states are reached or to

allow the FIFO counters to continue
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Example: For a bus consisting of 20 equidistant loads, the terminations given in EQ 1 provide the
required differential voltage, in worst-case industrial operating conditions, at the farthest receiver:

RS = 60 Ω, RT = 70 Ω, given ZO = 50 Ω (2") and Zstub = 50 Ω (~1.5").

EQ 1

Figure 7-8 • A B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers
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Table 7-8 • Hot-Swap Level 1

Description Cold-swap

Power Applied to Device No

Bus State –

Card Ground Connection –

Device Circuitry Connected to Bus Pins –

Example Application System and card with Microsemi FPGA chip are
powered down, and the card is plugged into the
system. Then the power supplies are turned on for
the system but not for the FPGA on the card.

Compliance of IGLOO and ProASIC3 Devices 30 k gate devices: Compliant 
Other IGLOO/ProASIC3 devices: Compliant if bus
switch used to isolate FPGA I/Os from rest of
system
IGLOOe/ProASIC3E devices: Compliant I/Os can
but do not have to be set to hot-insertion mode.

Table 7-9 • Hot-Swap Level 2

Description Hot-swap while reset

Power Applied to Device Yes

Bus State Held in reset state

Card Ground Connection Reset must be maintained for 1 ms before, during,
and after insertion/removal.

Device Circuitry Connected to Bus Pins –

Example Application In the PCI hot-plug specification, reset control
circuitry isolates the card busses until the card
supplies are at their nominal operating levels and
stable.

Compliance of IGLOO and ProASIC3 Devices 30 k gate devices, all IGLOOe/ProASIC3E
devices: Compliant I/Os can but do not have to be
set to hot-insertion mode.
Other IGLOO/ProASIC3 devices: Compliant
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I/O Structures in IGLOOe and ProASIC3E Devices
Board-Level Considerations
Low power flash devices have robust I/O features that can help in reducing board-level components. The 
devices offer single-chip solutions, which makes the board layout simpler and more immune to signal 
integrity issues. Although, in many cases, these devices resolve board-level issues, special attention 
should always be given to overall signal integrity. This section covers important board-level 
considerations to facilitate optimum device performance.

Termination
Proper termination of all signals is essential for good signal quality. Nonterminated signals, especially 
clock signals, can cause malfunctioning of the device.
For general termination guidelines, refer to the Board-Level Considerations application note for 
Microsemi FPGAs. Also refer to the "Pin Descriptions" chapter of the appropriate datasheet for 
termination requirements for specific pins.
Low power flash I/Os are equipped with on-chip pull-up/-down resistors. The user can enable these 
resistors by instantiating them either in the top level of the design (refer to the IGLOO, Fusion, and 
ProASIC3 Macro Library Guide for the available I/O macros with pull-up/-down) or in the I/O Attribute 
Editor in Designer if generic input or output buffers are instantiated in the top level. Unused I/O pins are 
configured as inputs with pull-up resistors.
As mentioned earlier, low power flash devices have multiple programmable drive strengths, and the user 
can eliminate unwanted overshoot and undershoot by adjusting the drive strengths.

Figure 8-20 • User I/O Naming Conventions of IGLOOe and ProASIC3E Devices – Top View
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– The I/O standard of technology-specific I/O macros cannot be changed in the I/O Attribute
Editor (see Figure 9-6).

– The user MUST instantiate differential I/O macros (LVDS/LVPECL) in the design. This is the
only way to use these standards in the design (IGLOO nano and ProASIC3 nano devices do
not support differential inputs).

– To implement the DDR I/O function, the user must instantiate a DDR_REG or DDR_OUT
macro. This is the only way to use a DDR macro in the design.  

Performing Place-and-Route on the Design
The netlist created by the synthesis tool should now be imported into Designer and compiled. During
Compile, the user can specify the I/O placement and attributes by importing the PDC file. The user can
also specify the I/O placement and attributes using ChipPlanner and the I/O Attribute Editor under MVN.

Defining I/O Assignments in the PDC File
A PDC file is a Tcl script file specifying physical constraints. This file can be imported to and exported
from Designer. 
Table 9-3 shows I/O assignment constraints supported in the PDC file.

Figure 9-6 • Assigning a Different I/O Standard to the Generic I/O Macro

Table 9-3 • PDC I/O Constraints

Command Action Example Comment

I/O Banks Setting Constraints

set_iobank Sets the I/O supply
voltage, VCCI, and the
input reference voltage,
VREF, for the specified I/O
bank.

set_iobank bankname
[-vcci vcci_voltage]
[-vref vref_voltage]

set_iobank Bank7 -vcci 1.50 
-vref 0.75 

Must use in case of mixed I/O
voltage (VCCI) design

set_vref Assigns a VREF pin to a
bank. 

set_vref -bank [bankname]
[pinnum]

set_vref -bank Bank0
685 704 723 742 761

Must use if voltage-
referenced I/Os are used

set_vref_defaults Sets the default VREF
pins for the specified
bank. This command is
ignored if the bank does
not need a VREF pin. 

set_vref_defaults bankname

set_vref_defaults bank2

Note: Refer to the Libero SoC User’s Guide for detailed rules on PDC naming and syntax conventions.
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DDR Tristate Output Register

Verilog
module DDR_TriStateBuf_LVTTL_8mA_HighSlew_LowEnb_PullUp(DataR, DataF, CLR, CLK, Trien, 

PAD);

input   DataR, DataF, CLR, CLK, Trien;
output  PAD;

wire TrienAux, Q;

INV Inv_Tri(.A(Trien),.Y(TrienAux));
DDR_OUT DDR_OUT_0_inst(.DR(DataR),.DF(DataF),.CLK(CLK),.CLR(CLR),.Q(Q));
TRIBUFF_F_8U TRIBUFF_F_8U_0_inst(.D(Q),.E(TrienAux),.PAD(PAD));

endmodule

VHDL
library ieee;
use ieee.std_logic_1164.all;
library proasic3; use proasic3.all;

entity DDR_TriStateBuf_LVTTL_8mA_HighSlew_LowEnb_PullUp is 
port(DataR, DataF, CLR, CLK, Trien : in std_logic;  PAD : out std_logic) ;

end DDR_TriStateBuf_LVTTL_8mA_HighSlew_LowEnb_PullUp;

architecture DEF_ARCH of DDR_TriStateBuf_LVTTL_8mA_HighSlew_LowEnb_PullUp is

component INV
port(A : in std_logic := 'U'; Y : out std_logic) ;

end component;

component DDR_OUT
port(DR, DF, CLK, CLR : in std_logic := 'U'; Q : out std_logic) ;

end component;

component TRIBUFF_F_8U
port(D, E : in std_logic := 'U'; PAD : out std_logic) ;

end component;

signal TrienAux, Q : std_logic ;

begin

Inv_Tri : INV
port map(A => Trien, Y => TrienAux);

Figure 10-7 •  DDR Tristate Output Register, LOW Enable, 8 mA, Pull-Up (LVTTL)
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Programming Flash Devices
Volume Programming Services
Device Type Supported: Flash and Antifuse
Once the design is stable for applications with large production volumes, preprogrammed devices can be 
purchased. Table 11-2 describes the volume programming services.

Advantages: As programming is outsourced, this solution is easier to implement than creating a 
substantial in-house programming capability. As programming houses specialize in large-volume 
programming, this is often the most cost-effective solution.
Limitations: There are some logistical issues with the use of a programming service provider, such as the 
transfer of programming files and the approval of First Articles. By definition, the programming file must 
be released to a third-party programming house. Nondisclosure agreements (NDAs) can be signed to 
help ensure data protection; however, for extremely security-conscious designs, this may not be an 
option.

• Microsemi In-House Programming
When purchasing Microsemi devices in volume, IHP can be requested as part of the purchase. If 
this option is chosen, there is a small cost adder for each device programmed. Each device is 
marked with a special mark to distinguish it from blank parts. Programming files for the design will 
be sent to Microsemi. Sample parts with the design programmed, First Articles, will be returned 
for customer approval. Once approval of First Articles has been received, Microsemi will proceed 
with programming the remainder of the order. To request Microsemi IHP, contact your local 
Microsemi representative. 

• Distributor Programming Centers 
If purchases are made through a distributor, many distributors will provide programming for their 
customers. Consult with your preferred distributor about this option. 

Table 11-2 • Volume Programming Services
Programmer Vendor Availability 
In-House Programming Microsemi Contact Microsemi Sales 
Distributor Programming Centers Memec Unique Contact Distribution
Independent Programming Centers Various Contact Vendor
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Security in Low Power Flash Devices
2. Choose the desired security level setting and enter the key(s).
– The High security level employs FlashLock Pass Key with AES Key protection. 
– The Medium security level employs FlashLock Pass Key protection only. 

Figure 12-15 • Programming Fusion Security Settings Only

Figure 12-16 • High Security Level to Implement FlashLock Pass Key and AES Key Protection
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In-System Programming (ISP) of Microsemi’s Low Power Flash Devices Using FlashPro4/3/3X
IEEE 1532 (JTAG) Interface 
The supported industry-standard IEEE 1532 programming interface builds on the IEEE 1149.1 (JTAG)
standard. IEEE 1532 defines the standardized process and methodology for ISP. Both silicon and
software issues are addressed in IEEE 1532 to create a simplified ISP environment. Any IEEE 1532
compliant programmer can be used to program low power flash devices. Device serialization is not
supported when using the IEEE1532 standard. Refer to the standard for detailed information about IEEE
1532.

Security
Unlike SRAM-based FPGAs that require loading at power-up from an external source such as a
microcontroller or boot PROM, Microsemi nonvolatile devices are live at power-up, and there is no
bitstream required to load the device when power is applied. The unique flash-based architecture
prevents reverse engineering of the programmed code on the device, because the programmed data is
stored in nonvolatile memory cells. Each nonvolatile memory cell is made up of small capacitors and any
physical deconstruction of the device will disrupt stored electrical charges.
Each low power flash device has a built-in 128-bit Advanced Encryption Standard (AES) decryption core,
except for the 30 k gate devices and smaller. Any FPGA core or FlashROM content loaded into the
device can optionally be sent as encrypted bitstream and decrypted as it is loaded. This is particularly
suitable for applications where device updates must be transmitted over an unsecured network such as
the Internet. The embedded AES decryption core can prevent sensitive data from being intercepted
(Figure 13-1 on page 331). A single 128-bit AES Key (32 hex characters) is used to encrypt FPGA core
programming data and/or FlashROM programming data in the Microsemi tools. The low power flash
devices also decrypt with a single 128-bit AES Key. In addition, low power flash devices support a
Message Authentication Code (MAC) for authentication of the encrypted bitstream on-chip. This allows
the encrypted bitstream to be authenticated and prevents erroneous data from being programmed into
the device. The FPGA core, FlashROM, and Flash Memory Blocks (FBs), in Fusion only, can be updated
independently using a programming file that is AES-encrypted (cipher text) or uses plain text.
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Security in ARM-Enabled Low Power Flash Devices 
There are slight differences between the regular flash device and the ARM-enabled flash devices, which
have the M1 prefix.
The AES key is used by Microsemi and preprogrammed into the device to protect the ARM IP. As a
result, the design will be encrypted along with the ARM IP, according to the details below. 

Cortex-M1 and Cortex-M3 Device Security
Cortex-M1–enabled and Cortex-M3 devices are shipped with the following security features:

• FPGA array enabled for AES-encrypted programming and verification
• FlashROM enabled for AES-encrypted write and verify
• Embedded Flash Memory enabled for AES encrypted write 

Figure 13-1 • AES-128 Security Features 
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useless to the thief. To learn more about the low power flash devices’ security features, refer to the
"Security in Low Power Flash Devices" section on page 301.

Conclusion
The Fusion, IGLOO, and ProASIC3 FPGAs are ideal for applications that require field upgrades. The
single-chip devices save board space by eliminating the need for EEPROM. The built-in AES with MAC
enables transmission of programming data over any network without fear of design theft. Fusion, IGLOO,
and ProASIC3 FPGAs are IEEE 1532–compliant and support STAPL, making the target programming
software easy to implement. 

Figure 15-5 • ProASIC3 Device Encryption Flow
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Power-Up/-Down Behavior of Low Power Flash Devices
Internal Pull-Up and Pull-Down
Low power flash device I/Os are equipped with internal weak pull-up/-down resistors that can be used by 
designers. If used, these internal pull-up/-down resistors will be activated during power-up, once both 
VCC and VCCI are above their functional activation level. Similarly, during power-down, these internal 
pull-up/-down resistors will turn off once the first supply voltage falls below its brownout deactivation 
level. 

Cold-Sparing
In cold-sparing applications, voltage can be applied to device I/Os before and during power-up. Cold-
sparing applications rely on three important characteristics of the device:

1. I/Os must be tristated before and during power-up.
2. Voltage applied to the I/Os must not power up any part of the device.
3. VCCI should not exceed 3.6 V, per datasheet specifications.

As described in the "Power-Up to Functional Time" section on page 378, Microsemi’s low power flash 
I/Os are tristated before and during power-up until the last voltage supply (VCC or VCCI) is powered up 
past its functional level. Furthermore, applying voltage to the FPGA I/Os does not pull up VCC or VCCI 
and, therefore, does not partially power up the device. Table 18-4 includes the cold-sparing test results 
on A3PE600-PQ208 devices. In this test, leakage current on the device I/O and residual voltage on the 
power supply rails were measured while voltage was applied to the I/O before power-up.

VCCI must not exceed 3.6 V, as stated in the datasheet specification. Therefore, ProASIC3E devices 
meet all three requirements stated earlier in this section and are suitable for cold-sparing applications. 
The following devices and families support cold-sparing:

• IGLOO: AGL015 and AGL030
• All IGLOO nano
• All IGLOO PLUS
• All IGLOOe
• ProASIC3L: A3PE3000L
• ProASIC3: A3P015 and A3P030
• All ProASIC3 nano
• All ProASIC3E
• Military ProASIC3EL: A3PE600L and A3PE3000L
• RT ProASIC3: RT3PE600L and RT3PE3000L

Table 18-4 • Cold-Sparing Test Results for A3PE600 Devices

Device I/O

Residual Voltage (V)

Leakage CurrentVCC VCCI

Input 0 0.003 <1 µA

Output 0 0.003 <1 µA
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