

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	516096
Number of I/O	341
Number of Gates	300000
Voltage - Supply	1.14V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	484-BGA
Supplier Device Package	484-FPBGA (23x23)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1a3pe3000l-1fgg484

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FPGA Array Architecture in Low Power Flash Devices

FPGA Array Architecture Support

The flash FPGAs listed in Table 1-1 support the architecture features described in this document.

Table 1-1 • Flash-Based FPGAs

Series	Family [*]	Description			
IGLOO [®]	IGLOO	Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology			
	IGLOOe	Higher density IGLOO FPGAs with six PLLs and additional I/O standards			
	IGLOO nano	The industry's lowest-power, smallest-size solution			
	IGLOO PLUS	IGLOO FPGAs with enhanced I/O capabilities			
ProASIC [®] 3	ProASIC3	Low power, high-performance 1.5 V FPGAs			
	ProASIC3E	Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards			
	ProASIC3 nano	Lowest-cost solution with enhanced I/O capabilities			
	ProASIC3L	ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology			
	RT ProASIC3	Radiation-tolerant RT3PE600L and RT3PE3000L			
	Military ProASIC3/EL	Military temperature A3PE600L, A3P1000, and A3PE3000L			
	Automotive ProASIC3	ProASIC3 FPGAs qualified for automotive applications			
Fusion	Fusion	Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable analog block, support for ARM [®] Cortex [™] -M1 soft processors, and flash memory into a monolithic device			

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics, and packaging information.

IGLOO Terminology

In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed in Table 1-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

ProASIC3 Terminology

In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices as listed in Table 1-1. Where the information applies to only one product line or limited devices, these exclusions will be explicitly stated.

To further understand the differences between the IGLOO and ProASIC3 devices, refer to the *Industry's Lowest Power FPGAs Portfolio*.

Global Resources in Low Power Flash Devices

Step 1

Run Synthesis with default options. The Synplicity log shows the following device utilization:

Cell usage:

	cell count	area	count*area
DFN1E1C1	1536	2.0	3072.0
BUFF	278	1.0	278.0
INBUF	10	0.0	0.0
VCC	9	0.0	0.0
GND	9	0.0	0.0
OUTBUF	6	0.0	0.0
CLKBUF	3	0.0	0.0
PLL	2	0.0	0.0
TOTAL	1853		3350.0

Step 2

Run Compile with the **Promote regular nets whose fanout is greater than** option selected in Designer; you will see the following in the Compile report:

Device	utilizatic	on rep	port:					
=======			===== 3· 16	26	Total·	12024	(11 119)	
TO (W/		Used	1. TO	10	Total.	1/7	(12,02%)	
IU (W/	CIUCKS)	Usec	1.	19	TOLAI.	147	(12.93%)	
Differe	ntial 10	Used	1.	0	Total:	05	(0.00%)	
GLOBAL		Used	1:	8	Total:	18	(44.44%)	
PLL		Used	1:	2	Total:	2	(100.00%)	
RAM/FIF	0	Used	1:	0	Total:	24	(0.00%)	
FlashRO	М	Used	:	0	Total:	1	(0.00%)	
The fol	 lowing net	s hav	ze been	a	ssigned	to a glo	bal resourc	: re:
Fanout	Туре		Name					
 1536	INT_NET		Net	: 1	EN_ALL_C			
	_		Driver	: 1	EN_ALL_p	ad_CLKIN	T	
			Source	: 2	AUTO PRO	MOTED		
1536	SET/RESEI	NET	Net	: 2	ACLR C			
		_	Driver	: 2	ACLR pad	CLKINT		
			Source	: 2	AUTO PRO	- MOTED		
256	CLK NET		Net	: (OCLK1 c			
	_		Driver	: (OCLK1 pa	d CLKINI		
			Source	: 2	AUTO PRO	_ MOTED		
256	CLK NET		Net	: (OCLK2 c			
	—		Driver	: (- CLK2 pa	d CLKINI		
			Source	: 1	AUTO PRO	_ MOTED		
256	CLK NET		Net	: (OCLK3 c			
	—		Driver	: (- CLK3 pa	d CLKINI		
			Source	: 2	AUTO PRO	_ MOTED		
256	CLK NET		Net	: ;	\$1N14			
	_		Driver	: ;	\$1I5/Cor	e		
			Source	:]	ESSENTIA	L		
256	CLK NET		Net	: ;	\$1N12			
	—		Driver	: :	\$1I6/Cor	e		
			Source	: 1	ESSENTIA	L		
256	CLK_NET		Net	: :	\$1N10			
	—		Driver	: ;	\$1I6/Cor	e		
			Source	: 1	ESSENTIA	L		

Designer will promote five more signals to global due to high fanout. There are eight signals assigned to global networks.

List of Changes

Date	Changes	Page
July 2010	This chapter is no longer published separately with its own part number and version but is now part of several FPGA fabric user's guides.	N/A
	Notes were added where appropriate to point out that IGLOO nano and ProASIC3 nano devices do not support differential inputs (SAR 21449).	N/A
	The "Global Architecture" section and "VersaNet Global Network Distribution" section were revised for clarity (SARs 20646, 24779).	47, 49
	The "I/O Banks and Global I/Os" section was moved earlier in the document, renamed to "Chip and Quadrant Global I/Os", and revised for clarity. Figure 3-4 • Global Connections Details, Figure 3-6 • Global Inputs, Table 3-2 • Chip Global Pin Name, and Table 3-3 • Quadrant Global Pin Name are new (SARs 20646, 24779).	51
	The "Clock Aggregation Architecture" section was revised (SARs 20646, 24779).	57
	Figure 3-7 • Chip Global Aggregation was revised (SARs 20646, 24779).	59
	The "Global Macro and Placement Selections" section is new (SARs 20646, 24779).	64
v1.4 (December 2008)	The "Global Architecture" section was updated to include 10 k devices, and to include information about VersaNet global support for IGLOO nano devices.	47
	The Table 3-1 • Flash-Based FPGAs was updated to include IGLOO nano and ProASIC3 nano devices.	48
	The "VersaNet Global Network Distribution" section was updated to include 10 k devices and to note an exception in global lines for nano devices.	49
	Figure 3-2 • Simplified VersaNet Global Network (30 k gates and below) is new.	50
	The "Spine Architecture" section was updated to clarify support for 10 k and nano devices.	57
	Table 3-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices was updated to include IGLOO nano and ProASIC3 nano devices.	57
	The figure in the CLKBUF_LVDS/LVPECL row of Table 3-8 • Clock Macros was updated to change CLKBIBUF to CLKBUF.	62
v1.3 (October 2008)	A third bullet was added to the beginning of the "Global Architecture" section: In Fusion devices, the west CCC also contains a PLL core. In the two larger devices (AFS600 and AFS1500), the west and east CCCs each contain a PLL.	47
	The "Global Resource Support in Flash-Based Devices" section was revised to include new families and make the information more concise.	48
	Table 3-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices was updated to include A3PE600/L in the device column.	57
	Table note 1 was revised in Table 3-9 • I/O Standards within CLKBUF to include AFS600 and AFS1500.	63
v1.2 (June 2008)	The following changes were made to the family descriptions in Table 3-1 • Flash-Based FPGAs:	48
	ProASIC3L was updated to include 1.5 V.	
	The number of PLLs for ProASIC3E was changed from five to six.	

The following table lists critical changes that were made in each revision of the chapter.

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs

CCC Locations

CCCs located in the middle of the east and west sides of the device access the three VersaNet global networks on each side (six total networks), while the four CCCs located in the four corners access three quadrant global networks (twelve total networks). See Figure 4-13.

Figure 4-13 • Global Network Architecture for 60 k Gate Devices and Above

The following explains the locations of the CCCs in IGLOO and ProASIC3 devices:

In Figure 4-15 on page 98 through Figure 4-16 on page 98, CCCs with integrated PLLs are indicated in red, and simplified CCCs are indicated in yellow. There is a letter associated with each location of the CCC, in clockwise order. The upper left corner CCC is named "A," the upper right is named "B," and so on. These names finish up at the middle left with letter "F."

Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs

```
DLYGLC[4:0] 00000
DLYYB[4:0] 00000
DLYYC[4:0] 00000
VCOSEL[2:0] 100
```

Primary Clock Frequency 33.000 Primary Clock Phase Shift 0.000 Primary Clock Output Delay from CLKA 1.695

Secondaryl Clock Frequency 40.000 Secondaryl Clock Phase Shift 0.000 Secondaryl Clock Global Output Delay from CLKB 0.200

Secondary2 Clock Frequency 50.000 Secondary2 Clock Phase Shift 0.000 Secondary2 Clock Global Output Delay from CLKC 0.200

NAME	SDIN	VALUE	TYPE
FINDIV	[6:0]	0000101	EDIT
FBDIV	[13:7]	0100000	EDIT
OADIV	[18:14]	00100	EDIT
OBDIV	[23:19]	00000	EDIT
OCDIV	[28:24]	00000	EDIT
OAMUX	[31:29]	100	EDIT
OBMUX	[34:32]	000	EDIT
OCMUX	[37:35]	000	EDIT
FBSEL	[39:38]	01	EDIT
FBDLY	[44:40]	00000	EDIT
XDLYSEL	[45]	0	EDIT
DLYGLA	[50:46]	00000	EDIT
DLYGLB	[55:51]	00000	EDIT
DLYGLC	[60:56]	00000	EDIT
DLYYB	[65:61]	00000	EDIT
DLYYC	[70:66]	00000	EDIT
STATASEL	[71]	X	MASKED
STATBSEL	[72]	X	MASKED
STATCSEL	[73]	X	MASKED
VCOSEL	[76:74]	100	EDIT
DYNASEL	[77]	X	MASKED
DYNBSEL	[78]	X	MASKED
DYNCSEL	[79]	X	MASKED
RESETEN	[80]	1	READONLY

Below is the resultant Verilog HDL description of a legal dynamic PLL core configuration generated by SmartGen:

module dyn_pll_macro(POWERDOWN, CLKA, LOCK, GLA, GLB, GLC, SDIN, SCLK, SSHIFT, SUPDATE, MODE, SDOUT, CLKB, CLKC);

input POWERDOWN, CLKA; output LOCK, GLA, GLB, GLC; input SDIN, SCLK, SSHIFT, SUPDATE, MODE; output SDOUT; input CLKB, CLKC; wire VCC, GND; VCC VCC_1_net(.Y(VCC)); SRAM and FIFO Memories in Microsemi's Low Power Flash Devices

Example of RAM Initialization

This section of the document presents a sample design in which a 4×4 RAM block is being initialized through the JTAG port. A test feature has been implemented in the design to read back the contents of the RAM after initialization to verify the procedure.

The interface block of this example performs two major functions: initialization of the RAM block and running a test procedure to read back the contents. The clock output of the interface is either the write clock (for initialization) or the read clock (for reading back the contents). The Verilog code for the interface block is included in the "Sample Verilog Code" section on page 167.

For simulation purposes, users can declare the input ports of the UJTAG macro for easier assignment in the testbench. However, the UJTAG input ports should not be declared on the top level during synthesis. If the input ports of the UJTAG are declared during synthesis, the synthesis tool will instantiate input buffers on these ports. The input buffers on the ports will cause Compile to fail in Designer.

Figure 6-10 shows the simulation results for the initialization step of the example design.

The CLK_OUT signal, which is the clock output of the interface block, is the inverted DR_UPDATE output of the UJTAG macro. It is clear that it gives sufficient time (while the TAP Controller is in the Data Register Update state) for the write address and data to become stable before loading them into the RAM block.

Figure 6-11 presents the test procedure of the example. The data read back from the memory block matches the written data, thus verifying the design functionality.

Figure 6-10 • Simulation of Initialization Step

Figure 6-11 • Simulation of the Test Procedure of the Example

User I/O Naming Convention

IGLOO and ProASIC3

Due to the comprehensive and flexible nature of IGLOO and ProASIC3 device user I/Os, a naming scheme is used to show the details of each I/O (Figure 7-19 on page 207 and Figure 7-20 on page 207). The name identifies to which I/O bank it belongs, as well as pairing and pin polarity for differential I/Os.

I/O Nomenclature = FF/Gmn/IOuxwBy

Gmn is only used for I/Os that also have CCC access—i.e., global pins.

- FF = Indicates the I/O dedicated for the Flash*Freeze mode activation pin in IGLOO and ProASIC3L devices only
- G = Global
- m = Global pin location associated with each CCC on the device: A (northwest corner), B (northeast corner), C (east middle), D (southeast corner), E (southwest corner), and F (west middle)
- n = Global input MUX and pin number of the associated Global location m—either A0, A1, A2, B0, B1, B2, C0, C1, or C2. Refer to the "Global Resources in Low Power Flash Devices" section on page 47 for information about the three input pins per clock source MUX at CCC location m.
- u = I/O pair number in the bank, starting at 00 from the northwest I/O bank and proceeding in a clockwise direction
- x = P or U (Positive), N or V (Negative) for differential pairs, or R (Regular—single-ended) for the I/Os that support single-ended and voltage-referenced I/O standards only. U (Positive) or V (Negative)—for LVDS, DDR LVDS, B-LVDS, and M-LVDS only—restricts the I/O differential pair from being selected as an LVPECL pair.
- w = D (Differential Pair), P (Pair), or S (Single-Ended). D (Differential Pair) if both members of the pair are bonded out to adjacent pins or are separated only by one GND or NC pin; P (Pair) if both members of the pair are bonded out but do not meet the adjacency requirement; or S (Single-Ended) if the I/O pair is not bonded out. For Differential Pairs (D), adjacency for ball grid packages means only vertical or horizontal. Diagonal adjacency does not meet the requirements for a true differential pair.
- B = Bank
- y = Bank number (0–3). The Bank number starts at 0 from the northwest I/O bank and proceeds in a clockwise direction.

I/O Structures in IGLOO and ProASIC3 Devices

Related Documents

Application Notes

Board-Level Considerations http://www.microsemi.com/soc/documents/ALL_AC276_AN.pdf

User's Guides

Libero SoC User's Guide http://www.microsemi.com.soc/documents/libero_ug.pdf IGLOO, Fusion, and ProASIC3 Macro Library Guide http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf SmartGen Core Reference Guide http://www.microsemi.com/soc/documents/genguide_ug.pdf

List of Changes

The following table lists critical changes that were made in each revision of the document.

Date	Change	Page			
August 2012	Figure 7-1 • DDR Configured I/O Block Logical Representation and Figure 7-2 • DDR Configured I/O Block Logical Representation were revised to indicate that resets on registers 1, 3, 4, and 5 are active high rather than active low. The title of the figures was revised from "I/O Block Logical Representation" (SAR 38215).	175, 181			
	AGL015 and A3P015 were added to Table 7-2 • Supported I/O Standards. 1.2 V was added under single-ended I/O standards. LVCMOS 1.2 was added to Table 7-3 • VCCI Voltages and Compatible IGLOO and ProASIC3 Standards (SAR 38096). Figure 7-4 • Simplified I/O Buffer Circuitry and Table 7-7 • Programmable I/O Features (user control via I/O Attribute Editor) were modified to indicate that programmable input delay control is applicable only to ProASIC3EL and RT ProASIC3 devices (SAR 39666).				
	The following sentence is incorrect and was removed from the "LVCMOS (Low-Voltage CMOS)" section (SAR 40191):				
other devices there is no clamp diode.					
	The hyperlink for the <i>Board-Level Considerations</i> application note was corrected (SAR 36663).	208, 210			
June 2011	Figure 7-1 • DDR Configured I/O Block Logical Representation and Figure 7-2 • DDR Configured I/O Block Logical Representation were revised so that the I/O_CLR and I/O_OCLK nets are no longer joined in front of Input Register 3 but instead on the branch of the CLR/PRE signal (SAR 26052).	175, 181			
	Table 7-1 • Flash-Based FPGAs was revised to remove RT ProASIC3 and addMilitary ProASIC3/EL in its place (SAR 31824, 31825).	176			
	The "Advanced I/Os—IGLOO, ProASIC3L, and ProASIC3" section was revised. Formerly it stated, "3.3 V PCI and 3.3 V PCI-X are 5 V–tolerant." This sentence now reads, "3.3 V PCI and 3.3 V PCI-X can be configured to be 5 V–tolerant" (SAR 20983).	177			

I/O Structures in IGLOOe and ProASIC3E Devices

Notes:

- 1. All NMOS transistors connected to the I/O pad serve as ESD protection.
- 2. See Table 8-2 on page 215 for available I/O standards.
- 3. Programmable input delay is applicable only to ProASIC3E, IGLOOe, ProASIC3EL, and RT ProASIC3 devices.

Figure 8-5 • Simplified I/O Buffer Circuitry

I/O Registers

Each I/O module contains several input, output, and enable registers. Refer to Figure 8-5 for a simplified representation of the I/O block. The number of input registers is selected by a set of switches (not shown in Figure 8-3 on page 220) between registers to implement single-ended or differential data transmission to and from the FPGA core. The Designer software sets these switches for the user. A common CLR/PRE signal is employed by all I/O registers when I/O register combining is used. Input Register 2 does not have a CLR/PRE pin, as this register is used for DDR implementation. The I/O register combining must satisfy certain rules.

Solution 4

The board-level design must ensure that the reflected waveform at the pad does not exceed the voltage overshoot/undershoot limits provided in the datasheet. This is a requirement to ensure long-term reliability.

Figure 8-13 • Solution 4

Table 8-14 • Comparison	Table for 5 V–Complian	Receiver Solutions
-------------------------	------------------------	--------------------

Solution	Board Components	Speed	Current Limitations
1	Two resistors	Low to High ¹	Limited by transmitter's drive strength
2	Resistor and Zener 3.3 V	Medium	Limited by transmitter's drive strength
3	Bus switch	High	N/A
4	Minimum resistor value ^{2,3,4,5}	Medium	Maximum diode current at 100% duty cycle, signal constantly at 1
	R = 47 Ω at T _{.1} = 70°C		52.7 mA at T _J = 70°C / 10-year lifetime
	R = 150 Ω at T ₁ = 85°C		16.5 mA at T _J = 85°C / 10-year lifetime
	R = 420 Ω at T _J = 100°C		5.9 mA at T _J = 100°C / 10-year lifetime
			For duty cycles other than 100%, the currents can be increased by a factor of 1 / (duty cycle).
			Example: 20% duty cycle at 70°C
			Maximum current = (1 / 0.2) × 52.7 mA = 5 × 52.7 mA = 263.5 mA

Notes:

- 1. Speed and current consumption increase as the board resistance values decrease.
- 2. Resistor values ensure I/O diode long-term reliability.
- 3. At 70°C, customers could still use 420 Ω on every I/O.
- 4. At 85°C, a 5 V solution on every other I/O is permitted, since the resistance is lower (150 Ω) and the current is higher. Also, the designer can still use 420 Ω and use the solution on every I/O.
- 5. At 100°C, the 5 V solution on every I/O is permitted, since 420 Ω are used to limit the current to 5.9 mA.

At the system level, the skew circuit can be used in applications where transmission activities on bidirectional data lines need to be coordinated. This circuit, when selected, provides a timing margin that can prevent bus contention and subsequent data loss and/or transmitter over-stress due to transmitter-to-transmitter current shorts. Figure 8-17 presents an example of the skew circuit implementation in a bidirectional communication system. Figure 8-18 on page 238 shows how bus contention is created, and Figure 8-19 on page 238 shows how it can be avoided with the skew circuit.

Software-Controlled I/O Attributes

Users may modify these programmable I/O attributes using the I/O Attribute Editor. Modifying an I/O attribute may result in a change of state in Designer. Table 9-2 details which steps have to be re-run as a function of modified I/O attribute.

Designer States ¹					
I/O Attribute	Compile	Layout	Fuse	Timing	Power
Slew Control ²	No	No	Yes	Yes	Yes
Output Drive (mA)	No	No	Yes	Yes	Yes
Skew Control	No	No	Yes	Yes	Yes
Resistor Pull	No	No	Yes	Yes	Yes
Input Delay	No	No	Yes	Yes	Yes
Schmitt Trigger	No	No	Yes	Yes	Yes
OUT_LOAD	No	No	No	Yes	Yes
COMBINE_REGISTER	Yes	Yes	N/A	N/A	N/A

Table 9-2 • Designer State (resulting from I/O attribute modification)

Notes:

1. No = Remains the same, Yes = Re-run the step, N/A = Not applicable

2. Skew control does not apply to IGLOO nano, IGLOO PLUS, and ProASIC3 nano devices.

3. Programmable input delay is applicable only for ProASIC3E, ProASIC3EL, RT ProASIC3, and IGLOOe devices.

I/O Software Control in Low Power Flash Devices

those banks, the user does not need to assign the same VCCI voltage to another bank. The user needs to assign the other three VCCI voltages to three more banks.

Assigning Technologies and VREF to I/O Banks

Low power flash devices offer a wide variety of I/O standards, including voltage-referenced standards. Before proceeding to Layout, each bank must have the required VCCI voltage assigned for the corresponding I/O technologies used for that bank. The voltage-referenced standards require the use of a reference voltage (VREF). This assignment can be done manually or automatically. The following sections describe this in detail.

Manually Assigning Technologies to I/O Banks

The user can import the PDC at this point and resolve this requirement. The PDC command is

set_iobank [bank name] -vcci [vcci value]

Another method is to use the I/O Bank Settings dialog box (**MVN** > **Edit** > **I/O Bank Settings**) to set up the V_{CCI} voltage for the bank (Figure 9-12).

Figure 9-12 • Setting VCCI for a Bank

4. Right-click and then choose **Highlight VREF range**. All the pins covered by that VREF pin will be highlighted (Figure 9-14).

Figure 9-14 • VREF Range

Using PinEditor or ChipPlanner, VREF pins can also be assigned (Figure 9-15).

Figure 9-15 • Assigning VREF from PinEditor

To unassign a VREF pin:

- 1. Select the pin to unassign.
- 2. Right-click and choose **Use Pin for VREF.** The check mark next to the command disappears. The VREF pin is now a regular pin.

Resetting the pin may result in unassigning I/O cores, even if they are locked. In this case, a warning message appears so you can cancel the operation.

After you assign the VREF pins, right-click a VREF pin and choose **Highlight VREF Range** to see how many I/Os are covered by that pin. To unhighlight the range, choose **Unhighlight All** from the **Edit** menu.

Input Support for DDR

The basic structure to support a DDR input is shown in Figure 10-2. Three input registers are used to capture incoming data, which is presented to the core on each rising edge of the I/O register clock. Each I/O tile supports DDR inputs.

Output Support for DDR

The basic DDR output structure is shown in Figure 10-1 on page 271. New data is presented to the output every half clock cycle.

Note: DDR macros and I/O registers do not require additional routing. The combiner automatically recognizes the DDR macro and pushes its registers to the I/O register area at the edge of the chip. The routing delay from the I/O registers to the I/O buffers is already taken into account in the DDR macro.

Figure 10-3 • DDR Output Register (SSTL3 Class I)

DDR for Microsemi's Low Power Flash Devices

Design Example

Figure 10-9 shows a simple example of a design using both DDR input and DDR output registers. The user can copy the HDL code in Libero SoC software and go through the design flow. Figure 10-10 and Figure 10-11 on page 283 show the netlist and ChipPlanner views of the ddr_test design. Diagrams may vary slightly for different families.

Figure 10-9 • Design Example

Figure 10-10 • DDR Test Design as Seen by NetlistViewer for IGLOO/e Devices

Figure 10-11 • DDR Input/Output Cells as Seen by ChipPlanner for IGLOO/e Devices

Verilog

module Inbuf_ddr(PAD,CLR,CLK,QR,QF);

input PAD, CLR, CLK; output QR, QF;

wire Y;

```
DDR_REG_DDR_REG_0_inst(.D(Y), .CLK(CLK), .CLR(CLR), .QR(QR), .QF(QF));
INBUF INBUF_0_inst(.PAD(PAD), .Y(Y));
```

endmodule

module Outbuf_ddr(DataR,DataF,CLR,CLK,PAD);

input DataR, DataF, CLR, CLK; output PAD;

wire Q, VCC;

```
VCC VCC_1_net(.Y(VCC));
DDR_OUT DDR_OUT_0_inst(.DR(DataR), .DF(DataF), .CLK(CLK), .CLR(CLR), .Q(Q));
OUTBUF OUTBUF_0_inst(.D(Q), .PAD(PAD));
```

endmodule

Power-Up/-Down Behavior of Low Power Flash Devices

Transient Current on VCC

The characterization of the transient current on VCC is performed on nearly all devices within the IGLOO, ProASIC3L, and ProASIC3 families. A sample size of five units is used from each device family member. All the device I/Os are internally pulled down while the transient current measurements are performed. For ProASIC3 devices, the measurements at typical conditions show that the maximum transient current on VCC, when the power supply is powered at ramp-rates ranging from 15 V/ms to 0.15 V/ms, does not exceed the maximum standby current specified in the device datasheets. Refer to the DC and Switching Characteristics chapters of the *ProASIC3 Flash Family FPGAS* datasheet and *ProASIC3E Flash Family FPGAs* datasheet for more information.

Similarly, IGLOO, IGLOO nano, IGLOO PLUS, and ProASIC3L devices exhibit very low transient current on VCC. The transient current does not exceed the typical operating current of the device while in active mode. For example, the characterization of AGL600-FG256 V2 and V5 devices has shown that the transient current on VCC is typically in the range of 1–5 mA.

Transient Current on VCCI

The characterization of the transient current on VCCI is performed on devices within the IGLOO, IGLOO nano, IGLOO PLUS, ProASIC3, ProASIC3 nano, and ProASIC3L groups of devices, similarly to VCC transient current measurements. For ProASIC3 devices, the measurements at typical conditions show that the maximum transient current on VCCI, when the power supply is powered at ramp-rates ranging from 33 V/ms to 0.33 V/ms, does not exceed the maximum standby current specified in the device datasheet. Refer to the DC and Switching Characteristics chapters of the *ProASIC3 Flash Family FPGAS* datasheet and *ProASIC3E Flash Family FPGAs* datasheet for more information.

Similarly, IGLOO, IGLOO PLUS, and ProASIC3L devices exhibit very low transient current on VCCI. The transient current does not exceed the typical operating current of the device while in active mode. For example, the characterization of AGL600-FG256 V2 and V5 devices has shown that the transient current on VCCI is typically in the range of 1–2 mA.

Brownout Voltage

Brownout is a condition in which the voltage supplies are lower than normal, causing the device to malfunction as a result of insufficient power. In general, Microsemi does not guarantee the functionality of the design inside the flash FPGA if voltage supplies are below their minimum recommended operating condition. Microsemi has performed measurements to characterize the brownout levels of FPGA power supplies. Refer to Table 18-3 for device-specific brownout deactivation levels. For the purpose of characterization, a direct path from the device input to output is monitored while voltage supplies are lowered gradually. The brownout point is defined as the voltage level at which the output stops following the input. Characterization tests performed on several IGLOO, ProASIC3L, and ProASIC3 devices in typical operating conditions showed the brownout voltage levels to be within the specification.

During device power-down, the device I/Os become tristated once the first supply in the power-down sequence drops below its brownout deactivation voltage.

Table 18-3 • Brownout Deactivation Levels for VCC and VCCI

Devices	VCC Brownout Deactivation Level (V)	VCCI Brownout Deactivation Level (V)
ProASIC3, ProASIC3 nano, IGLOO, IGLOO nano, IGLOO PLUS and ProASIC3L devices running at VCC = 1.5 V	0.75 V ± 0.25 V	0.8 V ± 0.3 V
IGLOO, IGLOO nano, IGLOO PLUS, and ProASIC3L devices running at VCC = 1.2 V	0.75 V ± 0.2 V	0.8 V ± 0.15 V

PLL Behavior at Brownout Condition

When PLL power supply voltage and/or V_{CC} levels drop below the V_{CC} brownout levels mentioned above for 1.5 V and 1.2 V devices, the PLL output lock signal goes LOW and/or the output clock is lost. The following sections explain PLL behavior during and after the brownout condition.

VCCPLL and VCC Tied Together

In this condition, both VCC and VCCPLL drop below the 0.75 V (\pm 0.25 V or \pm 0.2 V) brownout level. During the brownout recovery, once VCCPLL and VCC reach the activation point (0.85 \pm 0.25 V or \pm 0.2 V) again, the PLL output lock signal may still remain LOW with the PLL output clock signal toggling. If this condition occurs, there are two ways to recover the PLL output lock signal:

- 1. Cycle the power supplies of the PLL (power off and on) by using the PLL POWERDOWN signal.
- 2. Turn off the input reference clock to the PLL and then turn it back on.

Only VCCPLL Is at Brownout

In this case, only VCCPLL drops below the 0.75 V (\pm 0.25 V or \pm 0.2 V) brownout level and the VCC supply remains at nominal recommended operating voltage (1.5 V \pm 0.075 V for 1.5 V devices and 1.2 V \pm 0.06 V for 1.2 V devices). In this condition, the PLL behavior after brownout recovery is similar to initial power-up condition, and the PLL will regain lock automatically after VCCPLL is ramped up above the activation level (0.85 \pm 0.25 V or \pm 0.2 V). No intervention is necessary in this case.

Only VCC Is at Brownout

In this condition, VCC drops below the 0.75 V (\pm 0.25 V or \pm 0.2 V) brownout level and VCCPLL remains at nominal recommended operating voltage (1.5 V \pm 0.075 V for 1.5 V devices and 1.2 V \pm 0.06 V for 1.2 V devices). During the brownout recovery, once VCC reaches the activation point again (0.85 \pm 0.25 V or \pm 0.2 V), the PLL output lock signal may still remain LOW with the PLL output clock signal toggling. If this condition occurs, there are two ways to recover the PLL output lock signal:

- 1. Cycle the power supplies of the PLL (power off and on) by using the PLL POWERDOWN signal.
- 2. Turn off the input reference clock to the PLL and then turn it back on.

It is important to note that Microsemi recommends using a monotonic power supply or voltage regulator to ensure proper power-up behavior.