
Microchip Technology - M1A3P600L-FGG484 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Active

Number of LABs/CLBs -

Number of Logic Elements/Cells -

Total RAM Bits 110592

Number of I/O 235

Number of Gates 600000

Voltage - Supply 1.14V ~ 1.575V

Mounting Type Surface Mount

Operating Temperature 0°C ~ 85°C (TJ)

Package / Case 484-BGA

Supplier Device Package 484-FPBGA (23x23)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/m1a3p600l-fgg484

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/m1a3p600l-fgg484-4493283
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array

Flash*Freeze Technology and Low Power Modes
Set/Reset
Since all I/Os and globals are tied High in Flash*Freeze mode (unless hold state is used on IGLOO nano
or IGLOO PLUS), Microsemi recommends using active low set/reset at the top-level port. If needed, the
signal can be inverted internally.

• If the intention is to always set/reset in Flash*Freeze mode, a self set/reset circuit may be
implemented to accomplish this, as shown in Figure 2-9. Configure an active High set/reset input
pin so it uses the internal pull-up during Flash*Freeze mode, and drives Low during active mode.
When the device exits Flash*Freeze mode, the input will transition from High to Low, releasing the
set/reset. Note that this circuit may release set/reset before all outputs become active, since
outputs are enabled up to 200 ns after inputs when exiting Flash*Freeze mode.

I/Os
• Floating inputs can cause totem pole currents on the input I/O circuitry when the device is in

active mode. If inputs will be released (undriven) during Flash*Freeze mode, Microsemi
recommends that they are only released after the device enters Flash*Freeze mode.

• As mentioned earlier, asynchronous input to output paths are subject to possible glitching when
entering Flash*Freeze mode. For example, on a direct in-to-out path, if the current state is '0' and
the input bank deactivates first, the input and then the output will transition to '1' before the output
enters its Flash*Freeze state. This can be prevented by using latches along with Flash*Freeze
management IP to gate asynchronous in-to-out paths prior to entering Flash*Freeze mode.

JTAG
• The JTAG state machine is powered but not active during Flash*Freeze mode.
• TCK should be held in a static state to prevent dynamic power consumption of the JTAG circuit

during Flash*Freeze.
• Specific JTAG pin tie-off recommendations suitable for Flash*Freeze mode can be found in the

"Pin Descriptions and Packaging" chapter of the device datasheet.

ULSICC
• The User Low Static ICC (ULSICC) macro acts as an access point to the hard Flash*Freeze

technology block in the device. The ULSICC macro represents a hard, fixed location block in the
device. When the LSICC input of the ULSICC macro is driven Low, the Flash*Freeze pin is
blocked, and when LSICC is driven High, the Flash*Freeze pin is enabled.

• If the user decides to build his/her own Flash*Freeze type 2 clock and data management logic,
note that the LSICC signal on the ULSICC macro is ANDed internally with the Flash*Freeze
signal. In order to reliably enter Flash*Freeze, the LSICC signal must remain asserted High while
entering and during Flash*Freeze mode.

Flash*Freeze Management IP
One of the key benefits of Microsemi's Flash*Freeze mode is the ability to preserve the state of all
internal registers, SRAM content, and I/Os (IGLOO nano and IGLOO PLUS only). This feature enables
seamless continuation of data processing before and after Flash*Freeze, without the need to reload or
reinitialize the FPGA system. Microsemi's Flash*Freeze management IP, available for type 2
implementation, offers a robust RTL block that ensures clean clock gating of all system clocks before
entering and upon exiting Flash*Freeze mode. This IP also gives users the option to perform
housekeeping prior to entering Flash*Freeze mode. This section will provide an overview of the

Figure 2-9 • Flash*Freeze Self-Reset Circuit

Input
Pull-Up

Set/Reset
'0'
36 Revision 4

ProASIC3L FPGA Fabric User’s Guide
Flash*Freeze management IP. Additional information on this IP core can be found in the Libero online
help.
The Flash*Freeze management IP is comprised of three blocks: the Flash*Freeze finite state machine
(FSM), the clock gating (filter) block, and the ULSICC macro, as shown in Figure 2-10.

Flash*Freeze Management FSM
The Flash*Freeze FSM block is a simple, robust, fully encoded 3-bit state machine that ensures clean
entrance to and exit from Flash*Freeze mode by controlling activities of the clock gating, ULSICC, and
optional housekeeping blocks. The state diagram for the FSM is shown in Figure 2-11 on page 38. In
normal operation, the state machine waits for Flash*Freeze pin assertion, and upon detection of a
request, it waits for a short period of time to ensure the assertion persists; then it asserts
WAIT_HOUSEKEEPING (active High) synchronous to the user’s designated system clock. This flag can
be used by user logic to perform any needed shutdown processes prior to entering Flash*Freeze mode,
such as storing data into SRAM, notifying other system components of the request, or timing/validating
the Flash*Freeze request. The FSM also asserts Flash_Freeze_Enabled whenever the device enters
Flash*Freeze mode. This occurs after all housekeeping and clock gating functions have completed. The
Flash_Freeze_Enabled signal remains asserted, even during Flash*Freeze mode, until the Flash*Freeze
pin is deasserted. Use the Flash_Freeze_Enabled signal to drive any logic in the design that needs to be
in a particular state during Flash*Freeze mode. The DONE_HOUSEKEEPING (active High) signal
should be asserted to notify the FSM when all the housekeeping tasks are completed. If the user
chooses not to use housekeeping, the Flash*Freeze management IP core generator in Libero SoC will
connect WAIT_HOUSEKEEPING to DONE_HOUSEKEEPING.

Figure 2-10 • Flash*Freeze Management IP Block Diagram

Flash*Freeze
Technology

Flash*Freeze Pin

INBUF_FF

User Design

Connect to Top-Level Port

ULSICC Macro

Flash*Freeze
Management IP

Flash*Freeze
FSM

INBUF

House-
keeping

(optional)

Clock Gating
(filter)

From Array To
 A

rra
y

Net
Logical Connection
Hardwired Connection

LEGEND

CLKINT

CLKINT

IGLOO, IGLOO PLUS, IGLOO nano,
ProASIC3L, or RT ProASIC3 Device
Revision 4 37

ProASIC3L FPGA Fabric User’s Guide
Clock Gating Block
Once DONE_HOUSEKEEPING is detected, the FSM will initiate the clock gating circuit by asserting
ASSERT_GATE (active Low). ASSERT_GATE is named control_user_clock_net in the IP block. Upon
assertion of the ASSERT_GATE signal, the clock will be gated in less than two cycles. The clock gating
circuit is comprised of a flip-flop, latch, AND gate, and CLKINT, as shown in Figure 2-12. The clock gating
block can support gating of up to 17 clocks.

After initiating the clock gating circuit, the FSM will assert and hold the LSICC signal (active High),
feeding the ULSICC macro. This will initiate the 1 µs entrance into Flash*Freeze mode.
Upon deassertion of the Flash*Freeze pin, the FSM will set ASSERT_GATE High. Once the I/O banks
become active, the clock will enter the device and register the ASSERT_GATE signal, cleanly releasing
the clock gate.

Design Flow1

Microsemi has developed a convenient and intuitive design flow for configuring and integrating
Flash*Freeze technology into an FPGA design. Flash*Freeze type 1 is implemented by instantiating the
INBUF_FF macro in the top level of a design. Flash*Freeze type 2 with management IP can be
generated by the Libero core generator or SmartGen and instantiated as a single block in the user's
design. This single block will include an INBUF_FF macro and the optional Flash*Freeze management
IP, which includes the ULSICC macro. If designers do not wish to use this core generator, the INBUF_FF
macro and the optional ULSICC macro may be instantiated in the design, and custom Flash*Freeze
management IP can be developed by the user. The remainder of this section will cover configuration
details of the INBUF_FF macro, the ULSICC macro, and the Flash*Freeze management IP.
Additional information on the tools discussed within this section may be found in the Libero online help.

INBUF_FF
The INBUF_FF macro is a special-purpose input buffer macro that is interpreted downstream in the
design flow by Microsemi's Designer software. When this macro is used, the top-level port will be forced
to the dedicated FF pin in the FPGA, and Flash*Freeze mode will be available for use in the device. The
following are the design rules for INBUF_FF:

• If INBUF_FF is not used in the design, the device will not be configured to support Flash*Freeze
mode.

• When the INBUF_FF macro is used, the FF pin will establish a hardwired connection to the
Flash*Freeze technology circuit in the device, as shown in Figure 2-1 on page 25, Figure 2-3 on
page 27, and Figure 2-10 on page 37, and described in the "Flash*Freeze Type 1: Control by
Dedicated Flash*Freeze Pin" section on page 24.

Figure 2-12 • Clock Gating Circuit

1. This section applies to Libero / Designer software v8.3 and later. Microsemi recommends that designs created in earlier
versions of the software be modified to accommodate this flow by instantiating the INBUF_FF macro or the Flash*Freeze
management IP. Refer to the Libero / Designer software v8.3 release notes and the Libero online help for more information
on migrating designs from older software versions.

F*F
FSM

ASSERT_GATE
D Q

Flip-Flop Latch

AND

D Q

CLK G

CLKINT
System
Clock
Revision 4 39

ProASIC3L FPGA Fabric User’s Guide
This section outlines the following device information: CCC features, PLL core specifications, functional
descriptions, software configuration information, detailed usage information, recommended board-level
considerations, and other considerations concerning global networks in low power flash devices.

Clock Conditioning Circuits with Integrated PLLs
Each of the CCCs with integrated PLLs includes the following:

• 1 PLL core, which consists of a phase detector, a low-pass filter, and a four-phase voltage-
controlled oscillator

• 3 global multiplexer blocks that steer signals from the global pads and the PLL core onto the
global networks

• 6 programmable delays and 1 fixed delay for time advance/delay adjustments
• 5 programmable frequency divider blocks to provide frequency synthesis (automatically

configured by the SmartGen macro builder tool)

Clock Conditioning Circuits without Integrated PLLs
There are two types of simplified CCCs without integrated PLLs in low power flash devices.

1. The simplified CCC with programmable delays, which is composed of the following:
– 3 global multiplexer blocks that steer signals from the global pads and the programmable

delay elements onto the global networks
– 3 programmable delay elements to provide time delay adjustments

2. The simplified CCC (referred to as CCC-GL) without programmable delay elements, which is
composed of the following:
– A global multiplexer block that steer signals from the global pads onto the global networks
Revision 4 95

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
External Feedback Configuration
For certain applications, such as those requiring generation of PCB clocks that must be matched with
existing board delays, it is useful to implement an external feedback, EXTFB. The Phase Detector of the
PLL core will receive CLKA and EXTFB as inputs. EXTFB may be processed by the fixed System Delay
element as well as the M divider element. The EXTFB option is currently not supported.
After setting all the required parameters, users can generate one or more PLL configurations with HDL or
EDIF descriptions by clicking the Generate button. SmartGen gives the option of saving session results
and messages in a log file:

Macro Parameters

Name : test_pll
Family : ProASIC3E
Output Format : VHDL
Type : Static PLL
Input Freq(MHz) : 10.000
CLKA Source : Hardwired I/O
Feedback Delay Value Index : 1
Feedback Mux Select : 2
XDLY Mux Select : No
Primary Freq(MHz) : 33.000
Primary PhaseShift : 0
Primary Delay Value Index : 1
Primary Mux Select : 4
Secondary1 Freq(MHz) : 66.000
Use GLB : YES
Use YB : YES
GLB Delay Value Index : 1
YB Delay Value Index : 1
Secondary1 PhaseShift : 0
Secondary1 Mux Select : 4
Secondary2 Freq(MHz) : 101.000
Use GLC : YES
Use YC : NO
GLC Delay Value Index : 1
YC Delay Value Index : 1
Secondary2 PhaseShift : 0
Secondary2 Mux Select : 4

…
…
…

Primary Clock frequency 33.333
Primary Clock Phase Shift 0.000
Primary Clock Output Delay from CLKA 0.180

Secondary1 Clock frequency 66.667
Secondary1 Clock Phase Shift 0.000
Secondary1 Clock Global Output Delay from CLKA 0.180
Secondary1 Clock Core Output Delay from CLKA 0.625

Secondary2 Clock frequency 100.000
Secondary2 Clock Phase Shift 0.000
Secondary2 Clock Global Output Delay from CLKA 0.180

Below is an example Verilog HDL description of a legal PLL core configuration generated by SmartGen:

module test_pll(POWERDOWN,CLKA,LOCK,GLA);
input POWERDOWN, CLKA;
output LOCK, GLA;
114 Revision 4

FlashROM in Microsemi’s Low Power Flash Devices
Conclusion
The Fusion, IGLOO, and ProASIC3 families are the only FPGAs that offer on-chip FlashROM support.
This document presents information on the FlashROM architecture, possible applications, programming,
access through the JTAG and UJTAG interface, and integration into your design. In addition, the Libero
tool set enables easy creation and modification of the FlashROM content.
The nonvolatile FlashROM block in the FPGA can be customized, enabling multiple applications.
Additionally, the security offered by the low power flash devices keeps both the contents of FlashROM
and the FPGA design safe from system over-builders, system cloners, and IP thieves.

Related Documents

User’s Guides
FlashPro User’s Guide
http://www.microsemi.com/documents/FlashPro_UG.pdf

List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 5-1 • Flash-Based
FPGAs.

134

v1.3
(October 2008)

The "FlashROM Support in Flash-Based Devices" section was revised to include
new families and make the information more concise.

134

Figure 5-2 • Fusion Device Architecture Overview (AFS600) was replaced.
Figure 5-5 • Programming FlashROM Using AES was revised to change "Fusion" to
"Flash Device."

135, 137

The FlashPoint User’s Guide was removed from the "User’s Guides" section, as its
content is now part of the FlashPro User’s Guide.

146

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 5-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V.
• The number of PLLs for ProASIC3E was changed from five to six.

134

v1.1
(March 2008)

The chapter was updated to include the IGLOO PLUS family and information
regarding 15 k gate devices. The "IGLOO Terminology" section and "ProASIC3
Terminology" section are new.

N/A
146 Revision 4

http://www.microsemi.com/soc/documents/FlashPro_UG.pdf
http://www.microsemi.com/soc/documents/FlashPro_UG.pdf

SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
Example of RAM Initialization
This section of the document presents a sample design in which a 4×4 RAM block is being initialized
through the JTAG port. A test feature has been implemented in the design to read back the contents of
the RAM after initialization to verify the procedure.
The interface block of this example performs two major functions: initialization of the RAM block and
running a test procedure to read back the contents. The clock output of the interface is either the write
clock (for initialization) or the read clock (for reading back the contents). The Verilog code for the
interface block is included in the "Sample Verilog Code" section on page 167.
For simulation purposes, users can declare the input ports of the UJTAG macro for easier assignment in
the testbench. However, the UJTAG input ports should not be declared on the top level during synthesis.
If the input ports of the UJTAG are declared during synthesis, the synthesis tool will instantiate input
buffers on these ports. The input buffers on the ports will cause Compile to fail in Designer.
Figure 6-10 shows the simulation results for the initialization step of the example design.
The CLK_OUT signal, which is the clock output of the interface block, is the inverted DR_UPDATE output
of the UJTAG macro. It is clear that it gives sufficient time (while the TAP Controller is in the Data
Register Update state) for the write address and data to become stable before loading them into the RAM
block.
Figure 6-11 presents the test procedure of the example. The data read back from the memory block
matches the written data, thus verifying the design functionality.

Figure 6-10 • Simulation of Initialization Step

Figure 6-11 • Simulation of the Test Procedure of the Example
166 Revision 4

SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
//
addr_counter counter_1 (.Clock(data_update), .Q(wr_addr), .Aset(rst_n),

.Enable(enable));
addr_counter counter_2 (.Clock(test_clk), .Q(rd_addr), .Aset(rst_n),

.Enable(test_active));

endmodule

Interface Block / UJTAG Wrapper
This example is a sample wrapper, which connects the interface block to the UJTAG and the memory
blocks.
// WRAPPER
module top_init (TDI, TRSTB, TMS, TCK, TDO, test, test_clk, test_ out);

input TDI, TRSTB, TMS, TCK;
output TDO;
input test, test_clk;
output [3:0] test_out;

wire [7:0] IR;
wire reset, DR_shift, DR_cap, init_clk, DR_update, data_in, data_out;
wire clk_out, wen, ren;
wire [3:0] word_in, word_out;
wire [1:0] write_addr, read_addr;

UJTAG UJTAG_U1 (.UIREG0(IR[0]), .UIREG1(IR[1]), .UIREG2(IR[2]), .UIREG3(IR[3]),
.UIREG4(IR[4]), .UIREG5(IR[5]), .UIREG6(IR[6]), .UIREG7(IR[7]), .URSTB(reset),
.UDRSH(DR_shift), .UDRCAP(DR_cap), .UDRCK(init_clk), .UDRUPD(DR_update),
.UT-DI(data_in), .TDI(TDI), .TMS(TMS), .TCK(TCK), .TRSTB(TRSTB), .TDO(TDO),
.UT-DO(data_out));

mem_block RAM_block (.DO(word_out), .RCLOCK(clk_out), .WCLOCK(clk_out), .DI(word_in),
.WRB(wen), .RDB(ren), .WAD-DR(write_addr), .RADDR(read_addr));

interface init_block (.IR(IR), .rst_n(reset), .data_shift(DR_shift), .clk_in(init_clk),
.data_update(DR_update), .din_ser(data_in), .dout_ser(data_out), .test(test),
.test_out(test_out), .test_clk(test_clk), .clk_out(clk_out), .wr_en(wen),
.rd_en(ren), .write_word(word_in), .read_word(word_out), .rd_addr(read_addr),
.wr_addr(write_addr));

endmodule

Address Counter
module addr_counter (Clock, Q, Aset, Enable);

input Clock;
output [1:0] Q;
input Aset;
input Enable;

reg [1:0] Qaux;

always @(posedge Clock or negedge Aset)
begin

if (!Aset) Qaux <= 2'b11;
else if (Enable) Qaux <= Qaux + 1;

end

assign Q = Qaux;

endmodule
168 Revision 4

ProASIC3L FPGA Fabric User’s Guide
Table 7-12 • I/O Hot-Swap and 5 V Input Tolerance Capabilities in IGLOO and ProASIC3 Devices

I/O Assignment

Clamp Diode 1 Hot Insertion 5 V Input Tolerance 2

Input and Output
Buffer

AGL030
and

A3P030

Other
IGLOO

and
ProASIC3
Devices

AGL015
and

AGL030

Other
IGLOO
Devices
and All

ProASIC3

AGL030
and

A3P030

Other
IGLOO

and
ProASIC3
Devices

3.3 V LVTTL/LVCMOS No Yes Yes No Yes 2 Yes 2 Enabled/Disabled

3.3 V PCI, 3.3 V PCI-X N/A Yes N/A No N/A Yes 2 Enabled/Disabled

LVCMOS 2.5 V 5 No Yes Yes No Yes 2 Yes 4 Enabled/Disabled

LVCMOS 2.5 V/5.0 V 6 N/A Yes N/A No N/A Yes 4 Enabled/Disabled

LVCMOS 1.8 V No Yes Yes No No No Enabled/Disabled

LVCMOS 1.5 V No Yes Yes No No No Enabled/Disabled

Differential, LVDS/
B-LVDS/M-
LVDS/LVPECL

N/A Yes N/A No N/A No Enabled/Disabled

Notes:
1. The clamp diode is always off for the AGL030 and A3P030 device and always active for other IGLOO and

ProASIC3 devices.
2. Can be implemented with an external IDT bus switch, resistor divider, or Zener with resistor.
3. Refer to Table 7-8 on page 189 to Table 7-11 on page 190 for device-compliant information.
4. Can be implemented with an external resistor and an internal clamp diode.
5. The LVCMOS 2.5 V I/O standard is supported by the 30 k gate devices only; select the LVCMOS25 macro.
6. The LVCMOS 2.5 V / 5.0 V I/O standard is supported by all IGLOO and ProASIC3 devices except 30K gate

devices; select the LVCMOS5 macro.
Revision 4 193

I/O Structures in IGLOO and ProASIC3 Devices
At the system level, the skew circuit can be used in applications where transmission activities on
bidirectional data lines need to be coordinated. This circuit, when selected, provides a timing margin that
can prevent bus contention and subsequent data loss and/or transmitter over-stress due to transmitter-
to-transmitter current shorts. Figure 7-16 presents an example of the skew circuit implementation in a
bidirectional communication system. Figure 7-17 on page 201 shows how bus contention is created, and
Figure 7-18 on page 201 shows how it can be avoided with the skew circuit.

Figure 7-15 • Timing Diagram (option 2: enables skew circuit)

ENABLE (IN)

ENABLE (OUT)

1.2 ns
(typical)

Less than
0.1 ns

Figure 7-16 • Example of Implementation of Skew Circuits in Bidirectional Transmission Systems Using
IGLOO or ProASIC3 Devices

Transmitter 1: ProASIC3 I/O Transmitter 2: Generic I/O

ENABLE(t2)EN (b1) EN (b2)
Routing
Delay (t1)

Routing
Delay (t2) EN (r1)

ENABLE (t1)

Skew or
Bypass
Skew

Bidirectional Data Bus

Transmitter
ENABLE/
DISABLE
200 Revision 4

ProASIC3L FPGA Fabric User’s Guide
Table 8-11 • Hot-Swap Level 3

Description Hot-swap while bus idle

Power Applied to Device Yes

Bus State Held idle (no ongoing I/O processes during
insertion/removal)

Card Ground Connection Reset must be maintained for 1 ms before, during,
and after insertion/removal.

Device Circuitry Connected to Bus Pins Must remain glitch-free during power-up or power-
down

Example Application Board bus shared with card bus is "frozen," and
there is no toggling activity on the bus. It is critical
that the logic states set on the bus signal not be
disturbed during card insertion/removal.

Compliance of IGLOO and ProASIC3 Devices 30 k gate devices, all IGLOOe/ProASIC3E
devices: Compliant with two levels of staging (first:
GND; second: all other pins)
Other IGLOO/ProASIC3 devices: Compliant:
Option A – Two levels of staging (first: GND;
second: all other pins) together with bus switch on
the I/Os
Option B – Three levels of staging (first: GND;
second: supplies; third: all other pins)

Table 8-12 • Hot-Swap Level 4

Description Hot-swap on an active bus

Power Applied to Device Yes

Bus State Bus may have active I/O processes ongoing, but
device being inserted or removed must be idle.

Card Ground Connection Reset must be maintained for 1 ms before, during,
and after insertion/removal.

Device Circuitry Connected to Bus Pins Must remain glitch-free during power-up or power-
down

Example Application There is activity on the system bus, and it is critical
that the logic states set on the bus signal not be
disturbed during card insertion/removal.

Compliance of IGLOO and ProASIC3 Devices 30 k gate devices, all IGLOOe/ProASIC3E
devices: Compliant with two levels of staging (first:
GND; second: all other pins)
Other IGLOO/ProASIC3 devices: Compliant:
Option A – Two levels of staging (first: GND;
second: all other pins) together with bus switch on
the I/Os
Option B – Three levels of staging (first: GND;
second: supplies; third: all other pins)
Revision 4 229

ProASIC3L FPGA Fabric User’s Guide
Solution 4
The board-level design must ensure that the reflected waveform at the pad does not exceed the voltage
overshoot/undershoot limits provided in the datasheet. This is a requirement to ensure long-term
reliability.

Figure 8-13 • Solution 4

Solution 4

2.5 V5.5 V 2.5 V

Requires one board resistor.
Available for LVCMOS 2.5 V / 5.0 V.

I/O Input

Rext

On-Chip
Clamp
Diode

Table 8-14 • Comparison Table for 5 V–Compliant Receiver Solutions

Solution Board Components Speed Current Limitations

1 Two resistors Low to High1 Limited by transmitter's drive strength

2 Resistor and Zener 3.3 V Medium Limited by transmitter's drive strength

3 Bus switch High N/A

4 Minimum resistor value2,3,4,5

R = 47 Ω at TJ = 70°C
R = 150 Ω at TJ = 85°C
R = 420 Ω at TJ = 100°C

Medium Maximum diode current at 100% duty cycle, signal
constantly at 1
52.7 mA at TJ = 70°C / 10-year lifetime
16.5 mA at TJ = 85°C / 10-year lifetime
5.9 mA at TJ = 100°C / 10-year lifetime
For duty cycles other than 100%, the currents can be
increased by a factor of 1 / (duty cycle).
Example: 20% duty cycle at 70°C
Maximum current = (1 / 0.2) × 52.7 mA = 5 × 52.7 mA =
263.5 mA

Notes:
1. Speed and current consumption increase as the board resistance values decrease.
2. Resistor values ensure I/O diode long-term reliability.
3. At 70°C, customers could still use 420 Ω on every I/O.
4. At 85°C, a 5 V solution on every other I/O is permitted, since the resistance is lower (150 Ω) and the current is

higher. Also, the designer can still use 420 Ω and use the solution on every I/O.
5. At 100°C, the 5 V solution on every I/O is permitted, since 420 Ω are used to limit the current to 5.9 mA.
Revision 4 235

9 – I/O Software Control in Low Power Flash
Devices

Fusion, IGLOO, and ProASIC3 I/Os provide more design flexibility, allowing the user to control specific
features by enabling certain I/O standards. Some features are selectable only for certain I/O standards,
whereas others are available for all I/O standards. For example, slew control is not supported by
differential I/O standards. Conversely, I/O register combining is supported by all I/O standards. For
detailed information about which I/O standards and features are available on each device and each I/O
type, refer to the I/O Structures section of the handbook for the device you are using.
Figure 9-1 shows the various points in the software design flow where a user can provide input or control
of the I/O selection and parameters. A detailed description is provided throughout this document.

Figure 9-1 • User I/O Assignment Flow Chart

Design Entry

1. I/O Macro
Using

SmartGen

2. I/O Buffer
Cell Schematic

Entry

3. Instantiating
I/O Library

Macro in HDL
Code

4. Generic
Buffer Using

1, 2, 3
Method

5. Synthesis

6. Compile
6.1 I/O

Assignments by
PDC Import

7. I/O Assignments by Multi-View Navigator (MVN)

I/O Standard Selection
for Generic I/O Macro

I/O Standards and
VREF Assignment by

I/O Bank Assigner

I/O Attribute Selection
for I/O Standards

8. Layout
and Other

Steps
Revision 4 251

I/O Software Control in Low Power Flash Devices
I/O Attribute Constraint

set_io Sets the attributes of an
I/O

set_io portname
[-pinname value]
[-fixed value]
[-iostd value]
[-out_drive value]
[-slew value]
[-res_pull value]
[-schmitt_trigger value]
[-in_delay value]
[-skew value]
[-out_load value]
[-register value]

set_io IN2 -pinname 28
-fixed yes -iostd LVCMOS15
-out_drive 12 -slew high
-RES_PULL None
-SCHMITT_TRIGGER Off
-IN_DELAY Off –skew off
-REGISTER No

If the I/O macro is generic
(e.g., INBUF) or technology-
specific (INBUF_LVCMOS25),
then all I/O attributes can be
assigned using this constraint.
If the netlist has an I/O macro
that specifies one of its
attributes, that attribute
cannot be changed using this
constraint, though other
attributes can be changed.
Example: OUTBUF_S_24
(low slew, output drive 24 mA)
Slew and output drive cannot
be changed.

I/O Region Placement Constraints

define_region Defines either a
rectangular region or a
rectilinear region

define_region
-name [region_name]
-type [region_type] x1 y1 x2 y2

define_region -name test
-type inclusive 0 15 2 29

If any number of I/Os must be
assigned to a particular I/O
region, such a region can be
created with this constraint.

assign_region Assigns a set of macros
to a specified region

assign_region [region name]
[macro_name...]

assign_region test U12

This constraint assigns I/O
macros to the I/O regions.
When assigning an I/O macro,
PDC naming conventions
must be followed if the macro
name contains special
characters; e.g., if the macro
name is \\$1I19\\, the correct
use of escape characters is
\\\\\$1I19\\\\.

Table 9-3 • PDC I/O Constraints (continued)

Command Action Example Comment

Note: Refer to the Libero SoC User’s Guide for detailed rules on PDC naming and syntax conventions.
260 Revision 4

ProASIC3L FPGA Fabric User’s Guide
4. Right-click and then choose Highlight VREF range. All the pins covered by that VREF pin will be
highlighted (Figure 9-14).

Using PinEditor or ChipPlanner, VREF pins can also be assigned (Figure 9-15).

To unassign a VREF pin:
1. Select the pin to unassign.
2. Right-click and choose Use Pin for VREF. The check mark next to the command disappears. The

VREF pin is now a regular pin.
Resetting the pin may result in unassigning I/O cores, even if they are locked. In this case, a warning
message appears so you can cancel the operation.
After you assign the VREF pins, right-click a VREF pin and choose Highlight VREF Range to see how
many I/Os are covered by that pin. To unhighlight the range, choose Unhighlight All from the Edit
menu.

Figure 9-14 • VREF Range

Figure 9-15 • Assigning VREF from PinEditor
Revision 4 267

ProASIC3L FPGA Fabric User’s Guide
Generating Programming Files

Generation of the Programming File in a Trusted Environment—
Application 1
As discussed in the "Application 1: Trusted Environment" section on page 309, in a trusted environment,
the user can choose to program the device with plaintext bitstream content. It is possible to use plaintext
for programming even when the FlashLock Pass Key option has been selected. In this application, it is
not necessary to employ AES encryption protection. For AES encryption settings, refer to the next
sections.
The generated programming file will include the security setting (if selected) and the plaintext
programming file content for the FPGA array, FlashROM, and/or FBs. These options are indicated in
Table 12-2 and Table 12-3.

For this scenario, generate the programming file as follows:
1. Select the Silicon features to be programmed (Security Settings, FPGA Array, FlashROM,

Flash Memory Blocks), as shown in Figure 12-10 on page 314 and Figure 12-11 on page 314.
Click Next.
If Security Settings is selected (i.e., the FlashLock security Pass Key feature), an additional
dialog will be displayed to prompt you to select the security level setting. If no security setting is
selected, you will be directed to Step 3.

Table 12-2 • IGLOO and ProASIC3 Plaintext Security Options, No AES

Security Protection FlashROM Only FPGA Core Only
Both FlashROM

and FPGA
No AES / no FlashLock ✓ ✓ ✓

FlashLock only ✓ ✓ ✓

AES and FlashLock – – –

Table 12-3 • Fusion Plaintext Security Options
Security Protection FlashROM Only FPGA Core Only FB Core Only All
No AES / no FlashLock ✓ ✓ ✓ ✓

FlashLock ✓ ✓ ✓ ✓

AES and FlashLock – – – –

Note: For all instructions, the programming of Flash Blocks refers to Fusion only.
Revision 4 313

Security in Low Power Flash Devices
Figure 12-10 • All Silicon Features Selected for IGLOO and ProASIC3 Devices

Figure 12-11 • All Silicon Features Selected for Fusion
314 Revision 4

ProASIC3L FPGA Fabric User’s Guide
Table 12-6 and Table 12-7 show all available options. If you want to implement custom levels,
refer to the "Advanced Options" section on page 322 for information on each option and how to
set it.

3. When done, click Finish to generate the Security Header programming file.

Generation of Programming Files with AES Encryption—
Application 3
This section discusses how to generate design content programming files needed specifically at
unsecured or remote locations to program devices with a Security Header (FlashLock Pass Key and AES
key) already programmed ("Application 2: Nontrusted Environment—Unsecured Location" section on
page 309 and "Application 3: Nontrusted Environment—Field Updates/Upgrades" section on page 310).
In this case, the encrypted programming file must correspond to the AES key already programmed into
the device. If AES encryption was previously selected to encrypt the FlashROM, FBs, and FPGA array,
AES encryption must be set when generating the programming file for them. AES encryption can be
applied to the FlashROM only, the FBs only, the FPGA array only, or all. The user must ensure both the
FlashLock Pass Key and the AES key match those already programmed to the device(s), and all security
settings must match what was previously programmed. Otherwise, the encryption and/or device
unlocking will not be recognized when attempting to program the device with the programming file.
The generated programming file will be AES-encrypted.
In this scenario, generate the programming file as follows:

1. Deselect Security settings and select the portion of the device to be programmed (Figure 12-17
on page 320). Select Programming previously secured device(s). Click Next.

Table 12-6 • All IGLOO and ProASIC3 Header File Security Options

Security Option FlashROM Only FPGA Core Only
Both FlashROM

and FPGA

No AES / no FlashLock ✓ ✓ ✓

FlashLock only ✓ ✓ ✓

AES and FlashLock ✓ ✓ ✓

Note: ✓ = options that may be used

Table 12-7 • All Fusion Header File Security Options

Security Option FlashROM Only FPGA Core Only FB Core Only All

No AES / No FlashLock ✓ ✓ ✓ ✓

FlashLock ✓ ✓ ✓ ✓

AES and FlashLock ✓ ✓ ✓ ✓
Revision 4 319

ProASIC3L FPGA Fabric User’s Guide
Programming File Header Definition
In each STAPL programming file generated, there will be information about how the AES key and
FlashLock Pass Key are configured. Table 12-8 shows the header definitions in STAPL programming
files for different security levels.

Example File Headers
STAPL Files Generated with FlashLock Key and AES Key Containing Key Information

• FlashLock Key / AES key indicated in STAPL file header definition
• Intended ONLY for secured/trusted environment programming applications

===
NOTE "CREATOR" "Designer Version: 6.1.1.108";
NOTE "DEVICE" "A3PE600";
NOTE "PACKAGE" "208 PQFP";
NOTE "DATE" "2005/04/08";
NOTE "STAPL_VERSION" "JESD71";
NOTE "IDCODE" "$123261CF";
NOTE "DESIGN" "counter32";
NOTE "CHECKSUM" "$EDB9";
NOTE "SAVE_DATA" "FRomStream";
NOTE "SECURITY" "KEYED ENCRYPT ";
NOTE "ALG_VERSION" "1";
NOTE "MAX_FREQ" "20000000";
NOTE "SILSIG" "$00000000";
NOTE "PASS_KEY" "$00123456789012345678901234567890";
NOTE "AES_KEY" "$ABCDEFABCDEFABCDEFABCDEFABCDEFAB";
==

Table 12-8 • STAPL Programming File Header Definitions by Security Level

Security Level STAPL File Header Definition

No security (no FlashLock Pass Key or AES key) NOTE "SECURITY" "Disable";

FlashLock Pass Key with no AES key NOTE "SECURITY" "KEYED ";

FlashLock Pass Key with AES key NOTE "SECURITY" "KEYED ENCRYPT ";

Permanent Security Settings option enabled NOTE "SECURITY" "PERMLOCK ENCRYPT ";

AES-encrypted FPGA array (for programming updates) NOTE "SECURITY" "ENCRYPT CORE ";

AES-encrypted FlashROM (for programming updates) NOTE "SECURITY" "ENCRYPT FROM ";

AES-encrypted FPGA array and FlashROM (for
programming updates)

NOTE "SECURITY" "ENCRYPT FROM CORE ";
Revision 4 323

UJTAG Applications in Microsemi’s Low Power Flash Devices
UJTAG Support in Flash-Based Devices
The flash-based FPGAs listed in Table 17-1 support the UJTAG feature and the functions described in
this document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 17-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated.

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 17-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 17-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
364 Revision 4

http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/Fusion_DS.pdf
http://www.microsemi.com/soc/documents/IGLOO_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOe_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOPLUS_DS.pdf
http://www.microsemi.com/soc/documents/PA3_DS.pdf
http://www.microsemi.com/soc/documents/PA3E_DS.pdf
http://www.microsemi.com/soc/documents/PA3L_DS.pdf
http://www.microsemi.com/soc/documents/PA3_Auto_DS.pdf
http://www.microsemi.com/soc/documents/Mil_PA3_EL_DS.pdf
http://www.microsemi.com/soc/documents/RTPA3_DS.pdf
http://www.microsemi.com/soc/documents/IGLOO_nano_DS.pdf
http://www.microsemi.com/soc/documents/PA3_nano_DS.pdf

