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Flash*Freeze Technology and Low Power Modes
Sleep and Shutdown Modes

Sleep Mode
IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3L, and RT ProASIC3 FPGAs support Sleep mode when
device functionality is not required. In Sleep mode, VCC (core voltage), VJTAG (JTAG DC voltage), and
VPUMP (programming voltage) are grounded, resulting in the FPGA core being turned off to reduce
power consumption. While the device is in Sleep mode, the rest of the system can still be operating and
driving the input buffers of the device. The driven inputs do not pull up the internal power planes, and the
current draw is limited to minimal leakage current.
Table 2-7 shows the power supply status in Sleep mode.

Refer to the "Power-Up/-Down Behavior" section on page 33 for more information about I/O states during
Sleep mode and the timing diagram for entering and exiting Sleep mode.

Shutdown Mode
Shutdown mode is supported for all IGLOO nano and IGLOO PLUS devices as well the following
IGLOO/e devices: AGL015, AGL030, AGLE600, AGLE3000, and A3PE3000L. Shutdown mode can be
used by turning off all power supplies when the device function is not needed. Cold-sparing and hot-
insertion features enable these devices to be powered down without turning off the entire system. When
power returns, the live-at-power-up feature enables operation of the device after reaching the voltage
activation point.

Table 2-7 • Sleep Mode—Power Supply Requirement for IGLOO, IGLOO nano, IGLOO PLUS, 
ProASIC3L, and RT ProASIC3 Devices

Power Supplies Power Supply State 
VCC Powered off

VCCI = VMV Powered on

VJTAG Powered off

VPUMP Powered off
32 Revision 4





Global Resources in Low Power Flash Devices
External I/O or Local signal as Clock Source
External I/O refers to regular I/O pins are labeled with the I/O convention IOuxwByVz. You can allow the
external I/O or internal signal to access the global. To allow the external I/O or internal signal to access
the global network, you need to instantiate the CLKINT macro. Refer to Figure 3-4 on page 51 for an
example illustration of the connections. Instead of using CLKINT, you can also use PDC to promote
signals from external I/O or internal signal to the global network. However, it may cause layout issues
because of synthesis logic replication. Refer to the "Global Promotion and Demotion Using PDC" section
on page 67 for details.

Using Global Macros in Synplicity
The Synplify® synthesis tool automatically inserts global buffers for nets with high fanout during
synthesis. By default, Synplicity® puts six global macros (CLKBUF or CLKINT) in the netlist, including
any global instantiation or PLL macro. Synplify always honors your global macro instantiation. If you have
a PLL (only primary output is used) in the design, Synplify adds five more global buffers in the netlist.
Synplify uses the following global counting rule to add global macros in the netlist:

1. CLKBUF: 1 global buffer
2. CLKINT: 1 global buffer
3. CLKDLY: 1 global buffer
4. PLL: 1 to 3 global buffers 

– GLA, GLB, GLC, YB, and YC are counted as 1 buffer.
– GLB or YB is used or both are counted as 1 buffer.
– GLC or YC is used or both are counted as 1 buffer.

Figure 3-14 • CLKINT Macro
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4 – Clock Conditioning Circuits in Low Power 
Flash Devices and Mixed Signal FPGAs

Introduction
This document outlines the following device information: Clock Conditioning Circuit (CCC) features, PLL 
core specifications, functional descriptions, software configuration information, detailed usage 
information, recommended board-level considerations, and other considerations concerning clock 
conditioning circuits and global networks in low power flash devices or mixed signal FPGAs.

Overview of Clock Conditioning Circuitry
In Fusion, IGLOO, and ProASIC3 devices, the CCCs are used to implement frequency division, 
frequency multiplication, phase shifting, and delay operations. The CCCs are available in six chip 
locations—each of the four chip corners and the middle of the east and west chip sides. For device-
specific variations, refer to the "Device-Specific Layout" section on page 94.
The CCC is composed of the following:

• PLL core
• 3 phase selectors
• 6 programmable delays and 1 fixed delay that advances/delays phase
• 5 programmable frequency dividers that provide frequency multiplication/division (not shown in 

Figure 4-6 on page 87 because they are automatically configured based on the user's required 
frequencies)

• 1 dynamic shift register that provides CCC dynamic reconfiguration capability
Figure 4-1 provides a simplified block diagram of the physical implementation of the building blocks in 
each of the CCCs. 

Figure 4-1 • Overview of the CCCs Offered in Fusion, IGLOO, and ProASIC3
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ProASIC3L FPGA Fabric User’s Guide
Feedback Configuration
The PLL provides both internal and external feedback delays. Depending on the configuration, various 
combinations of feedback delays can be achieved.

Internal Feedback Configuration
This configuration essentially sets the feedback multiplexer to route the VCO output of the PLL core as 
the input to the feedback of the PLL. The feedback signal can be processed with the fixed system and 
the adjustable feedback delay, as shown in Figure 4-24. The dividers are automatically configured by 
SmartGen based on the user input.
Indicated below is the System Delay pull-down menu. The System Delay can be bypassed by setting it to 
0. When set, it adds a 2 ns delay to the feedback path (which results in delay advancement of the output 
clock by 2 ns). 

Figure 4-25 shows the controllable Feedback Delay. If set properly in conjunction with the fixed System 
Delay, the total output delay can be advanced significantly. 

Figure 4-24 • Internal Feedback with Selectable System Delay

Figure 4-25 • Internal Feedback with Selectable Feedback Delay
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ProASIC3L FPGA Fabric User’s Guide
Figure 5-7 • Accessing FlashROM Using FPGA Core

Figure 5-8 • Accessing FlashROM Using JTAG Port
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ProASIC3L FPGA Fabric User’s Guide
Pipeline Register
module D_pipeline (Data, Clock, Q);

input [3:0] Data;
input Clock;
output [3:0] Q;

reg [3:0] Q;

always @ (posedge Clock) Q <= Data;

endmodule

4x4 RAM Block (created by SmartGen Core Generator)
module mem_block(DI,DO,WADDR,RADDR,WRB,RDB,WCLOCK,RCLOCK);

input [3:0] DI;
output [3:0] DO;
input [1:0] WADDR, RADDR;
input WRB, RDB, WCLOCK, RCLOCK;

wire WEBP, WEAP, VCC, GND;

VCC VCC_1_net(.Y(VCC));
GND GND_1_net(.Y(GND));
INV WEBUBBLEB(.A(WRB), .Y(WEBP));
RAM4K9 RAMBLOCK0(.ADDRA11(GND), .ADDRA10(GND), .ADDRA9(GND), .ADDRA8(GND),

.ADDRA7(GND), .ADDRA6(GND), .ADDRA5(GND), .ADDRA4(GND), .ADDRA3(GND), .ADDRA2(GND),

.ADDRA1(RADDR[1]), .ADDRA0(RADDR[0]), .ADDRB11(GND), .ADDRB10(GND), .ADDRB9(GND),

.ADDRB8(GND), .ADDRB7(GND), .ADDRB6(GND), .ADDRB5(GND), .ADDRB4(GND), .ADDRB3(GND),

.ADDRB2(GND), .ADDRB1(WADDR[1]), .ADDRB0(WADDR[0]), .DINA8(GND), .DINA7(GND),

.DINA6(GND), .DINA5(GND), .DINA4(GND), .DINA3(GND), .DINA2(GND), .DINA1(GND),

.DINA0(GND), .DINB8(GND), .DINB7(GND), .DINB6(GND), .DINB5(GND), .DINB4(GND),

.DINB3(DI[3]), .DINB2(DI[2]), .DINB1(DI[1]), .DINB0(DI[0]), .WIDTHA0(GND),

.WIDTHA1(VCC), .WIDTHB0(GND), .WIDTHB1(VCC), .PIPEA(GND), .PIPEB(GND),

.WMODEA(GND), .WMODEB(GND), .BLKA(WEAP), .BLKB(WEBP), .WENA(VCC), .WENB(GND),

.CLKA(RCLOCK), .CLKB(WCLOCK), .RESET(VCC), .DOUTA8(), .DOUTA7(), .DOUTA6(),

.DOUTA5(), .DOUTA4(), .DOUTA3(DO[3]), .DOUTA2(DO[2]), .DOUTA1(DO[1]),

.DOUTA0(DO[0]), .DOUTB8(), .DOUTB7(), .DOUTB6(), .DOUTB5(), .DOUTB4(), .DOUTB3(),

.DOUTB2(), .DOUTB1(), .DOUTB0());
INV WEBUBBLEA(.A(RDB), .Y(WEAP));

endmodule
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I/O Structures in IGLOO and ProASIC3 Devices
Board-Level Considerations
Low power flash devices have robust I/O features that can help in reducing board-level components. The
devices offer single-chip solutions, which makes the board layout simpler and more immune to signal
integrity issues. Although, in many cases, these devices resolve board-level issues, special attention
should always be given to overall signal integrity. This section covers important board-level
considerations to facilitate optimum device performance.

Termination
Proper termination of all signals is essential for good signal quality. Nonterminated signals, especially
clock signals, can cause malfunctioning of the device.
For general termination guidelines, refer to the Board-Level Considerations application note for
Microsemi FPGAs. Also refer to the "Pin Descriptions" chapter of the appropriate datasheet for
termination requirements for specific pins.
Low power flash I/Os are equipped with on-chip pull-up/-down resistors. The user can enable these
resistors by instantiating them either in the top level of the design (refer to the IGLOO, Fusion, and
ProASIC3 Macro Library Guide for the available I/O macros with pull-up/-down) or in the I/O Attribute
Editor in Designer if generic input or output buffers are instantiated in the top level. Unused I/O pins are
configured as inputs with pull-up resistors.
As mentioned earlier, low power flash devices have multiple programmable drive strengths, and the user
can eliminate unwanted overshoot and undershoot by adjusting the drive strengths.

Power-Up Behavior 
Low power flash devices are power-up/-down friendly; i.e., no particular sequencing is required for
power-up and power-down. This eliminates extra board components for power-up sequencing, such as a
power-up sequencer.
During power-up, all I/Os are tristated, irrespective of I/O macro type (input buffers, output buffers, I/O
buffers with weak pull-ups or weak pull-downs, etc.). Once I/Os become activated, they are set to the
user-selected I/O macros. Refer to the "Power-Up/-Down Behavior of Low Power Flash Devices" section
on page 373 for details. 

Drive Strength
Low power flash devices have up to seven programmable output drive strengths. The user can select the
drive strength of a particular output in the I/O Attribute Editor or can instantiate a specialized I/O macro,
such as OUTBUF_S_12 (slew = low, out_drive = 12 mA).
The maximum available drive strength is 24 mA per I/O. Though no I/O should be forced to source or
sink more than 24 mA indefinitely, I/Os may handle a higher amount of current (refer to the device IBIS
model for maximum source/sink current) during signal transition (AC current). Every device package has
its own power dissipation limit; hence, power calculation must be performed accurately to determine how
much current can be tolerated per I/O within that limit.

I/O Interfacing 
Low power flash devices are 5 V–input– and 5 V–output–tolerant if certain I/O standards are selected
(refer to the "5 V Input and Output Tolerance" section on page 194). Along with other low-voltage I/O
macros, this 5 V tolerance makes these devices suitable for many types of board component interfacing.
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I/O Structures in IGLOOe and ProASIC3E Devices
5 V Input and Output Tolerance
IGLOO and ProASIC3 devices are both 5 V-input– and 5 V–output–tolerant if certain I/O standards are 
selected. Table 8-6 on page 218 shows the I/O standards that support 5 V input tolerance. Only 3.3 V 
LVTTL/LVCMOS standards support 5 V output tolerance. Refer to the appropriate family datasheet for 
detailed description and configuration information.
This feature is not shown in the I/O Attribute Editor.

5 V Input Tolerance
I/Os can support 5 V input tolerance when LVTTL 3.3 V, LVCMOS 3.3 V, LVCMOS 2.5 V, and LVCMOS 
2.5 V / 5.0 V configurations are used (see Table 8-13 on page 231). There are four recommended 
solutions for achieving 5 V receiver tolerance (see Figure 8-10 on page 233 to Figure 8-13 on page 235 
for details of board and macro setups). All the solutions meet a common requirement of limiting the 
voltage at the input to 3.6 V or less. In fact, the I/O absolute maximum voltage rating is 3.6 V, and any 
voltage above 3.6 V may cause long-term gate oxide failures. 

Solution 1
The board-level design must ensure that the reflected waveform at the pad does not exceed the limits 
provided in the recommended operating conditions in the datasheet. This is a requirement to ensure 
long-term reliability.
This scheme will also work for a 3.3 V PCI/PCI-X configuration, but the internal diode should not be used for 
clamping, and the voltage must be limited by the two external resistors as explained below. Relying on 
the diode clamping would create an excessive pad DC voltage of 3.3 V + 0.7 V = 4 V.
This solution requires two board resistors, as demonstrated in Figure 8-10 on page 233. Here are some 
examples of possible resistor values (based on a simplified simulation model with no line effects and 
10 Ω transmitter output resistance, where Rtx_out_high = [VCCI – VOH] / IOH and 
Rtx_out_low = VOL / IOL).
Example 1 (high speed, high current):

Rtx_out_high = Rtx_out_low = 10 Ω

R1 = 36 Ω (±5%), P(r1)min = 0.069 Ω

R2 = 82 Ω (±5%), P(r2)min = 0.158 Ω

Imax_tx = 5.5 V / (82 × 0.95 + 36 × 0.95 + 10) = 45.04 mA

tRISE = tFALL = 0.85 ns at C_pad_load = 10 pF (includes up to 25% safety margin)

tRISE = tFALL = 4 ns at C_pad_load = 50 pF (includes up to 25% safety margin)

Example 2 (low-medium speed, medium current):

Rtx_out_high = Rtx_out_low = 10 Ω

R1 = 220 Ω (±5%), P(r1)min = 0.018 Ω

R2 = 390 Ω (±5%), P(r2)min = 0.032 Ω

Imax_tx = 5.5 V / (220 × 0.95 + 390 × 0.95 + 10) = 9.17 mA

tRISE = tFALL = 4 ns at C_pad_load = 10 pF (includes up to 25% safety margin)

tRISE = tFALL = 20 ns at C_pad_load = 50 pF (includes up to 25% safety margin)

Other values of resistors are also allowed as long as the resistors are sized appropriately to limit the 
voltage at the receiving end to 2.5 V < Vin(rx) < 3.6 V when the transmitter sends a logic 1. This range of 
Vin_dc(rx) must be assured for any combination of transmitter supply (5 V ± 0.5 V), transmitter output 
resistance, and board resistor tolerances.
Temporary overshoots are allowed according to the overshoot and undershoot table in the datasheet.
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I/O Structures in IGLOOe and ProASIC3E Devices
I/O Software Support
In Libero SoC software, default settings have been defined for the various I/O standards supported. 
Changes can be made to the default settings via the use of attributes; however, not all I/O attributes are 
applicable for all I/O standards. Table 8-16 lists the valid I/O attributes that can be manipulated by the 
user for each I/O standard.
Single-ended I/O standards in low power flash devices support up to five different drive strengths.

Table 8-17 on page 243 lists the default values for the above selectable I/O attributes as well as those 
that are preset for each I/O standard. 

Table 8-16 • IGLOOe and ProASIC3E I/O Attributes vs. I/O Standard Applications
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LVTTL/LVCMOS 3.3 V ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LVCMOS 2.5 V ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LVCMOS 2.5/5.0 V ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LVCMOS 1.8 V ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LVCMOS 1.5 V ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

PCI (3.3 V) ✓ ✓ ✓ ✓ ✓

PCI-X (3.3 V) ✓ ✓ ✓ ✓ ✓ ✓

GTL+ (3.3 V) ✓ ✓ ✓ ✓ ✓ ✓

GTL+ (2.5 V) ✓ ✓ ✓ ✓ ✓ ✓

GTL (3.3 V) ✓ ✓ ✓ ✓ ✓ ✓

GTL (2.5 V) ✓ ✓ ✓ ✓ ✓ ✓

HSTL Class I ✓ ✓ ✓ ✓ ✓ ✓

HSTL Class II ✓ ✓ ✓ ✓ ✓ ✓

SSTL2 Class I and II ✓ ✓ ✓ ✓ ✓ ✓

SSTL3 Class I and II ✓ ✓ ✓ ✓ ✓ ✓

LVDS, B-LVDS, M-
LVDS

✓ ✓ ✓ ✓ ✓

LVPECL ✓ ✓ ✓ ✓
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I/O Software Control in Low Power Flash Devices
Output Buffers
There are two variations: Regular and Special.
If the Regular variation is selected, only the Width (1 to 128) needs to be entered. The default value for
Width is 1.
The Special variation has Width, Technology, Output Drive, and Slew Rate options.

Bidirectional Buffers
There are two variations: Regular and Special.
The Regular variation has Enable Polarity (Active High, Active Low) in addition to the Width option.
The Special variation has Width, Technology, Output Drive, Slew Rate, and Resistor Pull-Up/-Down
options.

Tristate Buffers
Same as Bidirectional Buffers.

DDR
There are eight variations: DDR with Regular Input Buffers, Special Input Buffers, Regular Output
Buffers, Special Output Buffers, Regular Tristate Buffers, Special Tristate Buffers, Regular Bidirectional
Buffers, and Special Bidirectional Buffers.
These variations resemble the options of the previous I/O macro. For example, the Special Input Buffers
variation has Width, Technology, Voltage Level, and Resistor Pull-Up/-Down options. DDR is not
available on IGLOO PLUS devices. 

4. Once the desired configuration is selected, click the Generate button. The Generate Core
window opens (Figure 9-4).

5. Enter a name for the macro. Click OK. The core will be generated and saved to the appropriate
location within the project files (Figure 9-5 on page 257). 

6. Instantiate the I/O macro in the top-level code.
The user must instantiate the DDR_REG or DDR_OUT macro in the design. Use SmartGen to
generate both these macros and then instantiate them in your top level. To combine the DDR
macros with the I/O, the following rules must be met:

Figure 9-4 • Generate Core Window
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10 – DDR for Microsemi’s Low Power Flash 
Devices

Introduction
The I/Os in Fusion, IGLOO, and ProASIC3 devices support Double Data Rate (DDR) mode. In this mode,
new data is present on every transition (or clock edge) of the clock signal. This mode doubles the data
transfer rate compared with Single Data Rate (SDR) mode, where new data is present on one transition
(or clock edge) of the clock signal. Low power flash devices have DDR circuitry built into the I/O tiles.
I/Os are configured to be DDR receivers or transmitters by instantiating the appropriate special macros
(examples shown in Figure 10-4 on page 276 and Figure 10-5 on page 277) and buffers (DDR_OUT or
DDR_REG) in the RTL design. This document discusses the options the user can choose to configure
the I/Os in this mode and how to instantiate them in the design.

Double Data Rate (DDR) Architecture 
Low power flash devices support 350 MHz DDR inputs and outputs. In DDR mode, new data is present
on every transition of the clock signal. Clock and data lines have identical bandwidths and signal integrity
requirements, making them very efficient for implementing very high-speed systems. High-speed DDR
interfaces can be implemented using LVDS (not applicable for IGLOO nano and ProASIC3 nano
devices). In IGLOOe, ProASIC3E, AFS600, and AFS1500 devices, DDR interfaces can also be
implemented using the HSTL, SSTL, and LVPECL I/O standards. The DDR feature is primarily
implemented in the FPGA core periphery and is not tied to a specific I/O technology or limited to any I/O
standard.

Figure 10-1 • DDR Support in Low Power Flash Devices
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11 – Programming Flash Devices

Introduction
This document provides an overview of the various programming options available for the Microsemi 
flash families. The electronic version of this document includes active links to all programming resources, 
which are available at http://www.microsemi.com/soc/products/hardware/default.aspx. For Microsemi 
antifuse devices, refer to the Programming Antifuse Devices document.

Summary of Programming Support 
FlashPro4 and FlashPro3 are high-performance in-system programming (ISP) tools targeted at the latest 
generation of low power flash devices offered by the SmartFusion,® Fusion, IGLOO,® and ProASIC®3 
families, including ARM-enabled devices. FlashPro4 and FlashPro3 offer extremely high performance 
through the use of USB 2.0, are high-speed compliant for full use of the 480 Mbps bandwidth, and can 
program ProASIC3 devices in under 30 seconds. Powered exclusively via USB, FlashPro4 and 
FlashPro3 provide a VPUMP voltage of 3.3 V for programming these devices. 
FlashPro4 replaced FlashPro3 in 2010. FlashPro4 supports SmartFusion, Fusion, ProASIC3,and IGLOO 
devices as well as future generation flash devices. FlashPro4 also adds 1.2 V programming for IGLOO 
nano V2 devices. FlashPro4 is compatible with FlashPro3; however it adds a programming mode 
(PROG_MODE) signal to the previously unused pin 4 of the JTAG connector. The PROG_MODE goes 
high during programming and can be used to turn on a 1.5 V external supply for those devices that 
require 1.5 V for programming. If both FlashPro3 and FlashPro4 programmers are used for programming 
the same boards, pin 4 of the JTAG connector must not be connected to anything on the board because 
FlashPro4 uses pin 4 for PROG_MODE. 

Figure 11-1 • FlashPro Programming Setup
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Security in Low Power Flash Devices
Security in Action
This section illustrates some applications of the security advantages of Microsemi’s devices (Figure 12-6).

.

Note: Flash blocks are only used in Fusion devices
Figure 12-6 • Security Options 

Plaintext
Source File

AES
Encryption

Cipher Text
Source File

Public
Domain

AES Decryption Core

FlashROM Flash Blocks

Flash Device
A

pp
lic

at
io

n 
3

A
pp

lic
at

io
n 

2

A
pp

lic
at

io
n 

1

FPGA Core
308 Revision 4



ProASIC3L FPGA Fabric User’s Guide
FlashROM Security Use Models
Each of the subsequent sections describes in detail the available selections in Microsemi Designer as an
aid to understanding security applications and generating appropriate programming files for those
applications. Before proceeding, it is helpful to review Figure 12-7 on page 309, which gives a general
overview of the programming file generation flow within the Designer software as well as what occurs
during the device programming stage. Specific settings are discussed in the following sections.
In Figure 12-7 on page 309, the flow consists of two sub-flows. Sub-flow 1 describes programming
security settings to the device only, and sub-flow 2 describes programming the design contents only. 
In Application 1, described in the "Application 1: Trusted Environment" section on page 309, the user
does not need to generate separate files but can generate one programming file containing both security
settings and design contents. Then programming of the security settings and design contents is done in
one step. Both sub-flow 1 and sub-flow 2 are used. 
In Application 2, described in the "Application 2: Nontrusted Environment—Unsecured Location" section
on page 309, the trusted site should follow sub-flows 1 and 2 separately to generate two separate
programming files. The programming file from sub-flow 1 will be used at the trusted site to program the
device(s) first. The programming file from sub-flow 2 will be sent off-site for production programming. 
In Application 3, described in the "Application 3: Nontrusted Environment—Field Updates/Upgrades"
section on page 310, typically only sub-flow 2 will be used, because only updates to the design content
portion are needed and no security settings need to be changed.
In the event that update of the security settings is necessary, see the "Reprogramming Devices" section
on page 321 for details. For more information on programming low power flash devices, refer to the "In-
System Programming (ISP) of Microsemi’s Low Power Flash Devices Using FlashPro4/3/3X" section on
page 327.
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Security in Low Power Flash Devices
Figure 12-10 • All Silicon Features Selected for IGLOO and ProASIC3 Devices

Figure 12-11 • All Silicon Features Selected for Fusion
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ProASIC3L FPGA Fabric User’s Guide
STAPL vs. DirectC
Programming the low power flash devices is performed using DirectC or the STAPL player. Both tools
use the STAPL file as an input. DirectC is a compiled language, whereas STAPL is an interpreted
language. Microprocessors will be able to load the FPGA using DirectC much more quickly than STAPL.
This speed advantage becomes more apparent when lower clock speeds of 8- or 16-bit microprocessors
are used. DirectC also requires less memory than STAPL, since the programming algorithm is directly
implemented. STAPL does have one advantage over DirectC—the ability to upgrade. When a new
programming algorithm is required, the STAPL user simply needs to regenerate a STAPL file using the
latest version of the Designer software and download it to the system. The DirectC user must download
the latest version of DirectC from Microsemi, compile everything, and download the result into the system
(Figure 15-4).

Figure 15-4 • STAPL vs. DirectC
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Microprocessor Programming of Microsemi’s Low Power Flash Devices
Remote Upgrade via TCP/IP
Transmission Control Protocol (TCP) provides a reliable bitstream transfer service between two
endpoints on a network. TCP depends on Internet Protocol (IP) to move packets around the network on
its behalf. TCP protects against data loss, data corruption, packet reordering, and data duplication by
adding checksums and sequence numbers to transmitted data and, on the receiving side, sending back
packets and acknowledging the receipt of data.
The system containing the low power flash device can be assigned an IP address when deployed in the
field. When the device requires an update (core or FlashROM), the programming instructions along with
the new programming data (AES-encrypted cipher text) can be sent over the Internet to the target system
via the TCP/IP protocol. Once the MCU receives the instruction and data, it can proceed with the FPGA
update. Low power flash devices support Message Authentication Code (MAC), which can be used to
validate data for the target device. More details are given in the "Message Authentication Code (MAC)
Validation/Authentication" section.

Hardware Requirement
To facilitate the programming of the low power flash families, the system must have a microprocessor
(with access to the device JTAG pins) to process the programming algorithm, memory to store the
programming algorithm, programming data, and the necessary programming voltage. Refer to the
relevant datasheet for programming voltages.

Security

Encrypted Programming
As an additional security measure, the devices are equipped with AES decryption. AES works in two
steps. The first step is to program a key into the devices in a secure or trusted programming center (such
as Microsemi SoC Products Group In-House Programming (IHP) center). The second step is to encrypt
any programming files with the same encryption key. The encrypted programming file will only work with
the devices that have the same key. The AES used in the low power flash families is the 128-bit AES
decryption engine (Rijndael algorithm).

Message Authentication Code (MAC) Validation/Authentication
As part of the AES decryption flow, the devices are equipped with a MAC validation/authentication
system. MAC is an authentication tag, also called a checksum, derived by applying an on-chip
authentication scheme to a STAPL file as it is loaded into the FPGA. MACs are computed and verified
with the same key so they can only be verified by the intended recipient. When the MCU system receives
the AES-encrypted programming data (cipher text), it can validate the data by loading it into the FPGA
and performing a MAC verification prior to loading the data, via a second programming pass, into the
FPGA core cells. This prevents erroneous or corrupt data from getting into the FPGA. 
Low power flash devices with AES and MAC are superior to devices with only DES or 3DES encryption.
Because the MAC verifies the correctness of the data, the FPGA is protected from erroneous loading of
invalid programming data that could damage a device (Figure 15-5 on page 355).
The AES with MAC enables field updates over public networks without fear of having the design stolen.
An encrypted programming file can only work on devices with the correct key, rendering any stolen files
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Advanced Boundary Scan Register Settings
You will not be able to control the order in which I/Os are released from boundary scan control. Testing
has produced cases where, depending on I/O placement and FPGA routing, a 5 ns glitch has been seen
on exiting programming mode. The following setting is recommended to prevent such I/O glitches:

1. In the FlashPro software, configure the advanced BSR settings for Specify I/O Settings During
Programming. 

2. Set the input BSR cell to Low for the input I/O.

Note: TCK is correctly wired with an equivalent tie-off resistance of 500 Ω, which satisfies the table for
VJTAG of 1.5 V. The resistor values for TRST are not appropriate in this case, as the tie-off
resistance of 375 Ω is below the recommended minimum for VJTAG = 1.5 V, but would be
appropriate for a VJTAG setting of 2.5 V or 3.3 V.

Figure 16-3 • Parallel Resistance on JTAG Chain of Devices
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Power-Up/-Down Behavior of Low Power Flash Devices
Flash Devices Support Power-Up Behavior
The flash FPGAs listed in Table 18-1 support power-up behavior and the functions described in this 
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed 
in Table 18-1. Where the information applies to only one product line or limited devices, these exclusions 
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices 
as listed in Table 18-1. Where the information applies to only one product line or limited devices, these 
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s 
Lowest Power FPGAs Portfolio.

Table 18-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics, 
and packaging information.
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http://www.microsemi.com/soc/documents/IGLOO_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOe_DS.pdf
http://www.microsemi.com/soc/documents/IGLOO_nano_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOPLUS_DS.pdf
http://www.microsemi.com/soc/documents/PA3_DS.pdf
http://www.microsemi.com/soc/documents/PA3E_DS.pdf
http://www.microsemi.com/soc/documents/PA3_nano_DS.pdf
http://www.microsemi.com/soc/documents/PA3L_DS.pdf
http://www.microsemi.com/soc/documents/PA3_Auto_DS.pdf
http://www.microsemi.com/soc/documents/Mil_PA3_EL_DS.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/RTPA3_DS.pdf

