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ProASIC3L FPGA Fabric User’s Guide
• The device is reset upon exiting Flash*Freeze mode or internal state saving is not required.
• State saving is required, but data and clock management is performed external to the FPGA. In

other words, incoming data is externally guaranteed and held valid prior to entering Flash*Freeze
mode.

Type 2 Flash*Freeze mode is ideally suited for applications with the following design criteria:
• Entering Flash*Freeze mode is dependent on an internal or external signal in addition to the

external FF pin.
• State saving is required and incoming data is not externally guaranteed valid.
• The designer wants to use his/her own Flash*Freeze management IP for clock and data

management.
• The designer wants to use his/her own Flash*Freeze management logic for clock and data

management.
• Internal housekeeping is required prior to entering Flash*Freeze mode. Housekeeping activities

may include loading data to SRAM, system shutdown, completion of current task, or ensuring
valid Flash*Freeze pin assertion.

There is no downside to type 2 mode, and Microsemi's Flash*Freeze management IP offers a very low
tile count clock and data management solution. Microsemi's recommendation for most designs is to use
type 2 Flash*Freeze mode with Flash*Freeze management IP. 

Design Solutions
Clocks

• Microsemi recommends using a completely synchronous design in Type 2 mode with
Flash*Freeze management IP cleanly gating all internal and external clocks. This will prevent
narrow pulses upon entrance and exit from Flash*Freeze mode (Figure 2-5 on page 30).

• Upon entering Flash*Freeze mode, external clocks become tied off High, internal to the clock pin
(unless hold state is used on IGLOO nano or IGLOO PLUS), and PLLs are turned off. Any clock
that is externally Low will realize a Low to High transition internal to the device while entering
Flash*Freeze. If clocks will float during Flash*Freeze mode, Microsemi recommends using the
weak pull-up feature. If clocks will continue to drive the device during Flash*Freeze mode, the
clock gating (filter) available in Flash*Freeze management IP can help to filter unwanted narrow
clock pulses upon Flash*Freeze mode entry and exit.

• Clocks may continue to drive FPGA pins while the device is in Flash*Freeze mode, with virtually
no power consumption. The weak pull-up/-down configuration will result in unnecessary power
consumption if used in this scenario.

• Floating clocks can cause totem pole currents on the input I/O circuitry when the device is in
active mode. If clocks are externally gated prior to entering Flash*Freeze mode, Microsemi
recommends gating them to a known value (preferably '1', to avoid a possible narrow pulse upon
Flash*Freeze mode exit), and not leaving them floating. However, during Flash*Freeze mode, all
inputs and clocks are internally tied off to prevent totem pole currents, so they can be left floating. 

• Upon exiting Flash*Freeze mode, the design must allow maximum acquisition time for the PLL to
acquire the lock signal, and for a PLL clock to become active.  If a PLL output clock is used as the
primary clock for Flash*Freeze management IP, it is important to note that the clock gating circuit
will only release other clocks after the primary PLL output clock becomes available. 
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51900147-2/5.07 In the following sentence, located in the "Flash*Freeze Mode" section, the bold text
was changed from active high to active Low.
The Flash*Freeze pin (active low) is a dedicated pin used to enter or exit
Flash*Freeze mode directly, or alternatively the pin can be routed internally to the
FPGA core to allow the user's logic to decide if it is safe to transition to this mode.

24

Figure 2-2 • Flash*Freeze Mode Type 1 – Timing Diagram was updated. 25

Information about ULSICC was added to the "Prototyping for IGLOO and
ProASIC3L Devices Using ProASIC3" section.

2-21

51900147-1/3.07 In the "Flash*Freeze Mode" section, "active high" was changed to "active low." 24

The "Prototyping for IGLOO and ProASIC3L Devices Using ProASIC3" section was
updated with information concerning the Flash*Freeze pin.

2-21

Date Changes Page
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3 – Global Resources in Low Power Flash Devices

Introduction 
IGLOO, Fusion, and ProASIC3 FPGA devices offer a powerful, low-delay VersaNet global network
scheme and have extensive support for multiple clock domains. In addition to the Clock Conditioning
Circuits (CCCs) and phase-locked loops (PLLs), there is a comprehensive global clock distribution
network called a VersaNet global network. Each logical element (VersaTile) input and output port has
access to these global networks. The VersaNet global networks can be used to distribute low-skew clock
signals or high-fanout nets. In addition, these highly segmented VersaNet global networks contain spines
(the vertical branches of the global network tree) and ribs that can reach all the VersaTiles inside their
region. This allows users the flexibility to create low-skew local clock networks using spines. This
document describes VersaNet global networks and discusses how to assign signals to these global
networks and spines in a design flow. Details concerning low power flash device PLLs are described in
the "Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs" section on
page 77. This chapter describes the low power flash devices’ global architecture and uses of these global
networks in designs. 

Global Architecture
Low power flash devices offer powerful and flexible control of circuit timing through the use of global
circuitry. Each chip has up to six CCCs, some with PLLs.

• In IGLOOe, ProASIC3EL, and ProASIC3E devices, all CCCs have PLLs—hence, 6 PLLs per
device (except the PQ208 package, which has only 2 PLLs). 

• In IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3, and ProASIC3L devices, the west CCC
contains a PLL core (except in 10 k through 30 k devices). 

• In Fusion devices, the west CCC also contains a PLL core. In the two larger devices (AFS600 and
AFS1500), the west and east CCCs each contain a PLL.

Refer to Table 4-6 on page 100 for details. Each PLL includes delay lines, a phase shifter (0°, 90°,
180°, 270°), and clock multipliers/dividers. Each CCC has all the circuitry needed for the selection and
interconnection of inputs to the VersaNet global network. The east and west CCCs each have access to
three chip global lines on each side of the chip (six chip global lines total). The CCCs at the four corners
each have access to three quadrant global lines in each quadrant of the chip (except in 10 k through 30 k
gate devices).
The nano 10 k, 15 k, and 20 k devices support four VersaNet global resources, and 30 k devices support
six global resources. The 10 k through 30 k devices have simplified CCCs called CCC-GLs.
The flexible use of the VersaNet global network allows the designer to address several design
requirements. User applications that are clock-resource-intensive can easily route external or gated
internal clocks using VersaNet global routing networks. Designers can also drastically reduce delay
penalties and minimize resource usage by mapping critical, high-fanout nets to the VersaNet global
network.
Note: Microsemi recommends that you choose the appropriate global pin and use the appropriate global

resource so you can realize these benefits. 
The following sections give an overview of the VersaNet global network, the structure of the global
network, access point for the global networks, and the clock aggregation feature that enables a design to
have very low clock skew using spines.
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External I/O Clock Source
External I/O refers to regular I/O pins. The clock source is instantiated with one of the various INBUF 
options and accesses the CCCs via internal routing. The user has the option of assigning this input to 
any of the I/Os labeled with the I/O convention IOuxwByVz. Refer to the "User I/O Naming Conventions 
in I/O Structures" chapter of the appropriate device user’s guide, and for Fusion, refer to the Fusion 
Family of Mixed Signal FPGAs datasheet for more information. Figure 4-11 gives a brief explanation of 
external I/O usage. Choosing this option provides the freedom of selecting any user I/O location but 
introduces additional delay because the signal connects to the routed clock input through internal routing 
before connecting to the CCC reference clock input.
For the External I/O option, the routed signal would be instantiated with a PLLINT macro before 
connecting to the CCC reference clock input. This instantiation is conveniently done automatically by 
SmartGen when this option is selected. Microsemi recommends using the SmartGen tool to generate the 
CCC macro. The instantiation of the PLLINT macro results in the use of the routed clock input of the I/O 
to connect to the PLL clock input. If not using SmartGen, manually instantiate a PLLINT macro before the 
PLL reference clock to indicate that the regular I/O driving the PLL reference clock should be used (see 
Figure 4-11 for an example illustration of the connections, shown in red).
In the above two options, the clock source must be instantiated with one of the various INBUF macros. 
The reference clock pins of the CCC functional block core macros must be driven by regular input 
macros (INBUFs), not clock input macros. 

For Fusion devices, the input reference clock can also be from the embedded RC oscillator and crystal 
oscillator. In this case, the CCC configuration is the same as the hardwired I/O clock source, and users 
are required to instantiate the RC oscillator or crystal oscillator macro and connect its output to the input 
reference clock of the CCC block.

Figure 4-11 • Illustration of External I/O Usage
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
CCC Locations
CCCs located in the middle of the east and west sides of the device access the three VersaNet global 
networks on each side (six total networks), while the four CCCs located in the four corners access three 
quadrant global networks (twelve total networks). See Figure 4-13.

The following explains the locations of the CCCs in IGLOO and ProASIC3 devices:
In Figure 4-15 on page 98 through Figure 4-16 on page 98, CCCs with integrated PLLs are indicated in 
red, and simplified CCCs are indicated in yellow. There is a letter associated with each location of the 
CCC, in clockwise order. The upper left corner CCC is named "A," the upper right is named "B," and so 
on. These names finish up at the middle left with letter "F."

Figure 4-13 • Global Network Architecture for 60 k Gate Devices and Above
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5 – FlashROM in Microsemi’s Low Power Flash 
Devices

Introduction 
The Fusion, IGLOO, and ProASIC3 families of low power flash-based devices have a dedicated
nonvolatile FlashROM memory of 1,024 bits, which provides a unique feature in the FPGA market. The
FlashROM can be read, modified, and written using the JTAG (or UJTAG) interface. It can be read but
not modified from the FPGA core. Only low power flash devices contain on-chip user nonvolatile memory
(NVM). 

Architecture of User Nonvolatile FlashROM
Low power flash devices have 1 kbit of user-accessible nonvolatile flash memory on-chip that can be
read from the FPGA core fabric. The FlashROM is arranged in eight banks of 128 bits (16 bytes) during
programming. The 128 bits in each bank are addressable as 16 bytes during the read-back of the
FlashROM from the FPGA core. Figure 5-1 shows the FlashROM logical structure. 
The FlashROM can only be programmed via the IEEE 1532 JTAG port. It cannot be programmed directly
from the FPGA core. When programming, each of the eight 128-bit banks can be selectively
reprogrammed. The FlashROM can only be reprogrammed on a bank boundary. Programming involves
an automatic, on-chip bank erase prior to reprogramming the bank. The FlashROM supports
synchronous read. The address is latched on the rising edge of the clock, and the new output data is
stable after the falling edge of the same clock cycle. For more information, refer to the timing diagrams in
the DC and Switching Characteristics chapter of the appropriate datasheet. The FlashROM can be read
on byte boundaries. The upper three bits of the FlashROM address from the FPGA core define the bank
being accessed. The lower four bits of the FlashROM address from the FPGA core define which of the 16
bytes in the bank is being accessed.

Figure 5-1 • FlashROM Architecture
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SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
v1.1
(continued)

Table 6-1 • Flash-Based FPGAs and associated text were updated to include the
IGLOO PLUS family. The "IGLOO Terminology" section and "ProASIC3
Terminology" section are new.

150

The text introducing Table 6-8 • Memory Availability per IGLOO and ProASIC3
Device was updated to replace "A3P030 and AGL030" with "15 k and 30 k gate
devices." Table 6-8 • Memory Availability per IGLOO and ProASIC3 Device was
updated to remove AGL400 and AGLE1500 and include IGLOO PLUS and
ProASIC3L devices. 

162

Date Changes Page
174 Revision 4
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I/O Architecture

I/O Tile
The I/O tile provides a flexible, programmable structure for implementing a large number of I/O
standards. In addition, the registers available in the I/O tile can be used to support high-performance
register inputs and outputs, with register enable if desired (Figure 7-2). The registers can also be used to
support the JESD-79C Double Data Rate (DDR) standard within the I/O structure (see the "DDR for
Microsemi’s Low Power Flash Devices" section on page 271 for more information). In addition, the
registers available in the I/O tile can be used to support high-performance register inputs and outputs,
with register enable if desired (Figure 7-2). 
As depicted in Figure 7-2, all I/O registers share one CLR port. The output register and output enable
register share one CLK port. 

Figure 7-2 • DDR Configured I/O Block Logical Representation
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I/O Structures in IGLOO and ProASIC3 Devices
I/O Bank Structure
Low power flash device I/Os are divided into multiple technology banks. The number of banks is device-
dependent. The IGLOOe, ProASIC3EL, and ProASIC3E devices have eight banks (two per side); and
IGLOO, ProASIC3L, and ProASIC3 devices have two to four banks. Each bank has its own VCCI power
supply pin. Multiple I/O standards can co-exist within a single I/O bank.
In IGLOOe, ProASIC3EL, and ProASIC3E devices, each I/O bank is subdivided into VREF minibanks.
These are used by voltage-referenced I/Os. VREF minibanks contain 8 to 18 I/Os. All I/Os in a given
minibank share a common VREF line (only one VREF pin is needed per VREF minibank). Therefore, if
an I/O in a VREF minibank is configured as a VREF pin, the remaining I/Os in that minibank will be able
to use the voltage assigned to that pin. If the location of the VREF pin is selected manually in the
software, the user must satisfy VREF rules (refer to the "I/O Software Control in Low Power Flash
Devices" section on page 251). If the user does not pick the VREF pin manually, the software
automatically assigns it.
Figure 7-3 is a snapshot of a section of the I/O ring, showing the basic elements of an I/O tile, as viewed
from the Designer place-and-route tool’s MultiView Navigator (MVN).

Low power flash device I/Os are implemented using two tile types: I/O and differential I/O (diffio).
The diffio tile is built up using two I/O tiles, which form an I/O pair (P side and N side). These I/O pairs are
used according to differential I/O standards. Both the P and N sides of the diffio tile include an I/O buffer
and two I/O logic blocks (auxiliary and main logic). 
Every minibank (E devices only) is built up from multiple diffio tiles. The number of the minibank depends
on the different-size dies. Refer to the "I/O Architecture" section on page 181 for an illustration of the
minibank structure.
Figure 7-4 on page 183 shows a simplified diagram of the I/O buffer circuitry. The Output Enable signal
(OE) enables the output buffer to pass the signal from the core logic to the pin. The output buffer contains
ESD protection circuitry, an n-channel transistor that shunts all ESD surges (up to the limit of the device
ESD specification) to GND. This transistor also serves as an output pull-down resistor.
Each output buffer also contains programmable slew rate, drive strength, programmable power-up state
(pull-up/-down resistor), hot-swap, 5 V tolerance, and clamp diode control circuitry. Multiple flash
switches (not shown in Figure 7-4 on page 183) are programmed by user selections in the software to
activate different I/O features.

Figure 7-3 • Snapshot of an I/O Tile
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Table 8-7 • Maximum I/O Frequency for Single-Ended and Differential I/Os in All Banks in 
ProASIC3E Devices (maximum drive strength and high slew selected)

Specification

 Maximum Performance

ProASIC3E

IGLOOe V2 or V5 
Devices, 1.5 V DC Core 

Supply Voltage
IGLOOe V2, 1.2 V DC 
Core Supply Voltage

LVTTL/LVCMOS 3.3 V 200 MHz 180 MHz TBD

LVCMOS 2.5 V 250 MHz 230 MHz TBD

LVCMOS 1.8 V 200 MHz 180 MHz TBD

LVCMOS 1.5 V 130 MHz 120 MHz TBD

PCI 200 MHz 180 MHz TBD

PCI-X 200 MHz 180 MHz TBD

HSTL-I 300 MHz 275 MHz TBD

HSTL-II 300 MHz 275 MHz TBD

SSTL2-I 300 MHz 275 MHz TBD

SSTL2-II 300 MHz 275 MHz TBD

SSTL3-I 300 MHz 275 MHz TBD

SSTL3-II 300 MHz 275 MHz TBD

GTL+ 3.3 V 300 MHz 275 MHz TBD

GTL+ 2.5 V 300 MHz 275 MHz TBD

GTL 3.3 V 300 MHz 275 MHz TBD

GTL 2.5 V 300 MHz 275 MHz TBD

LVDS 350 MHz 300 MHz TBD

M-LVDS 200 MHz 180 MHz TBD

B LVDS 200 MHz 180 MHz TBD

LVPECL 350 MHz 300 MHz TBD
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I/O Bank Structure
Low power flash device I/Os are divided into multiple technology banks. The number of banks is device-
dependent. The IGLOOe, ProASIC3EL, and ProASIC3E devices have eight banks (two per side); and 
IGLOO, ProASIC3L, and ProASIC3 devices have two to four banks. Each bank has its own VCCI power 
supply pin. Multiple I/O standards can co-exist within a single I/O bank.
In IGLOOe, ProASIC3EL, and ProASIC3E devices, each I/O bank is subdivided into VREF minibanks. 
These are used by voltage-referenced I/Os. VREF minibanks contain 8 to 18 I/Os. All I/Os in a given 
minibank share a common VREF line (only one VREF pin is needed per VREF minibank). Therefore, if 
an I/O in a VREF minibank is configured as a VREF pin, the remaining I/Os in that minibank will be able 
to use the voltage assigned to that pin. If the location of the VREF pin is selected manually in the 
software, the user must satisfy VREF rules (refer to the "I/O Software Control in Low Power Flash 
Devices" section on page 251). If the user does not pick the VREF pin manually, the software 
automatically assigns it.
Figure 8-4 is a snapshot of a section of the I/O ring, showing the basic elements of an I/O tile, as viewed 
from the Designer place-and-route tool’s MultiView Navigator (MVN).

Low power flash device I/Os are implemented using two tile types: I/O and differential I/O (diffio).
The diffio tile is built up using two I/O tiles, which form an I/O pair (P side and N side). These I/O pairs are 
used according to differential I/O standards. Both the P and N sides of the diffio tile include an I/O buffer 
and two I/O logic blocks (auxiliary and main logic). 
Every minibank (E devices only) is built up from multiple diffio tiles. The number of the minibank depends 
on the different-size dies. Refer to the "Pro I/Os—IGLOOe, ProASIC3EL, and ProASIC3E" section on 
page 215 for an illustration of the minibank structure.
Figure 8-5 on page 222 shows a simplified diagram of the I/O buffer circuitry. The Output Enable signal 
(OE) enables the output buffer to pass the signal from the core logic to the pin. The output buffer contains 
ESD protection circuitry, an n-channel transistor that shunts all ESD surges (up to the limit of the device 
ESD specification) to GND. This transistor also serves as an output pull-down resistor.
Each output buffer also contains programmable slew rate, drive strength, programmable power-up state 
(pull-up/-down resistor), hot-swap, 5 V tolerance, and clamp diode control circuitry. Multiple flash 
switches (not shown in Figure 8-5 on page 222) are programmed by user selections in the software to 
activate different I/O features.

Figure 8-4 • Snapshot of an I/O Tile
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GTL 2.5 V (Gunning Transceiver Logic 2.5 V)
This is a low power standard (JESD 8-3) for electrical signals used in CMOS circuits that allows for low 
electromagnetic interference at high transfer speeds. It has a voltage swing between 0.4 V and 1.2 V and 
typically operates at speeds of between 20 and 40 MHz. VCCI must be connected to 2.5 V. The 
reference voltage (VREF) is 0.8 V.

GTL 3.3 V (Gunning Transceiver Logic 3.3 V)
This is the same as GTL 2.5 V above, except VCCI must be connected to 3.3 V.

GTL+ (Gunning Transceiver Logic Plus)
This is an enhanced version of GTL that has defined slew rates and higher voltage levels. It requires a 
differential amplifier input buffer and an open-drain output buffer. Even though the output is open-drain, 
VCCI must be connected to either 2.5 V or 3.3 V. The reference voltage (VREF) is 1 V.

Differential Standards
These standards require two I/Os per signal (called a “signal pair”). Logic values are determined by the 
potential difference between the lines, not with respect to ground. This is why differential drivers and 
receivers have much better noise immunity than single-ended standards. The differential interface 
standards offer higher performance and lower power consumption than their single-ended counterparts. 
Two I/O pins are used for each data transfer channel. Both differential standards require resistor 
termination.

LVPECL (Low-Voltage Positive Emitter Coupled Logic)
LVPECL requires that one data bit be carried through two signal lines; therefore, two pins are needed per 
input or output. It also requires external resistor termination. The voltage swing between the two signal 
lines is approximately 850 mV. When the power supply is +3.3 V, it is commonly referred to as Low-
Voltage PECL (LVPECL). Refer to the device datasheet for the full implementation of the LVPECL 
transmitter and receiver.

LVDS (Low-Voltage Differential Signal)
LVDS is a moderate-speed differential signaling system, in which the transmitter generates two different 
voltages that are compared at the receiver. LVDS uses a differential driver connected to a terminated 
receiver through a constant-impedance transmission line. It requires that one data bit be carried through 
two signal lines; therefore, the user will need two pins per input or output. It also requires external resistor 
termination. The voltage swing between the two signal lines is approximately 350 mV. VCCI is 2.5 V. Low 
power flash devices contain dedicated circuitry supporting a high-speed LVDS standard that has its own 
user specification. Refer to the device datasheet for the full implementation of the LVDS transmitter and 
receiver.

Figure 8-8 • Differential Topology
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List of Changes
The following table lists critical changes that were made in each revision of the document.  

Date Changes Page

August 2012 Figure 8-1 • DDR Configured I/O Block Logical Representation and Figure 8-3 •
DDR Configured I/O Block Logical Representation were revised to indicate that
resets on registers 1, 3, 4, and 5 are active high rather than active low. The title of
the figures was revised from "I/O Block Logical Representation" (SAR 40685).

213, 220

AGLE1500 was removed from Table 8-2 • Supported I/O Standards because it is
not a valid offering. LVCMOS 1.2 was added to the single-ended standards.
LVCMOS 1.2 was added to Table 8-3 • VCCI Voltages and Compatible IGLOOe
and ProASIC3E Standards (SAR 33207).

215, 217

Lack of a heading for the "User I/O Naming Convention" section made the
information difficult to locate. A heading now introduces the user I/O naming
conventions (SAR 38059).

245

Figure 8-5 • Simplified I/O Buffer Circuitry and Table 8-8 • Programmable I/O
Features (user control via I/O Attribute Editor) were modified to indicate that
programmable input delay control is applicable only to ProASIC3E, IGLOOe,
ProASIC3EL, and RT ProASIC3 devices (SAR 39666).

222, 227

The hyperlink for the Board-Level Considerations application note was corrected
(SAR 36663).

246, 248

June 2011 Figure 8-1 • DDR Configured I/O Block Logical Representation and Figure 8-3 • 
DDR Configured I/O Block Logical Representation were revised so that the 
I/O_CLR and I/O_OCLK nets are no longer joined in front of Input Register 3 but 
instead on the branch of the CLR/PRE signal (SAR 26052).

213, 220

The "Pro I/Os—IGLOOe, ProASIC3EL, and ProASIC3E" section was revised. 
Formerly it stated, "3.3 V PCI and 3.3 V PCI-X are 5 V–tolerant." This sentence 
now reads, "3.3 V PCI and 3.3 V PCI-X can be configured to be 5 V–tolerant" (SAR 
20983).

215

Table 8-5 • Legal IGLOOe and ProASIC3E I/O Usage Matrix within the Same Bank 
was revised as follows (SAR 22467):
The combination of 3.3 V I/O bank voltage with 1.50 V minibank voltage and LVDS, 
B-LVDS, M-LVDS, and DDR was made an illegal combination (now gray instead of 
white). 
The combination of 2.5 V I/O bank voltage with no minibank voltage and LVDS, 
B-LVDS, M-LVDS, and DDR was made a valid combination (now white instead of 
gray).

217

The following sentence was removed from the "LVCMOS (Low-Voltage CMOS)"
section (SAR 22634): "All these versions use a 3.3 V–tolerant CMOS input buffer
and a push-pull output buffer."

223

The "Electrostatic Discharge Protection" section was revised to remove references 
to tolerances (refer to the Reliability Report for tolerances). The Machine Model 
(MM) is not supported and was deleted from this section (SAR 24385).

231

The "I/O Interfacing" section was revised to state that low power flash devices are 
5 V–input– and 5 V–output–tolerant if certain I/O standards are selected, removing 
"without adding any extra circuitry," which was incorrect (SAR 21404).

247

July 2010 This chapter is no longer published separately with its own part number and 
version but is now part of several FPGA fabric user’s guides.

N/A

v1.4
(December 2008)

The terminology in the "Low Power Flash Device I/O Support" section was revised. 214
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I/O Software Control in Low Power Flash Devices
Instantiating in HDL code
All the supported I/O macros can be instantiated in the top-level HDL code (refer to the IGLOO,
ProASIC3, SmartFusion, and Fusion Macro Library Guide for a detailed list of all I/O macros). The
following is an example:
library ieee;
use ieee.std_logic_1164.all;
library proasic3e;

entity TOP is
port(IN2, IN1 : in std_logic; OUT1 : out std_logic);

end TOP;

architecture DEF_ARCH of TOP is 

component INBUF_LVCMOS5U
port(PAD : in std_logic := 'U'; Y : out std_logic);

end component;

component INBUF_LVCMOS5
port(PAD : in std_logic := 'U'; Y : out std_logic);

end component;

component OUTBUF_SSTL3_II
port(D : in std_logic := 'U'; PAD : out std_logic);

end component;

Other component …..

signal x, y, z…….other signals : std_logic;

begin 

I1 : INBUF_LVCMOS5U
port map(PAD => IN1, Y =>x);

I2 : INBUF_LVCMOS5
port map(PAD => IN2, Y => y);

I3 : OUTBUF_SSTL3_II
port map(D => z, PAD => OUT1);

other port mapping…

end DEF_ARCH;

Synthesizing the Design
Libero SoC integrates with the Synplify® synthesis tool. Other synthesis tools can also be used with
Libero SoC. Refer to the Libero SoC User’s Guide or Libero online help for details on how to set up the
Libero tool profile with synthesis tools from other vendors.
During synthesis, the following rules apply:

• Generic macros:
– Users can instantiate generic INBUF, OUTBUF, TRIBUF, and BIBUF macros.
– Synthesis will automatically infer generic I/O macros.
– The default I/O technology for these macros is LVTTL.
– Users will need to use the I/O Attribute Editor in Designer to change the default I/O standard if

needed (see Figure 9-6 on page 259).
• Technology-specific I/O macros:

– Technology-specific I/O macros, such as INBUF_LVCMO25 and OUTBUF_GTL25, can be
instantiated in the design. Synthesis will infer these I/O macros in the netlist. 
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The procedure is as follows:
1. Select the bank to which you want VCCI to be assigned from the Choose Bank list.
2. Select the I/O standards for that bank. If you select any standard, the tool will automatically show

all compatible standards that have a common VCCI voltage requirement.
3. Click Apply.
4. Repeat steps 1–3 to assign VCCI voltages to other banks. Refer to Figure 9-11 on page 263 to

find out how many I/O banks are needed for VCCI bank assignment.

Manually Assigning VREF Pins
Voltage-referenced inputs require an input reference voltage (VREF). The user must assign VREF pins
before running Layout. Before assigning a VREF pin, the user must set a VREF technology for the bank
to which the pin belongs.

VREF Rules for the Implementation of Voltage-Referenced I/O 
Standards
The VREF rules are as follows:

1. Any I/O (except JTAG I/Os) can be used as a VREF pin.
2. One VREF pin can support up to 15 I/Os. It is recommended, but not required, that eight of them

be on one side and seven on the other side (in other words, all 15 can still be on one side of
VREF). 

3. SSTL3 (I) and (II): Up to 40 I/Os per north or south bank in any position
4. LVPECL / GTL+ 3.3 V / GTL 3.3 V: Up to 48 I/Os per north or south bank in any position (not

applicable for IGLOO nano and ProASIC3 nano devices)
5. SSTL2 (I) and (II) / GTL+ 2.5 V / GTL 2.5 V: Up to 72 I/Os per north or south bank in any position
6. VREF minibanks partition rule: Each I/O bank is physically partitioned into VREF minibanks. The

VREF pins within a VREF minibank are interconnected internally, and consequently, only one
VREF voltage can be used within each VREF minibank. If a bank does not require a VREF signal,
the VREF pins of that bank are available as user I/Os.

7. The first VREF minibank includes all I/Os starting from one end of the bank to the first power triple
and eight more I/Os after the power triple. Therefore, the first VREF minibank may contain (0 + 8),
(2 + 8), (4 + 8), (6 + 8), or (8 + 8) I/Os.
The second VREF minibank is adjacent to the first VREF minibank and contains eight I/Os, a
power triple, and eight more I/Os after the triple. An analogous rule applies to all other VREF
minibanks but the last.
The last VREF minibank is adjacent to the previous one but contains eight I/Os, a power triple,
and all I/Os left at the end of the bank. This bank may also contain (8 + 0), (8 + 2), (8 + 4), (8 + 6),
or (8 + 8) available I/Os.
Example:
4 I/Os →  Triple →  8 I/Os, 8 I/Os →  Triple →  8 I/Os, 8 I/Os →  Triple →  2 I/Os
That is, minibank A = (4 + 8) I/Os, minibank B = (8 + 8) I/Os, minibank C = (8 + 2) I/Os.

8. Only minibanks that contain input or bidirectional I/Os require a VREF. A VREF is not needed for
minibanks composed of output or tristated I/Os. 

Assigning the VREF Voltage to a Bank
When importing the PDC file, the VREF voltage can be assigned to the I/O bank. The PDC command is
as follows:
set_iobank –vref [value]

Another method for assigning VREF is by using MVN > Edit > I/O Bank Settings (Figure 9-13 on
page 266).
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VHDL
library ieee;
use ieee.std_logic_1164.all;
library proasic3; use proasic3.all;

entity DDR_BiDir_HSTL_I_LowEnb is 
port(DataR, DataF, CLR, CLK, Trien : in std_logic; QR, QF : out std_logic; 

PAD : inout std_logic) ;
end DDR_BiDir_HSTL_I_LowEnb;

architecture DEF_ARCH of  DDR_BiDir_HSTL_I_LowEnb is

component INV
port(A : in std_logic := 'U'; Y : out std_logic) ;

end component;

component DDR_OUT
port(DR, DF, CLK, CLR : in std_logic := 'U'; Q : out std_logic) ;

end component;

component DDR_REG
port(D, CLK, CLR : in std_logic := 'U'; QR, QF : out std_logic) ;

end component;

component BIBUF_HSTL_I
port(PAD : inout std_logic := 'U'; D, E : in std_logic := 'U'; Y : out std_logic) ;

end component;

signal TrienAux, D, Q : std_logic ;

begin

Inv_Tri : INV
port map(A => Trien, Y => TrienAux);
DDR_OUT_0_inst : DDR_OUT
port map(DR => DataR, DF => DataF, CLK => CLK, CLR => CLR, Q => Q);
DDR_REG_0_inst : DDR_REG
port map(D => D, CLK => CLK, CLR => CLR, QR => QR, QF => QF);
BIBUF_HSTL_I_0_inst : BIBUF_HSTL_I
port map(PAD => PAD, D => Q, E => TrienAux, Y => D);

end DEF_ARCH;
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Programming Flash Devices
Volume Programming Services
Device Type Supported: Flash and Antifuse
Once the design is stable for applications with large production volumes, preprogrammed devices can be 
purchased. Table 11-2 describes the volume programming services.

Advantages: As programming is outsourced, this solution is easier to implement than creating a 
substantial in-house programming capability. As programming houses specialize in large-volume 
programming, this is often the most cost-effective solution.
Limitations: There are some logistical issues with the use of a programming service provider, such as the 
transfer of programming files and the approval of First Articles. By definition, the programming file must 
be released to a third-party programming house. Nondisclosure agreements (NDAs) can be signed to 
help ensure data protection; however, for extremely security-conscious designs, this may not be an 
option.

• Microsemi In-House Programming
When purchasing Microsemi devices in volume, IHP can be requested as part of the purchase. If 
this option is chosen, there is a small cost adder for each device programmed. Each device is 
marked with a special mark to distinguish it from blank parts. Programming files for the design will 
be sent to Microsemi. Sample parts with the design programmed, First Articles, will be returned 
for customer approval. Once approval of First Articles has been received, Microsemi will proceed 
with programming the remainder of the order. To request Microsemi IHP, contact your local 
Microsemi representative. 

• Distributor Programming Centers 
If purchases are made through a distributor, many distributors will provide programming for their 
customers. Consult with your preferred distributor about this option. 

Table 11-2 • Volume Programming Services
Programmer Vendor Availability 
In-House Programming Microsemi Contact Microsemi Sales 
Distributor Programming Centers Memec Unique Contact Distribution
Independent Programming Centers Various Contact Vendor
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• Programming Centers
Microsemi programming hardware policy also applies to programming centers. Microsemi 
expects all programming centers to use certified programmers to program Microsemi devices. If a 
programming center uses noncertified programmers to program Microsemi devices, the 
"Noncertified Programmers" policy applies. 

Important Programming Guidelines

Preprogramming Setup
Before programming, several steps are required to ensure an optimal programming yield.

Use Proper Handling and Electrostatic Discharge (ESD) Precautions 
Microsemi FPGAs are sensitive electronic devices that are susceptible to damage from ESD and other 
types of mishandling. For more information about ESD, refer to the Quality and Reliability Guide, 
beginning with page 41.

Use the Latest Version of the Designer Software to Generate Your 
Programming File (recommended)
The files used to program Microsemi flash devices (*.bit, *.stp, *.pdb) contain important information about 
the switches that will be programmed in the FPGA. Find the latest version and corresponding release 
notes at http://www.microsemi.com/soc/download/software/designer/. Also, programming files must 
always be zipped during file transfer to avoid the possibility of file corruption.

Use the Latest Version of the Programming Software 
The programming software is frequently updated to accommodate yield enhancements in FPGA 
manufacturing. These updates ensure maximum programming yield and minimum programming times. 
Before programming, always check the version of software being used to ensure it is the most recent. 
Depending on the programming software, refer to one of the following:

• FlashPro: http://www.microsemi.com/soc/download/program_debug/flashpro/
• Silicon Sculptor: http://www.microsemi.com/soc/download/program_debug/ss/

Use the Most Recent Adapter Module with Silicon Sculptor
Occasionally, Microsemi makes modifications to the adapter modules to improve programming yields 
and programming times. To identify the latest version of each module before programming, visit
http://www.microsemi.com/soc/products/hardware/program_debug/ss/modules.aspx.

Perform Routine Hardware Self-Diagnostic Test
• Adapter modules must be regularly cleaned. Adapter modules need to be inserted carefully into 

the programmer to make sure the DIN connectors (pins at the back side) are not damaged.
• FlashPro

The self-test is only applicable when programming with FlashPro and FlashPro3 programmers. It 
is not supported with FlashPro4 or FlashPro Lite. To run the self-diagnostic test, follow the 
instructions given in the "Performing a Self-Test" section of
http://www.microsemi.com/soc/documents/FlashPro_UG.pdf. 

• Silicon Sculptor
The self-diagnostic test verifies correct operation of the pin drivers, power supply, CPU, memory, 
and adapter module. This test should be performed with an adapter module installed and before 
every programming session. At minimum, the test must be executed every week. To perform self-
diagnostic testing using the Silicon Sculptor software, perform the following steps, depending on 
the operating system:
– DOS: From anywhere in the software, type ALT + D.
– Windows: Click Device > choose Actel Diagnostic > select the Test tab > click OK.
Silicon Sculptor programmers must be verified annually for calibration. Refer to the Silicon 
Sculptor Verification of Calibration Work Instruction document on the website. 
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v1.3
(December 2008)

The "Programming Support in Flash Devices" section was updated to include 
IGLOO nano and ProASIC3 nano devices.

288

The "Flash Devices" section was updated to include information for IGLOO nano 
devices. The following sentence was added: IGLOO PLUS devices can also be 
operated at any voltage between 1.2 V and 1.5 V; the Designer software allows 
50 mV increments in the voltage.

289

Table 11-4 · Programming Ordering Codes was updated to replace FP3-26PIN-
ADAPTER with FP3-10PIN-ADAPTER-KIT. 

294

Table 14-6 · Programmer Device Support was updated to add IGLOO nano and 
ProASIC3 nano devices. AGL400 was added to the IGLOO portion of the table.

317

v1.2
(October 2008)

The "Programming Support in Flash Devices" section was revised to include new 
families and make the information more concise. 

288

Figure 11-1 · FlashPro Programming Setup and the "Programming Support in Flash 
Devices" section are new.

287, 288

Table 14-6 · Programmer Device Support was updated to include A3PE600L with 
the other ProASIC3L devices, and the RT ProASIC3 family was added.

317

v1.1
(March 2008)

The "Flash Devices" section was updated to include the IGLOO PLUS family. The 
text, "Voltage switching is required in-system to switch from a 1.2 V core to 1.5 V 
core for programming," was revised to state, "Although the device can operate at 
1.2 V core voltage, the device can only be reprogrammed when the core voltage is 
1.5 V. Voltage switching is required in-system to switch from a 1.2 V supply (VCC, 
VCCI, and VJTAG) to 1.5 V for programming."

289

The ProASIC3L family was added to Table 14-6 · Programmer Device Support as a 
separate set of rows rather than combined with ProASIC3 and ProASIC3E devices. 
The IGLOO PLUS family was included, and AGL015 and A3P015 were added.

317
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Summary of Changes
Revision 0
(continued)

"DDR for Microsemi’s Low Power Flash Devices" was revised. 285

"Programming Flash Devices" was revised. 298

"In-System Programming (ISP) of Microsemi’s Low Power Flash Devices Using
FlashPro4/3/3X" was revised.

339

"Core Voltage Switching Circuit for IGLOO and ProASIC3L In-System
Programming" was revised.

347

"Boundary Scan in Low Power Flash Devices" was revised. 362

Revision
(month/year) Chapter Affected

List of Changes
(page number)
386 Revision 4


