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Flash*Freeze Technology and Low Power Modes
Flash Families Support the Flash*Freeze Feature
The low power flash FPGAs listed in Table 2-1 support the Flash*Freeze feature and the functions
described in this document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 2-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 2-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 2-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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ProASIC3L FPGA Fabric User’s Guide
During Flash*Freeze Mode
• PLLs are turned off during Flash*Freeze mode.
• I/O pads are configured according to Table 2-5 on page 28 and Table 2-6 on page 29.
• Inputs and input clocks to the FPGA can toggle without any impact on static power consumption,

assuming weak pull-up or pull-down is not selected.
• If weak pull-up or pull-down is selected and the input is driven to the opposite direction, power

dissipation will occur. 
• Any toggling signals will be charging and discharging the package pin capacitance.
• IGLOO and ProASIC3L outputs will be tristated unless the I/O is configured with weak pull-up or

pull-down. The output of the I/O to the FPGA core is logic High regardless of whether the I/O pin
is configured with a weak pull-up or pull-down. Refer to Table 2-5 on page 28 for more
information.

• IGLOO nano and IGLOO PLUS output behavior will be based on the configuration defined by the
user. Refer to Table 2-6 on page 29 for a description of output behavior during Flash*Freeze
mode.

• The JTAG circuit is active; however, JTAG operations, such as JTAG commands, JTAG bypass,
programming, and authentication, cannot be executed. The device must exit Flash*Freeze mode
before JTAG commands can be sent. TCK should be static to avoid extra power consumption
from the JTAG state machine.

• The FF pin must be externally asserted for the device to stay in Flash*Freeze mode.
• The FF pin is still active; i.e., the pin is used to exit Flash*Freeze mode when deasserted.

Exiting Flash*Freeze Mode
I/Os and Globals

• While exiting Flash*Freeze mode, inputs and globals will exit their Flash*Freeze state
asynchronously to each other. As a result, clock and data glitches and narrow pulses may be
generated while exiting Flash*Freeze mode, unless clock gating schemes are used. 

• I/O banks are not all activated simultaneously when exiting Flash*Freeze mode. This can cause
clocks and inputs to become enabled at different times, resulting in unexpected data being
captured.

• Upon exiting Flash*Freeze mode, inputs and globals will no longer be tied High internally (does
not apply to input hold state on IGLOO nano and IGLOO PLUS). If any of these signals are driven
Low or tied Low externally, they will experience a High-to-Low transition internally when exiting
Flash*Freeze mode.

• Applies only to IGLOO nano and IGLOO PLUS: Output hold state is asynchronously controlled by
the signal driving the output buffer (output signal). This ensures a clean, glitch-free transition from
hold state to output drive. However, any glitches on the output signal during exit from
Flash*Freeze mode may result in glitches on the output pad.

• The above situations can cause glitches or invalid data to be clocked into and preserved in the
device. Refer to the "Flash*Freeze Design Guide" on page 34 for solutions.

PLLs
• If the embedded PLL is used, the design must allow maximum acquisition time (per device

datasheet) for the PLL to acquire the lock signal.

Flash*Freeze Pin Locations
Refer to the Pin Descriptions and Packaging chapter of specific device datasheets for information
regarding Flash*Freeze pin location on the available packages. The Flash*Freeze pin location is
independent of the device, allowing migration to larger or smaller devices while maintaining the same pin
location on the board.
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ProASIC3L FPGA Fabric User’s Guide
Flash*Freeze management IP. Additional information on this IP core can be found in the Libero online
help.
The Flash*Freeze management IP is comprised of three blocks: the Flash*Freeze finite state machine
(FSM), the clock gating (filter) block, and the ULSICC macro, as shown in Figure 2-10. 

Flash*Freeze Management FSM
The Flash*Freeze FSM block is a simple, robust, fully encoded 3-bit state machine that ensures clean
entrance to and exit from Flash*Freeze mode by controlling activities of the clock gating, ULSICC, and
optional housekeeping blocks. The state diagram for the FSM is shown in Figure 2-11 on page 38. In
normal operation, the state machine waits for Flash*Freeze pin assertion, and upon detection of a
request, it waits for a short period of time to ensure the assertion persists; then it asserts
WAIT_HOUSEKEEPING (active High) synchronous to the user’s designated system clock. This flag can
be used by user logic to perform any needed shutdown processes prior to entering Flash*Freeze mode,
such as storing data into SRAM, notifying other system components of the request, or timing/validating
the Flash*Freeze request. The FSM also asserts Flash_Freeze_Enabled whenever the device enters
Flash*Freeze mode. This occurs after all housekeeping and clock gating functions have completed. The
Flash_Freeze_Enabled signal remains asserted, even during Flash*Freeze mode, until the Flash*Freeze
pin is deasserted. Use the Flash_Freeze_Enabled signal to drive any logic in the design that needs to be
in a particular state during Flash*Freeze mode. The DONE_HOUSEKEEPING (active High) signal
should be asserted to notify the FSM when all the housekeeping tasks are completed. If the user
chooses not to use housekeeping, the Flash*Freeze management IP core generator in Libero SoC will
connect WAIT_HOUSEKEEPING to DONE_HOUSEKEEPING.

Figure 2-10 • Flash*Freeze Management IP Block Diagram
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ProASIC3L FPGA Fabric User’s Guide
Spine Access
The physical location of each spine is identified by the letter T (top) or B (bottom) and an accompanying
number (Tn or Bn). The number n indicates the horizontal location of the spine; 1 refers to the first spine
on the left side of the die. Since there are six chip spines in each spine tree, there are up to six spines
available for each combination of T (or B) and n (for example, six T1 spines). Similarly, there are three
quadrant spines available for each combination of T (or B) and n (for example, four T1 spines), as shown
in Figure 3-7.

A spine is also called a local clock network, and is accessed by the dedicated global MUX architecture.
These MUXes define how a particular spine is driven. Refer to Figure 3-8 on page 60 for the global MUX
architecture. The MUXes for each chip global spine are located in the middle of the die. Access to the top
and bottom chip global spine is available from the middle of the die. There is no control dependency
between the top and bottom spines. If a top spine, T1, of a chip global network is assigned to a net, B1 is
not wasted and can be used by the global clock network. The signal assigned only to the top or bottom
spine cannot access the middle two rows of the architecture. However, if a spine is using the top and
bottom at the same time (T1 and B1, for instance), the previous restriction is lifted. 
The MUXes for each quadrant global spine are located in the north and south sides of the die. Access to
the top and bottom quadrant global spines is available from the north and south sides of the die. Since
the MUXes for quadrant spines are located in the north and south sides of the die, you should not try to
drive T1 and B1 quadrant spines from the same signal. 

Figure 3-7 • Chip Global Aggregation
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SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
Notes:
1. AES decryption not supported in 30 k gate devices and smaller.
2. Flash*Freeze is supported in all IGLOO devices and the ProASIC3L devices.
Figure 6-1 • IGLOO and ProASIC3 Device Architecture Overview
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SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
BLKA and BLKB
These signals are active-low and will enable the respective ports when asserted. When a BLKx signal is
deasserted, that port’s outputs hold the previous value.
Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, BLKB should

be tied to ground. 
WENA and WENB
These signals switch the RAM between read and write modes for the respective ports. A LOW on these
signals indicates a write operation, and a HIGH indicates a read.
Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, WENB should

be tied to ground.
CLKA and CLKB
These are the clock signals for the synchronous read and write operations. These can be driven
independently or with the same driver.
Note: For Automotive ProASIC3 devices, dual-port mode is supported if the clocks to the two

SRAM ports are the same and 180° out of phase (i.e., the port A clock is the inverse of the
port B clock). For use of this macro as a single-port SRAM, the inputs and clock of one port
should be tied off (grounded) to prevent errors during design compile.

PIPEA and PIPEB 
These signals are used to specify pipelined read on the output. A LOW on PIPEA or PIPEB indicates a
nonpipelined read, and the data appears on the corresponding output in the same clock cycle. A HIGH
indicates a pipelined read, and data appears on the corresponding output in the next clock cycle.
Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, PIPEB should

be tied to ground. For use in dual-port mode, the same clock with an inversion between the
two clock pins of the macro should be used in the design to prevent errors during compile.

WMODEA and WMODEB
These signals are used to configure the behavior of the output when the RAM is in write mode. A LOW
on these signals makes the output retain data from the previous read. A HIGH indicates pass-through
behavior, wherein the data being written will appear immediately on the output. This signal is overridden
when the RAM is being read.
Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, WMODEB

should be tied to ground.

RESET
This active-low signal resets the control logic, forces the output hold state registers to zero, disables
reads and writes from the SRAM block, and clears the data hold registers when asserted. It does not
reset the contents of the memory array.
While the RESET signal is active, read and write operations are disabled. As with any asynchronous
reset signal, care must be taken not to assert it too close to the edges of active read and write clocks. 

ADDRA and ADDRB
These are used as read or write addresses, and they are 12 bits wide. When a depth of less than 4 k is
specified, the unused high-order bits must be grounded (Table 6-3 on page 155).

Table 6-2 • Allowable Aspect Ratio Settings for WIDTHA[1:0]

WIDTHA[1:0] WIDTHB[1:0] D×W

00 00 4k×1

01 01 2k×2

10 10 1k×4

11 11 512×9

Note: The aspect ratio settings are constant and cannot be changed on the fly.
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SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
v1.1
(continued)

Table 6-1 • Flash-Based FPGAs and associated text were updated to include the
IGLOO PLUS family. The "IGLOO Terminology" section and "ProASIC3
Terminology" section are new.

150

The text introducing Table 6-8 • Memory Availability per IGLOO and ProASIC3
Device was updated to replace "A3P030 and AGL030" with "15 k and 30 k gate
devices." Table 6-8 • Memory Availability per IGLOO and ProASIC3 Device was
updated to remove AGL400 and AGLE1500 and include IGLOO PLUS and
ProASIC3L devices. 

162

Date Changes Page
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7 – I/O Structures in IGLOO and ProASIC3 Devices 

Introduction
Low power flash devices feature a flexible I/O structure, supporting a range of mixed voltages (1.2 V, 1.5 V,
1.8 V, 2.5 V, and 3.3 V) through bank-selectable voltages. IGLOO,® ProASIC3®L, and ProASIC3 families
support Standard, Standard Plus, and Advanced I/Os.
Users designing I/O solutions are faced with a number of implementation decisions and configuration
choices that can directly impact the efficiency and effectiveness of their final design. The flexible I/O
structure, supporting a wide variety of voltages and I/O standards, enables users to meet the growing
challenges of their many diverse applications. Libero SoC software provides an easy way to implement
I/Os that will result in robust I/O design. 
This document first describes the two different I/O types in terms of the standards and features they
support. It then explains the individual features and how to implement them in Libero SoC.

Figure 7-1 • DDR Configured I/O Block Logical Representation
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I/O Structures in IGLOO and ProASIC3 Devices
User I/O Naming Convention

IGLOO and ProASIC3
Due to the comprehensive and flexible nature of IGLOO and ProASIC3 device user I/Os, a naming
scheme is used to show the details of each I/O (Figure 7-19 on page 207 and Figure 7-20 on page 207).
The name identifies to which I/O bank it belongs, as well as pairing and pin polarity for differential I/Os.

I/O Nomenclature =  FF/Gmn/IOuxwBy

Gmn is only used for I/Os that also have CCC access—i.e., global pins. 
FF = Indicates the I/O dedicated for the Flash*Freeze mode activation pin in IGLOO and ProASIC3L

devices only 
G = Global
m = Global pin location associated with each CCC on the device: A (northwest corner), B (northeast

corner), C (east middle), D (southeast corner), E (southwest corner), and F (west middle) 
n = Global input MUX and pin number of the associated Global location m—either A0, A1, A2, B0,

B1, B2, C0, C1, or C2. Refer to the "Global Resources in Low Power Flash Devices" section on
page 47 for information about the three input pins per clock source MUX at CCC location m.

u = I/O pair number in the bank, starting at 00 from the northwest I/O bank and proceeding in a
clockwise direction

x = P or U (Positive), N or V (Negative) for differential pairs, or R (Regular—single-ended) for the I/Os
that support single-ended and voltage-referenced I/O standards only. U (Positive) or V
(Negative)—for LVDS, DDR LVDS, B-LVDS, and M-LVDS only—restricts the I/O differential pair
from being selected as an LVPECL pair.

w = D (Differential Pair), P (Pair), or S (Single-Ended). D (Differential Pair) if both members of the pair
are bonded out to adjacent pins or are separated only by one GND or NC pin; P (Pair) if both
members of the pair are bonded out but do not meet the adjacency requirement; or S (Single-
Ended) if the I/O pair is not bonded out. For Differential Pairs (D), adjacency for ball grid
packages means only vertical or horizontal. Diagonal adjacency does not meet the requirements
for a true differential pair.

B = Bank
y = Bank number (0–3). The Bank number starts at 0 from the northwest I/O bank and proceeds in a

clockwise direction.
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I/O Structures in IGLOOe and ProASIC3E Devices
Features Supported on Every I/O
Table 8-6 lists all features supported by transmitter/receiver for single-ended and differential I/Os. 
Table 8-7 on page 219 lists the performance of each I/O technology.

Table 8-6 • IGLOOe and ProASIC3E I/O Features
Feature Description
All I/O • High performance (Table 8-7 on page 219)

• Electrostatic discharge protection
• I/O register combining option

Single-Ended and Voltage-Referenced 
Transmitter Features

• Hot-swap in every mode except PCI or 5 V–input–
tolerant (these modes use clamp diodes and do not 
allow hot-swap)

• Activation of hot-insertion (disabling the clamp diode) 
is selectable by I/Os.

• Output slew rate: 2 slew rates 
• Weak pull-up and pull-down resistors
• Output drive: 5 drive strengths
• Programmable output loading 
• Skew between output buffer enable/disable time: 2 ns 

delay on rising edge and 0 ns delay on falling edge 
(see "Selectable Skew between Output Buffer Enable 
and Disable Times" section on page 236 for more 
information)

• LVTTL/LVCMOS 3.3 V outputs compatible with 5 V 
TTL inputs

Single-Ended Receiver Features • 5 V–input–tolerant receiver (Table 8-13 on page 231)
• Schmitt trigger option
• Programmable delay: 0 ns if bypassed, 0.625 ns with 

'000' setting, 6.575 ns with '111' setting, 0.85-ns 
intermediate delay increments (at 25°C, 1.5 V)

• Separate ground plane for GNDQ pin and power 
plane for VMV pin are used for input buffer to reduce 
output-induced noise.

Voltage-Referenced Differential Receiver 
Features

• Programmable delay: 0 ns if bypassed, 0.46 ns with 
'000' setting, 4.66 ns with '111' setting, 0.6-ns 
intermediate delay increments (at 25°C, 1.5 V)

• Separate ground plane for GNDQ pin and power 
plane for VMV pin are used for input buffer to reduce 
output-induced noise.

CMOS-Style LVDS, B-LVDS, M-LVDS, or 
LVPECL Transmitter 

• Two I/Os and external resistors are used to provide a 
CMOS-style LVDS, DDR LVDS, B-LVDS, and M-
LVDS/LVPECL transmitter solution.

• Activation of hot-insertion (disabling the clamp diode) 
is selectable by I/Os.

• High slew rate 
• Weak pull-up and pull-down resistors
• Programmable output loading

LVDS, DDR LVDS, B-LVDS, and 
M-LVDS/LVPECL Differential Receiver 
Features 

• Programmable delay: 0 ns if bypassed, 0.46 ns with 
'000' setting, 4.66 ns with '111' setting, 0.6-ns 
intermediate delay increments (at 25°C, 1.5 V)
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I/O Structures in IGLOOe and ProASIC3E Devices
B-LVDS/M-LVDS
Bus LVDS (B-LVDS) refers to bus interface circuits based on LVDS technology. Multipoint LVDS 
(M-LVDS) specifications extend the LVDS standard to high-performance multipoint bus applications. 
Multidrop and multipoint bus configurations may contain any combination of drivers, receivers, and 
transceivers. Microsemi LVDS drivers provide the higher drive current required by B-LVDS and M-LVDS 
to accommodate the loading. The driver requires series terminations for better signal quality and to 
control voltage swing. Termination is also required at both ends of the bus, since the driver can be 
located anywhere on the bus. These configurations can be implemented using TRIBUF_LVDS and 
BIBUF_LVDS macros along with appropriate terminations. Multipoint designs using Microsemi LVDS 
macros can achieve up to 200 MHz with a maximum of 20 loads. A sample application is given in 
Figure 8-9. The input and output buffer delays are available in the LVDS sections in the datasheet. 
Example: For a bus consisting of 20 equidistant loads, the terminations given in EQ 8-1 provide the 
required differential voltage, in worst case industrial operating conditions, at the farthest receiver:

RS = 60 Ω, RT = 70 Ω, given ZO = 50 Ω (2") and Zstub = 50 Ω (~1.5").

EQ 8-1

Figure 8-9 • A B-LVDS/M-LVDS Multipoint Application Using LVDS I/O Buffers
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I/O Structures in IGLOOe and ProASIC3E Devices
IGLOOe and ProASIC3E
For devices requiring Level 3 and/or Level 4 compliance, the board drivers connected to the I/Os must 
have 10 kΩ (or lower) output drive resistance at hot insertion, and 1 kΩ (or lower) output drive resistance 
at hot removal. This resistance is the transmitter resistance sending a signal toward the I/O, and no 
additional resistance is needed on the board. If that cannot be assured, three levels of staging can be 
used to achieve Level 3 and/or Level 4 compliance. Cards with two levels of staging should have the 
following sequence: 

• Grounds
• Powers, I/Os, and other pins

Cold-Sparing Support
Cold-sparing refers to the ability of a device to leave system data undisturbed when the system is 
powered up, while the component itself is powered down, or when power supplies are floating.
Cold-sparing is supported on ProASIC3E devices only when the user provides resistors from each power 
supply to ground. The resistor value is calculated based on the decoupling capacitance on a given power 
supply. The RC constant should be greater than 3 µs.
To remove resistor current during operation, it is suggested that the resistor be disconnected (e.g., with 
an NMOS switch) from the power supply after the supply has reached its final value. Refer to the "Power-
Up/-Down Behavior of Low Power Flash Devices" section on page 373 for details on cold-sparing. 
Cold-sparing means that a subsystem with no power applied (usually a circuit board) is electrically 
connected to the system that is in operation. This means that all input buffers of the subsystem must 
present very high input impedance with no power applied so as not to disturb the operating portion of the 
system.
The 30 k gate devices fully support cold-sparing, since the I/O clamp diode is always off (see Table 8-13 on 
page 231). If the 30 k gate device is used in applications requiring cold-sparing, a discharge path from 
the power supply to ground should be provided. This can be done with a discharge resistor or a switched 
resistor. This is necessary because the 30 k gate devices do not have built-in I/O clamp diodes. 
For other IGLOOe and ProASIC3E devices, since the I/O clamp diode is always active, cold-sparing can 
be accomplished either by employing a bus switch to isolate the device I/Os from the rest of the system 
or by driving each I/O pin to 0 V. If the resistor is chosen, the resistor value must be calculated based on 
decoupling capacitance on a given power supply on the board (this decoupling capacitance is in parallel 
with the resistor). The RC time constant should ensure full discharge of supplies before cold-sparing 
functionality is required. The resistor is necessary to ensure that the power pins are discharged to ground 
every time there is an interruption of power to the device.
IGLOOe and ProASIC3E devices support cold-sparing for all I/O configurations. Standards, such as PCI, 
that require I/O clamp diodes can also achieve cold-sparing compliance, since clamp diodes get 
disconnected internally when the supplies are at 0 V.
When targeting low power applications, I/O cold-sparing may add additional current if a pin is configured 
with either a pull-up or pull-down resistor and driven in the opposite direction. A small static current is 
induced on each I/O pin when the pin is driven to a voltage opposite to the weak pull resistor. The current 
is equal to the voltage drop across the input pin divided by the pull resistor. Refer to the "Detailed I/O DC 
Characteristics" section of the appropriate family datasheet for the specific pull resistor value for the 
corresponding I/O standard.
For example, assuming an LVTTL 3.3 V input pin is configured with a weak pull-up resistor, a current will 
flow through the pull-up resistor if the input pin is driven LOW. For LVTTL 3.3 V, the pull-up resistor is 
~45 kΩ, and the resulting current is equal to 3.3 V / 45 kΩ = 73 µA for the I/O pin. This is true also when 
a weak pull-down is chosen and the input pin is driven High. This current can be avoided by driving the 
input Low when a weak pull-down resistor is used and driving it High when a weak pull-up resistor is 
used.
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I/O Structures in IGLOOe and ProASIC3E Devices
Figure 8-18 • Timing Diagram (bypasses skew circuit)

Figure 8-19 • Timing Diagram (with skew circuit selected)
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Simultaneously Switching Outputs (SSOs) and Printed Circuit 
Board Layout

Each I/O voltage bank has a separate ground and power plane for input and output circuits (VMV/GNDQ 
for input buffers and VCCI/GND for output buffers). This isolation is necessary to minimize simultaneous 
switching noise from the input and output (SSI and SSO). The switching noise (ground bounce and 
power bounce) is generated by the output buffers and transferred into input buffer circuits, and vice 
versa.
Since voltage bounce originates on the package inductance, the VMV and VCCI supplies have separate 
package pin assignments. For the same reason, GND and GNDQ also have separate pin assignments.
The VMV and VCCI pins must be shorted to each other on the board. Also, the GND and GNDQ pins 
must be shorted to each other on the board. This will prevent unwanted current draw from the power 
supply.
SSOs can cause signal integrity problems on adjacent signals that are not part of the SSO bus. Both 
inductive and capacitive coupling parasitics of bond wires inside packages and of traces on PCBs will 
transfer noise from SSO busses onto signals adjacent to those busses. Additionally, SSOs can produce 
ground bounce noise and VCCI dip noise. These two noise types are caused by rapidly changing 
currents through GND and VCCI package pin inductances during switching activities (EQ 8-2 and 
EQ 8-3).

Ground bounce noise voltage = L(GND) × di/dt

EQ 8-2

VCCI dip noise voltage = L(VCCI) × di/dt

EQ 8-3
Any group of four or more input pins switching on the same clock edge is considered an SSO bus. The 
shielding should be done both on the board and inside the package unless otherwise described. 
In-package shielding can be achieved in several ways; the required shielding will vary depending on 
whether pins next to the SSO bus are LVTTL/LVCMOS inputs, LVTTL/LVCMOS outputs, or 
GTL/SSTL/HSTL/LVDS/LVPECL inputs and outputs. Board traces in the vicinity of the SSO bus have to 
be adequately shielded from mutual coupling and inductive noise that can be generated by the SSO bus. 
Also, noise generated by the SSO bus needs to be reduced inside the package. 
PCBs perform an important function in feeding stable supply voltages to the IC and, at the same time, 
maintaining signal integrity between devices.
Key issues that need to be considered are as follows:

• Power and ground plane design and decoupling network design
• Transmission line reflections and terminations

For extensive data per package on the SSO and PCB issues, refer to the "ProASIC3/E SSO and Pin 
Placement and Guidelines" chapter of the ProASIC3 FPGA Fabric User’s Guide. 
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Security in Low Power Flash Devices
The AES key is securely stored on-chip in dedicated low power flash device flash memory and cannot be
read out. In the first step, the AES key is generated and programmed into the device (for example, at a
secure or trusted programming site). The Microsemi Designer software tool provides AES key generation
capability. After the key has been programmed into the device, the device will only correctly decrypt
programming files that have been encrypted with the same key. If the individual programming file content
is incorrect, a Message Authentication Control (MAC) mechanism inside the device will fail in
authenticating the programming file. In other words, when an encrypted programming file is being loaded
into a device that has a different programmed AES key, the MAC will prevent this incorrect data from
being loaded, preventing possible device damage. See Figure 12-3 on page 304 and Figure 12-4 on
page 306 for graphical representations of this process.
It is important to note that the user decides what level of protection will be implemented for the device.
When AES protection is desired, the FlashLock Pass Key must be set. The AES key is a content
protection mechanism, whereas the FlashLock Pass Key is a device protection mechanism. When the
AES key is programmed into the device, the device still needs the Pass Key to protect the FPGA and
FlashROM contents and the security settings, including the AES key. Using the FlashLock Pass Key
prevents modification of the design contents by means of simply programming the device with a different
AES key.

AES Decryption and MAC Authentication 
Low power flash devices have a built-in 128-bit AES decryption core, which decrypts the encrypted
programming file and performs a MAC check that authenticates the file prior to programming. 
MAC authenticates the entire programming data stream. After AES decryption, the MAC checks the data
to make sure it is valid programming data for the device. This can be done while the device is still
operating. If the MAC validates the file, the device will be erased and programmed. If the MAC fails to
validate, then the device will continue to operate uninterrupted. 
This will ensure the following:

• Correct decryption of the encrypted programming file
• Prevention of erroneous or corrupted data being programmed during the programming file

transfer
• Correct bitstream passed to the device for decryption

1. National Institute of Standards and Technology, “ADVANCED ENCRYPTION STANDARD (AES) Questions and Answers,”
28 January 2002 (10 January 2005). See http://csrc.nist.gov/archive/aes/index1.html for more information.

Figure 12-4 • Example Application Scenario Using AES in IGLOO and ProASIC3 Devices 
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ProASIC3L FPGA Fabric User’s Guide
Generating Programming Files

Generation of the Programming File in a Trusted Environment—
Application 1
As discussed in the "Application 1: Trusted Environment" section on page 309, in a trusted environment,
the user can choose to program the device with plaintext bitstream content. It is possible to use plaintext
for programming even when the FlashLock Pass Key option has been selected. In this application, it is
not necessary to employ AES encryption protection. For AES encryption settings, refer to the next
sections.
The generated programming file will include the security setting (if selected) and the plaintext
programming file content for the FPGA array, FlashROM, and/or FBs. These options are indicated in
Table 12-2 and Table 12-3.

For this scenario, generate the programming file as follows:
1. Select the Silicon features to be programmed (Security Settings, FPGA Array, FlashROM,

Flash Memory Blocks), as shown in Figure 12-10 on page 314 and Figure 12-11 on page 314.
Click Next.
If Security Settings is selected (i.e., the FlashLock security Pass Key feature), an additional
dialog will be displayed to prompt you to select the security level setting. If no security setting is
selected, you will be directed to Step 3.

Table 12-2 • IGLOO and ProASIC3 Plaintext Security Options, No AES 

Security Protection FlashROM Only FPGA Core Only
Both FlashROM 

and FPGA
No AES / no FlashLock ✓ ✓ ✓

FlashLock only ✓ ✓ ✓

AES and FlashLock – – –

Table 12-3 • Fusion Plaintext Security Options
Security Protection FlashROM Only FPGA Core Only FB Core Only All
No AES / no FlashLock ✓ ✓ ✓ ✓

FlashLock ✓ ✓ ✓ ✓

AES and FlashLock – – – –

Note: For all instructions, the programming of Flash Blocks refers to Fusion only.
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Security in Low Power Flash Devices
It is important to note that when the security settings need to be updated, the user also needs to select
the Security settings check box in Step 1, as shown in Figure 12-10 on page 314 and Figure 12-11 on
page 314, to modify the security settings. The user must consider the following:

• If only a new AES key is necessary, the user must re-enter the same Pass Key previously
programmed into the device in Designer and then generate a programming file with the same
Pass Key and a different AES key. This ensures the programming file can be used to access and
program the device and the new AES key.

• If a new Pass Key is necessary, the user can generate a new programming file with a new Pass
Key (with the same or a new AES key if desired). However, for programming, the user must first
load the original programming file with the Pass Key that was previously used to unlock the
device. Then the new programming file can be used to program the new security settings.

Advanced Options
As mentioned, there may be applications where more complicated security settings are required. The
“Custom Security Levels” section in the FlashPro User's Guide describes different advanced options
available to aid the user in obtaining the best available security settings. 

Figure 12-19 • FlashLock Pass Key, Previously Programmed Devices 
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Programming Voltage (VPUMP) and VJTAG 
Low-power flash devices support on-chip charge pumps, and therefore require only a single 3.3 V
programming voltage for the VPUMP pin during programming. When the device is not being
programmed, the VPUMP pin can be left floating or can be tied (pulled up) to any voltage between 0 V
and 3.6 V2. During programming, the target board or the FlashPro4/3/3X programmer can provide
VPUMP. FlashPro4/3/3X is capable of supplying VPUMP to a single device. If more than one device is to
be programmed using FlashPro4/3/3X on a given board, FlashPro4/3/3X should not be relied on to
supply the VPUMP voltage. A FlashPro4/3/3X programmer is not capable of providing reliable VJTAG
voltage. The board must supply VJTAG voltage to the device and the VJTAG pin of the programmer
header must be connected to the device VJTAG pin. Microsemi recommends that VPUMP3 and VJTAG
power supplies be kept separate with independent filtering capacitors rather than supplying them from a
common rail. Refer to the "Board-Level Considerations" section on page 337 for capacitor requirements. 
Low power flash device I/Os support a bank-based, voltage-supply architecture that simultaneously
supports multiple I/O voltage standards (Table 13-2). By isolating the JTAG power supply in a separate
bank from the user I/Os, low power flash devices provide greater flexibility with supply selection and
simplify power supply and printed circuit board (PCB) design. The JTAG pins can be run at any voltage
from 1.5 V to 3.3 V (nominal). Microsemi recommends that TCK be tied to GND through a 200 ohm to 1
Kohm resistor. This prevents a possible totempole current on the input buffer stage. For TDI, TMS, and
TRST pins, the devices provide an internal nominal 10 Kohm pull-up resistor. During programming, all
I/O pins, except for JTAG interface pins, are tristated and weakly pulled up to VCCI. This isolates the part
and prevents the signals from floating. The JTAG interface pins are driven by the FlashPro4/3/3X during
programming, including the TRST pin, which is driven HIGH. 

Nonvolatile Memory (NVM) Programming Voltage
SmartFusion and Fusion devices need stable VCCNVM/VCCENVM3 (1.5 V power supply to the
embedded nonvolatile memory blocks) and VCCOSC/VCCROSC4 (3.3 V power supply to the integrated
RC oscillator). The tolerance of VCCNVM/VCCENVM is ± 5% and VCCOSC/VCCROSC is ± 5%. 
Unstable supply voltage on these pins can cause an NVM programming failure due to NVM page
corruption. The NVM page can also be corrupted if the NVM reset pin has noise. This signal must be tied
off properly.
Microsemi recommends installing the following capacitors5 on the VCCNVM/VCCENVM and
VCCOSC/VCCROSC pins:

• Add one bypass capacitor of 10 µF for each power supply plane followed by an array of
decoupling capacitors of 0.1 µF. 

• Add one 0.1 µF capacitor near each pin.

2. During sleep mode in IGLOO devices connect VPUMP to GND.
3. VPUMP has to be quiet for successful programming. Therefore VPUMP must be separate and required capacitors must be

installed close to the FPGA VPUMP pin.

Table 13-2 • Power Supplies

Power Supply Programming Mode
Current during
Programming

VCC 1.2 V / 1.5 V < 70 mA

VCCI 1.2 V / 1.5 V / 1.8 V / 2.5 V / 3.3 V
(bank-selectable)

I/Os are weakly pulled up.

VJTAG 1.2 V / 1.5 V / 1.8 V / 2.5 V / 3.3 V < 20 mA

VPUMP 3.15 V to 3.45 V < 80 mA

Note: All supply voltages should be at 1.5 V or higher, regardless of the setting during normal
operation, except for IGLOO nano, where 1.2 V VCC and VJTAG programming is allowed.

4. VCCROSC is for SmartFusion.
5. The capacitors cannot guarantee reliable operation of the device if the board layout is not done properly.
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In-System Programming (ISP) of Microsemi’s Low Power Flash Devices Using FlashPro4/3/3X
IEEE 1532 (JTAG) Interface 
The supported industry-standard IEEE 1532 programming interface builds on the IEEE 1149.1 (JTAG)
standard. IEEE 1532 defines the standardized process and methodology for ISP. Both silicon and
software issues are addressed in IEEE 1532 to create a simplified ISP environment. Any IEEE 1532
compliant programmer can be used to program low power flash devices. Device serialization is not
supported when using the IEEE1532 standard. Refer to the standard for detailed information about IEEE
1532.

Security
Unlike SRAM-based FPGAs that require loading at power-up from an external source such as a
microcontroller or boot PROM, Microsemi nonvolatile devices are live at power-up, and there is no
bitstream required to load the device when power is applied. The unique flash-based architecture
prevents reverse engineering of the programmed code on the device, because the programmed data is
stored in nonvolatile memory cells. Each nonvolatile memory cell is made up of small capacitors and any
physical deconstruction of the device will disrupt stored electrical charges.
Each low power flash device has a built-in 128-bit Advanced Encryption Standard (AES) decryption core,
except for the 30 k gate devices and smaller. Any FPGA core or FlashROM content loaded into the
device can optionally be sent as encrypted bitstream and decrypted as it is loaded. This is particularly
suitable for applications where device updates must be transmitted over an unsecured network such as
the Internet. The embedded AES decryption core can prevent sensitive data from being intercepted
(Figure 13-1 on page 331). A single 128-bit AES Key (32 hex characters) is used to encrypt FPGA core
programming data and/or FlashROM programming data in the Microsemi tools. The low power flash
devices also decrypt with a single 128-bit AES Key. In addition, low power flash devices support a
Message Authentication Code (MAC) for authentication of the encrypted bitstream on-chip. This allows
the encrypted bitstream to be authenticated and prevents erroneous data from being programmed into
the device. The FPGA core, FlashROM, and Flash Memory Blocks (FBs), in Fusion only, can be updated
independently using a programming file that is AES-encrypted (cipher text) or uses plain text.
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In-System Programming (ISP) of Microsemi’s Low Power Flash Devices Using FlashPro4/3/3X
Table 13-4 • Programming Header Pin Numbers and Description

Pin Signal Source Description

1 TCK Programmer JTAG Clock

2 GND1 – Signal Reference

3 TDO Target Board Test Data Output

4 NC – No Connect (FlashPro3/3X); Prog_Mode (FlashPro4).
See note associated with Figure 13-5 on page 335
regarding Prog_Mode on FlashPro4.

5 TMS Programmer Test Mode Select

6 VJTAG Target Board JTAG Supply Voltage

7 VPUMP2 Programmer/Target Board Programming Supply Voltage

8 nTRST Programmer JTAG Test Reset (Hi-Z with 10 kΩ pull-down, HIGH,
LOW, or toggling)

9 TDI Programmer Test Data Input

10 GND1 – Signal Reference

Notes:
1. Both GND pins must be connected.
2. FlashPro4/3/3X can provide VPUMP if there is only one device on the target board.
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