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FPGA Array Architecture in Low Power Flash Devices
FPGA Array Architecture Support 
The flash FPGAs listed in Table 1-1 support the architecture features described in this document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 1-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 1-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 1-1 • Flash-Based FPGAs

Series Family* Description

IGLOO® IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC®3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
10 Revision 4

http://www.microsemi.com/soc/documents/Fusion_DS.pdf
http://www.microsemi.com/soc/documents/IGLOO_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOe_DS.pdf
http://www.microsemi.com/soc/documents/IGLOOPLUS_DS.pdf
http://www.microsemi.com/soc/documents/PA3_DS.pdf
http://www.microsemi.com/soc/documents/PA3E_DS.pdf
http://www.microsemi.com/soc/documents/PA3L_DS.pdf
http://www.microsemi.com/soc/documents/PA3_Auto_DS.pdf
http://www.microsemi.com/soc/documents/Mil_PA3_EL_DS.pdf
http://www.microsemi.com/soc/documents/RTPA3_DS.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/LPFPGA_FS_PIB.pdf
http://www.microsemi.com/soc/documents/IGLOO_nano_DS.pdf
http://www.microsemi.com/soc/documents/PA3_nano_DS.pdf


Global Resources in Low Power Flash Devices
Step 1
Run Synthesis with default options. The Synplicity log shows the following device utilization: 

Step 2
Run Compile with the Promote regular nets whose fanout is greater than option selected in Designer;
you will see the following in the Compile report:
Device utilization report:
==========================
CORE Used: 1536 Total: 13824 (11.11%)
IO (W/ clocks) Used: 19 Total: 147 (12.93%)
Differential IO Used: 0 Total: 65 (0.00%)
GLOBAL Used: 8 Total: 18 (44.44%)
PLL Used:      2 Total: 2 (100.00%)
RAM/FIFO Used:      0 Total: 24 (0.00%)
FlashROM Used:      0 Total: 1 (0.00%)
……………………
The following nets have been assigned to a global resource:
Fanout  Type          Name
--------------------------
1536    INT_NET Net   : EN_ALL_c

Driver: EN_ALL_pad_CLKINT
Source: AUTO PROMOTED

1536    SET/RESET_NET Net   : ACLR_c
Driver: ACLR_pad_CLKINT
Source: AUTO PROMOTED

256     CLK_NET Net   : QCLK1_c
Driver: QCLK1_pad_CLKINT
Source: AUTO PROMOTED

256     CLK_NET Net   : QCLK2_c
Driver: QCLK2_pad_CLKINT
Source: AUTO PROMOTED

256     CLK_NET Net   : QCLK3_c
Driver: QCLK3_pad_CLKINT
Source: AUTO PROMOTED

256     CLK_NET Net   : $1N14
Driver: $1I5/Core
Source: ESSENTIAL

256     CLK_NET Net   : $1N12
Driver: $1I6/Core
Source: ESSENTIAL

256     CLK_NET Net   : $1N10
Driver: $1I6/Core
Source: ESSENTIAL

Designer will promote five more signals to global due to high fanout. There are eight signals assigned to
global networks. 

Cell usage:

cell count area count*area

DFN1E1C1
BUFF
INBUF
VCC
GND
OUTBUF
CLKBUF
PLL
TOTAL

1536
278
10
9
9
6
3
2

1853

2.0
1.0
0.0
0.0
0.0
0.0
0.0
0.0

3072.0
278.0
0.0
0.0
0.0
0.0
0.0
0.0

3350.0
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ProASIC3L FPGA Fabric User’s Guide
List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and
version but is now part of several FPGA fabric user’s guides.

N/A

Notes were added where appropriate to point out that IGLOO nano and
ProASIC3 nano devices do not support differential inputs (SAR 21449).

N/A

The "Global Architecture" section and "VersaNet Global Network Distribution"
section were revised for clarity (SARs 20646, 24779).

47, 49

The "I/O Banks and Global I/Os" section was moved earlier in the document,
renamed to "Chip and Quadrant Global I/Os", and revised for clarity. Figure 3-4 •
Global Connections Details, Figure 3-6 • Global Inputs, Table 3-2 • Chip Global
Pin Name, and Table 3-3 • Quadrant Global Pin Name are new (SARs 20646,
24779).

51

The "Clock Aggregation Architecture" section was revised (SARs 20646, 24779). 57

Figure 3-7 • Chip Global Aggregation was revised (SARs 20646, 24779). 59

The "Global Macro and Placement Selections" section is new (SARs 20646,
24779).

64

v1.4
(December 2008)

The "Global Architecture" section was updated to include 10 k devices, and to
include information about VersaNet global support for IGLOO nano devices.

47

The Table 3-1 • Flash-Based FPGAs was updated to include IGLOO nano and
ProASIC3 nano devices.

48

The "VersaNet Global Network Distribution" section was updated to include 10 k
devices and to note an exception in global lines for nano devices.

49

Figure 3-2 • Simplified VersaNet Global Network (30 k gates and below) is new. 50

The "Spine Architecture" section was updated to clarify support for 10 k and nano
devices.

57

Table 3-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices was updated
to include IGLOO nano and ProASIC3 nano devices.

57

The figure in the CLKBUF_LVDS/LVPECL row of Table 3-8 • Clock Macros was
updated to change CLKBIBUF to CLKBUF.

62

v1.3
(October 2008)

A third bullet was added to the beginning of the "Global Architecture" section: In
Fusion devices, the west CCC also contains a PLL core. In the two larger devices
(AFS600 and AFS1500), the west and east CCCs each contain a PLL.

47

The "Global Resource Support in Flash-Based Devices" section was revised to
include new families and make the information more concise.

48

Table 3-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices was updated
to include A3PE600/L in the device column.

57

Table note 1 was revised in Table 3-9 • I/O Standards within CLKBUF to include
AFS600 and AFS1500.

63

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 3-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V. 
• The number of PLLs for ProASIC3E was changed from five to six.

48
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
CCC Locations
CCCs located in the middle of the east and west sides of the device access the three VersaNet global 
networks on each side (six total networks), while the four CCCs located in the four corners access three 
quadrant global networks (twelve total networks). See Figure 4-13.

The following explains the locations of the CCCs in IGLOO and ProASIC3 devices:
In Figure 4-15 on page 98 through Figure 4-16 on page 98, CCCs with integrated PLLs are indicated in 
red, and simplified CCCs are indicated in yellow. There is a letter associated with each location of the 
CCC, in clockwise order. The upper left corner CCC is named "A," the upper right is named "B," and so 
on. These names finish up at the middle left with letter "F."

Figure 4-13 • Global Network Architecture for 60 k Gate Devices and Above
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
DLYGLC[4:0]     00000
DLYYB[4:0]      00000
DLYYC[4:0]      00000
VCOSEL[2:0]     100

Primary Clock Frequency 33.000
Primary Clock Phase Shift 0.000
Primary Clock Output Delay from CLKA 1.695

Secondary1 Clock Frequency 40.000
Secondary1 Clock Phase Shift 0.000
Secondary1 Clock Global Output Delay from CLKB 0.200

Secondary2 Clock Frequency 50.000
Secondary2 Clock Phase Shift 0.000
Secondary2 Clock Global Output Delay from CLKC 0.200

######################################
# Dynamic Stream Data
######################################
--------------------------------------
|NAME    |SDIN     |VALUE   |TYPE     |
--------------------------------------
|FINDIV  |[6:0]    |0000101 |EDIT     |
|FBDIV   |[13:7]   |0100000 |EDIT     |
|OADIV   |[18:14]  |00100   |EDIT     |
|OBDIV   |[23:19]  |00000   |EDIT     |
|OCDIV   |[28:24]  |00000   |EDIT     |
|OAMUX   |[31:29]  |100     |EDIT     |
|OBMUX   |[34:32]  |000     |EDIT     |
|OCMUX   |[37:35]  |000     |EDIT     |
|FBSEL   |[39:38]  |01      |EDIT     |
|FBDLY   |[44:40]  |00000   |EDIT     |
|XDLYSEL |[45]     |0       |EDIT     |
|DLYGLA  |[50:46]  |00000   |EDIT     |
|DLYGLB  |[55:51]  |00000   |EDIT     |
|DLYGLC  |[60:56]  |00000   |EDIT     |
|DLYYB   |[65:61]  |00000   |EDIT     |
|DLYYC   |[70:66]  |00000   |EDIT     |
|STATASEL|[71]     |X       |MASKED   |
|STATBSEL|[72]     |X       |MASKED   |
|STATCSEL|[73]     |X       |MASKED   |
|VCOSEL  |[76:74]  |100     |EDIT     |
|DYNASEL |[77]     |X       |MASKED   |
|DYNBSEL |[78]     |X       |MASKED   |
|DYNCSEL |[79]     |X       |MASKED   |
|RESETEN |[80]     |1       |READONLY |

Below is the resultant Verilog HDL description of a legal dynamic PLL core configuration generated by 
SmartGen:
module dyn_pll_macro(POWERDOWN, CLKA, LOCK, GLA, GLB, GLC, SDIN, SCLK, SSHIFT, SUPDATE,

MODE, SDOUT, CLKB, CLKC);

input POWERDOWN, CLKA;
output  LOCK, GLA, GLB, GLC;
input  SDIN, SCLK, SSHIFT, SUPDATE, MODE;
output  SDOUT;
input  CLKB, CLKC;

wire VCC, GND;

VCC VCC_1_net(.Y(VCC));
GND GND_1_net(.Y(GND));
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SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
Example of RAM Initialization
This section of the document presents a sample design in which a 4×4 RAM block is being initialized
through the JTAG port. A test feature has been implemented in the design to read back the contents of
the RAM after initialization to verify the procedure.
The interface block of this example performs two major functions: initialization of the RAM block and
running a test procedure to read back the contents. The clock output of the interface is either the write
clock (for initialization) or the read clock (for reading back the contents). The Verilog code for the
interface block is included in the "Sample Verilog Code" section on page 167. 
For simulation purposes, users can declare the input ports of the UJTAG macro for easier assignment in
the testbench. However, the UJTAG input ports should not be declared on the top level during synthesis.
If the input ports of the UJTAG are declared during synthesis, the synthesis tool will instantiate input
buffers on these ports. The input buffers on the ports will cause Compile to fail in Designer.
Figure 6-10 shows the simulation results for the initialization step of the example design.
The CLK_OUT signal, which is the clock output of the interface block, is the inverted DR_UPDATE output
of the UJTAG macro. It is clear that it gives sufficient time (while the TAP Controller is in the Data
Register Update state) for the write address and data to become stable before loading them into the RAM
block.
Figure 6-11 presents the test procedure of the example. The data read back from the memory block
matches the written data, thus verifying the design functionality.

Figure 6-10 • Simulation of Initialization Step

Figure 6-11 • Simulation of the Test Procedure of the Example
166 Revision 4



I/O Structures in IGLOO and ProASIC3 Devices
User I/O Naming Convention

IGLOO and ProASIC3
Due to the comprehensive and flexible nature of IGLOO and ProASIC3 device user I/Os, a naming
scheme is used to show the details of each I/O (Figure 7-19 on page 207 and Figure 7-20 on page 207).
The name identifies to which I/O bank it belongs, as well as pairing and pin polarity for differential I/Os.

I/O Nomenclature =  FF/Gmn/IOuxwBy

Gmn is only used for I/Os that also have CCC access—i.e., global pins. 
FF = Indicates the I/O dedicated for the Flash*Freeze mode activation pin in IGLOO and ProASIC3L

devices only 
G = Global
m = Global pin location associated with each CCC on the device: A (northwest corner), B (northeast

corner), C (east middle), D (southeast corner), E (southwest corner), and F (west middle) 
n = Global input MUX and pin number of the associated Global location m—either A0, A1, A2, B0,

B1, B2, C0, C1, or C2. Refer to the "Global Resources in Low Power Flash Devices" section on
page 47 for information about the three input pins per clock source MUX at CCC location m.

u = I/O pair number in the bank, starting at 00 from the northwest I/O bank and proceeding in a
clockwise direction

x = P or U (Positive), N or V (Negative) for differential pairs, or R (Regular—single-ended) for the I/Os
that support single-ended and voltage-referenced I/O standards only. U (Positive) or V
(Negative)—for LVDS, DDR LVDS, B-LVDS, and M-LVDS only—restricts the I/O differential pair
from being selected as an LVPECL pair.

w = D (Differential Pair), P (Pair), or S (Single-Ended). D (Differential Pair) if both members of the pair
are bonded out to adjacent pins or are separated only by one GND or NC pin; P (Pair) if both
members of the pair are bonded out but do not meet the adjacency requirement; or S (Single-
Ended) if the I/O pair is not bonded out. For Differential Pairs (D), adjacency for ball grid
packages means only vertical or horizontal. Diagonal adjacency does not meet the requirements
for a true differential pair.

B = Bank
y = Bank number (0–3). The Bank number starts at 0 from the northwest I/O bank and proceeds in a

clockwise direction.
206 Revision 4



I/O Structures in IGLOO and ProASIC3 Devices
Related Documents

Application Notes
Board-Level Considerations
http://www.microsemi.com/soc/documents/ALL_AC276_AN.pdf

User’s Guides
Libero SoC User’s Guide
http://www.microsemi.com.soc/documents/libero_ug.pdf
IGLOO, Fusion, and ProASIC3 Macro Library Guide
http://www.microsemi.com/soc/documents/pa3_libguide_ug.pdf
SmartGen Core Reference Guide
http://www.microsemi.com/soc/documents/genguide_ug.pdf

List of Changes
The following table lists critical changes that were made in each revision of the document.  

Date Change Page

August 2012 Figure 7-1 • DDR Configured I/O Block Logical Representation and Figure 7-2 •
DDR Configured I/O Block Logical Representation were revised to indicate that
resets on registers 1, 3, 4, and 5 are active high rather than active low. The title of
the figures was revised from "I/O Block Logical Representation" (SAR 38215).

175, 181

AGL015 and A3P015 were added to Table 7-2 • Supported I/O Standards. 1.2 V
was added under single-ended I/O standards. LVCMOS 1.2 was added to
Table 7-3 • VCCI Voltages and Compatible IGLOO and ProASIC3 Standards (SAR
38096).

177 

Figure 7-4 • Simplified I/O Buffer Circuitry and Table 7-7 • Programmable I/O
Features (user control via I/O Attribute Editor) were modified to indicate that
programmable input delay control is applicable only to ProASIC3EL and RT
ProASIC3 devices (SAR 39666).

183, 188

The following sentence is incorrect and was removed from the "LVCMOS (Low-
Voltage CMOS)" section (SAR 40191): 
LVCMOS 2.5 V for the 30 k gate devices has a clamp diode to VCCI, but for all
other devices there is no clamp diode.

184

The hyperlink for the Board-Level Considerations application note was corrected
(SAR 36663).

208, 210

June 2011 Figure 7-1 • DDR Configured I/O Block Logical Representation and Figure 7-2 •
DDR Configured I/O Block Logical Representation were revised so that the
I/O_CLR and I/O_OCLK nets are no longer joined in front of Input Register 3 but
instead on the branch of the CLR/PRE signal (SAR 26052).

175, 181

Table 7-1 • Flash-Based FPGAs was revised to remove RT ProASIC3 and add
Military ProASIC3/EL in its place (SAR 31824, 31825).

176

The "Advanced I/Os—IGLOO, ProASIC3L, and ProASIC3" section was revised.
Formerly it stated, "3.3 V PCI and 3.3 V PCI-X are 5 V–tolerant." This sentence
now reads, "3.3 V PCI and 3.3 V PCI-X can be configured to be 5 V–tolerant" (SAR
20983).

177
210 Revision 4
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I/O Structures in IGLOOe and ProASIC3E Devices
I/O Registers
Each I/O module contains several input, output, and enable registers. Refer to Figure 8-5 for a simplified 
representation of the I/O block. The number of input registers is selected by a set of switches (not shown 
in Figure 8-3 on page 220) between registers to implement single-ended or differential data transmission 
to and from the FPGA core. The Designer software sets these switches for the user. A common 
CLR/PRE signal is employed by all I/O registers when I/O register combining is used. Input Register 2 
does not have a CLR/PRE pin, as this register is used for DDR implementation. The I/O register 
combining must satisfy certain rules.

Notes:
1. All NMOS transistors connected to the I/O pad serve as ESD protection.
2. See Table 8-2 on page 215 for available I/O standards.
3. Programmable input delay is applicable only to ProASIC3E, IGLOOe, ProASIC3EL, and RT ProASIC3 devices.
Figure 8-5 • Simplified I/O Buffer Circuitry
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ProASIC3L FPGA Fabric User’s Guide
Solution 4
The board-level design must ensure that the reflected waveform at the pad does not exceed the voltage 
overshoot/undershoot limits provided in the datasheet. This is a requirement to ensure long-term 
reliability.

Figure 8-13 • Solution 4

Solution 4

2.5 V5.5 V 2.5 V

Requires one board resistor.
Available for LVCMOS 2.5 V / 5.0 V.

I/O Input

Rext

On-Chip
Clamp
Diode

Table 8-14 • Comparison Table for 5 V–Compliant Receiver Solutions 

Solution Board Components Speed Current Limitations

1 Two resistors Low to High1 Limited by transmitter's drive strength

2 Resistor and Zener 3.3 V Medium Limited by transmitter's drive strength

3 Bus switch High N/A

4 Minimum resistor value2,3,4,5

R = 47 Ω at TJ = 70°C
R = 150 Ω at TJ = 85°C
R = 420 Ω at TJ = 100°C

Medium Maximum diode current at 100% duty cycle, signal 
constantly at 1
52.7 mA at TJ = 70°C / 10-year lifetime
16.5 mA at TJ = 85°C / 10-year lifetime
5.9 mA at TJ = 100°C / 10-year lifetime
For duty cycles other than 100%, the currents can be 
increased by a factor of 1 / (duty cycle).
Example: 20% duty cycle at 70°C
Maximum current = (1 / 0.2) × 52.7 mA = 5 × 52.7 mA = 
263.5 mA

Notes:
1. Speed and current consumption increase as the board resistance values decrease.
2. Resistor values ensure I/O diode long-term reliability.
3. At 70°C, customers could still use 420 Ω  on every I/O.
4. At 85°C, a 5 V solution on every other I/O is permitted, since the resistance is lower (150 Ω ) and the current is 

higher. Also, the designer can still use 420 Ω  and use the solution on every I/O. 
5. At 100°C, the 5 V solution on every I/O is permitted, since 420 Ω are used to limit the current to 5.9 mA.
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ProASIC3L FPGA Fabric User’s Guide
At the system level, the skew circuit can be used in applications where transmission activities on 
bidirectional data lines need to be coordinated. This circuit, when selected, provides a timing margin that 
can prevent bus contention and subsequent data loss and/or transmitter over-stress due to transmitter-
to-transmitter current shorts. Figure 8-17 presents an example of the skew circuit implementation in a 
bidirectional communication system. Figure 8-18 on page 238 shows how bus contention is created, and 
Figure 8-19 on page 238 shows how it can be avoided with the skew circuit.  

Figure 8-15 • Timing Diagram (option 1: bypasses skew circuit)

Figure 8-16 • Timing Diagram (option 2: enables skew circuit)
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Figure 8-17 • Example of Implementation of Skew Circuits in Bidirectional Transmission Systems Using 
IGLOO or ProASIC3 Devices
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ProASIC3L FPGA Fabric User’s Guide
Software-Controlled I/O Attributes 
Users may modify these programmable I/O attributes using the I/O Attribute Editor. Modifying an I/O
attribute may result in a change of state in Designer. Table 9-2 details which steps have to be re-run as a
function of modified I/O attribute. 

Table 9-2 • Designer State (resulting from I/O attribute modification)

I/O Attribute
Designer States1

Compile Layout Fuse Timing Power
Slew Control2 No No Yes Yes Yes

Output Drive (mA) No No Yes Yes Yes

Skew Control No No Yes Yes Yes

Resistor Pull No No Yes Yes Yes

Input Delay No No Yes Yes Yes

Schmitt Trigger No No Yes Yes Yes

OUT_LOAD No No No Yes Yes

COMBINE_REGISTER Yes Yes N/A N/A N/A

Notes:
1. No = Remains the same, Yes = Re-run the step, N/A = Not applicable
2. Skew control does not apply to IGLOO nano, IGLOO PLUS, and ProASIC3 nano devices.
3. Programmable input delay is applicable only for ProASIC3E, ProASIC3EL, RT ProASIC3, and

IGLOOe devices.
Revision 4 253



I/O Software Control in Low Power Flash Devices
those banks, the user does not need to assign the same VCCI voltage to another bank. The user needs
to assign the other three VCCI voltages to three more banks.

Assigning Technologies and VREF to I/O Banks
Low power flash devices offer a wide variety of I/O standards, including voltage-referenced standards.
Before proceeding to Layout, each bank must have the required VCCI voltage assigned for the
corresponding I/O technologies used for that bank. The voltage-referenced standards require the use of
a reference voltage (VREF). This assignment can be done manually or automatically. The following
sections describe this in detail.

Manually Assigning Technologies to I/O Banks
The user can import the PDC at this point and resolve this requirement. The PDC command is
set_iobank [bank name] –vcci [vcci value]

Another method is to use the I/O Bank Settings dialog box (MVN > Edit > I/O Bank Settings) to set up
the VCCI voltage for the bank (Figure 9-12).

Figure 9-12 • Setting VCCI for a Bank
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4. Right-click and then choose Highlight VREF range. All the pins covered by that VREF pin will be
highlighted (Figure 9-14).  

Using PinEditor or ChipPlanner, VREF pins can also be assigned (Figure 9-15).  

To unassign a VREF pin:
1. Select the pin to unassign.
2. Right-click and choose Use Pin for VREF. The check mark next to the command disappears. The

VREF pin is now a regular pin.
Resetting the pin may result in unassigning I/O cores, even if they are locked. In this case, a warning
message appears so you can cancel the operation.
After you assign the VREF pins, right-click a VREF pin and choose Highlight VREF Range to see how
many I/Os are covered by that pin. To unhighlight the range, choose Unhighlight All from the Edit
menu.

Figure 9-14 • VREF Range

Figure 9-15 • Assigning VREF from PinEditor
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Input Support for DDR
The basic structure to support a DDR input is shown in Figure 10-2. Three input registers are used to
capture incoming data, which is presented to the core on each rising edge of the I/O register clock. Each
I/O tile supports DDR inputs.

Output Support for DDR
The basic DDR output structure is shown in Figure 10-1 on page 271. New data is presented to the
output every half clock cycle. 
Note: DDR macros and I/O registers do not require additional routing. The combiner automatically

recognizes the DDR macro and pushes its registers to the I/O register area at the edge of the chip.
The routing delay from the I/O registers to the I/O buffers is already taken into account in the DDR
macro.

Figure 10-2 • DDR Input Register Support in Low Power Flash Devices
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DDR for Microsemi’s Low Power Flash Devices
Design Example
Figure 10-9 shows a simple example of a design using both DDR input and DDR output registers. The
user can copy the HDL code in Libero SoC software and go through the design flow. Figure 10-10 and
Figure 10-11 on page 283 show the netlist and ChipPlanner views of the ddr_test design. Diagrams may
vary slightly for different families.

Figure 10-9 • Design Example

Figure 10-10 • DDR Test Design as Seen by NetlistViewer for IGLOO/e Devices
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Verilog
module Inbuf_ddr(PAD,CLR,CLK,QR,QF);

input PAD, CLR, CLK;
output  QR, QF;

wire Y;    

DDR_REG DDR_REG_0_inst(.D(Y), .CLK(CLK), .CLR(CLR), .QR(QR), .QF(QF));
INBUF INBUF_0_inst(.PAD(PAD), .Y(Y));

endmodule

module Outbuf_ddr(DataR,DataF,CLR,CLK,PAD);

input DataR, DataF, CLR, CLK;
output  PAD;

wire Q, VCC;

VCC VCC_1_net(.Y(VCC));
DDR_OUT DDR_OUT_0_inst(.DR(DataR), .DF(DataF), .CLK(CLK), .CLR(CLR), .Q(Q));
OUTBUF OUTBUF_0_inst(.D(Q), .PAD(PAD));    

endmodule

Figure 10-11 • DDR Input/Output Cells as Seen by ChipPlanner for IGLOO/e Devices
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Power-Up/-Down Behavior of Low Power Flash Devices
Transient Current on VCC 
The characterization of the transient current on VCC is performed on nearly all devices within the 
IGLOO, ProASIC3L, and ProASIC3 families. A sample size of five units is used from each device family 
member. All the device I/Os are internally pulled down while the transient current measurements are 
performed. For ProASIC3 devices, the measurements at typical conditions show that the maximum 
transient current on VCC, when the power supply is powered at ramp-rates ranging from 15 V/ms to 
0.15 V/ms, does not exceed the maximum standby current specified in the device datasheets. Refer to 
the DC and Switching Characteristics chapters of the ProASIC3 Flash Family FPGAS datasheet and 
ProASIC3E Flash Family FPGAs datasheet for more information.
Similarly, IGLOO, IGLOO nano, IGLOO PLUS, and ProASIC3L devices exhibit very low transient current 
on VCC. The transient current does not exceed the typical operating current of the device while in active 
mode. For example, the characterization of AGL600-FG256 V2 and V5 devices has shown that the 
transient current on VCC is typically in the range of 1–5 mA.

Transient Current on VCCI 
The characterization of the transient current on VCCI is performed on devices within the IGLOO, IGLOO 
nano, IGLOO PLUS, ProASIC3, ProASIC3 nano, and ProASIC3L groups of devices, similarly to VCC 
transient current measurements. For ProASIC3 devices, the measurements at typical conditions show 
that the maximum transient current on VCCI, when the power supply is powered at ramp-rates ranging 
from 33 V/ms to 0.33 V/ms, does not exceed the maximum standby current specified in the device 
datasheet. Refer to the DC and Switching Characteristics chapters of the ProASIC3 Flash Family 
FPGAS datasheet and ProASIC3E Flash Family FPGAs datasheet for more information.
Similarly, IGLOO, IGLOO PLUS, and ProASIC3L devices exhibit very low transient current on VCCI. The 
transient current does not exceed the typical operating current of the device while in active mode. For 
example, the characterization of AGL600-FG256 V2 and V5 devices has shown that the transient current 
on VCCI is typically in the range of 1–2 mA.

Figure 18-1 • Types of Power Consumption in SRAM FPGAs and Microsemi Nonvolatile FPGAs
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Brownout Voltage
Brownout is a condition in which the voltage supplies are lower than normal, causing the device to 
malfunction as a result of insufficient power. In general, Microsemi does not guarantee the functionality of 
the design inside the flash FPGA if voltage supplies are below their minimum recommended operating 
condition. Microsemi has performed measurements to characterize the brownout levels of FPGA power 
supplies. Refer to Table 18-3 for device-specific brownout deactivation levels. For the purpose of 
characterization, a direct path from the device input to output is monitored while voltage supplies are 
lowered gradually. The brownout point is defined as the voltage level at which the output stops following 
the input. Characterization tests performed on several IGLOO, ProASIC3L, and ProASIC3 devices in 
typical operating conditions showed the brownout voltage levels to be within the specification. 
During device power-down, the device I/Os become tristated once the first supply in the power-down 
sequence drops below its brownout deactivation voltage. 

PLL Behavior at Brownout Condition
When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels mentioned 
above for 1.5 V and 1.2 V devices, the PLL output lock signal goes LOW and/or the output clock is lost. 
The following sections explain PLL behavior during and after the brownout condition.

VCCPLL and VCC Tied Together 
In this condition, both VCC and VCCPLL drop below the 0.75 V (± 0.25 V or ± 0.2 V) brownout level. 
During the brownout recovery, once VCCPLL and VCC reach the activation point (0.85 ± 0.25 V or 
± 0.2 V) again, the PLL output lock signal may still remain LOW with the PLL output clock signal toggling. 
If this condition occurs, there are two ways to recover the PLL output lock signal:

1. Cycle the power supplies of the PLL (power off and on) by using the PLL POWERDOWN signal.
2. Turn off the input reference clock to the PLL and then turn it back on.

Only VCCPLL Is at Brownout 
In this case, only VCCPLL drops below the 0.75 V (± 0.25 V or ± 0.2 V) brownout level and the VCC 
supply remains at nominal recommended operating voltage (1.5 V ± 0.075 V for 1.5 V devices and 1.2 V 
± 0.06 V for 1.2 V devices). In this condition, the PLL behavior after brownout recovery is similar to initial 
power-up condition, and the PLL will regain lock automatically after VCCPLL is ramped up above the 
activation level (0.85 ± 0.25 V or ± 0.2 V). No intervention is necessary in this case.

Only VCC Is at Brownout
In this condition, VCC drops below the 0.75 V (± 0.25 V or ± 0.2 V) brownout level and VCCPLL remains 
at nominal recommended operating voltage (1.5 V ± 0.075 V for 1.5 V devices and 1.2 V ± 0.06 V for 
1.2 V devices). During the brownout recovery, once VCC reaches the activation point again (0.85 ± 
0.25 V or ± 0.2 V), the PLL output lock signal may still remain LOW with the PLL output clock signal 
toggling. If this condition occurs, there are two ways to recover the PLL output lock signal: 

1. Cycle the power supplies of the PLL (power off and on) by using the PLL POWERDOWN signal.
2. Turn off the input reference clock to the PLL and then turn it back on.

It is important to note that Microsemi recommends using a monotonic power supply or voltage regulator 
to ensure proper power-up behavior. 

Table 18-3 • Brownout Deactivation Levels for VCC and VCCI

Devices
VCC Brownout 

Deactivation Level (V)
VCCI Brownout 

Deactivation Level (V)

ProASIC3, ProASIC3 nano, IGLOO, IGLOO nano, 
IGLOO PLUS and ProASIC3L devices running at 
VCC = 1.5 V

0.75 V ± 0.25 V 0.8 V ± 0.3 V

IGLOO, IGLOO nano, IGLOO PLUS, and 
ProASIC3L devices running at VCC = 1.2 V

0.75 V ± 0.2 V 0.8 V ± 0.15 V
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