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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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ProASIC3L FPGA Fabric User’s Guide
Table 1-4 • IGLOO nano and ProASIC3 nano Array Coordinates

Device

VersaTiles Memory Rows Entire Die

Min. Max. Bottom Top Min. Max.

IGLOO nano ProASIC3 nano (x, y) (x, y) (x, y) (x, y) (x, y) (x, y)

AGLN010 A3P010 (0, 2) (32, 5) None None (0, 0) (34, 5)

AGLN015 A3PN015 (0, 2) (32, 9) None None (0, 0) (34, 9)

AGLN020 A3PN020 (0, 2) 32, 13) None None (0, 0) (34, 13)

AGLN060 A3PN060 (3, 2) (66, 25) None (3, 26) (0, 0) (69, 29)

AGLN125 A3PN125 (3, 2) (130, 25) None (3, 26) (0, 0) (133, 29)

AGLN250 A3PN250 (3, 2) (130, 49) None (3, 50) (0, 0) (133, 49)

Note: The vertical I/O tile coordinates are not shown. West-side coordinates are {(0, 2) to (2, 2)} to {(0, 77) to (2, 77)};
east-side coordinates are {(195, 2) to (197, 2)} to {(195, 77) to (197, 77)}.

Figure 1-9 • Array Coordinates for AGL600, AGLE600, A3P600, and A3PE600
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Global Resources in Low Power Flash Devices
Figure 3-2 • Simplified VersaNet Global Network (30 k gates and below)

Figure 3-3 • Simplified VersaNet Global Network (60 k gates and above)
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List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and
version but is now part of several FPGA fabric user’s guides.

N/A

Notes were added where appropriate to point out that IGLOO nano and
ProASIC3 nano devices do not support differential inputs (SAR 21449).

N/A

The "Global Architecture" section and "VersaNet Global Network Distribution"
section were revised for clarity (SARs 20646, 24779).

47, 49

The "I/O Banks and Global I/Os" section was moved earlier in the document,
renamed to "Chip and Quadrant Global I/Os", and revised for clarity. Figure 3-4 •
Global Connections Details, Figure 3-6 • Global Inputs, Table 3-2 • Chip Global
Pin Name, and Table 3-3 • Quadrant Global Pin Name are new (SARs 20646,
24779).

51

The "Clock Aggregation Architecture" section was revised (SARs 20646, 24779). 57

Figure 3-7 • Chip Global Aggregation was revised (SARs 20646, 24779). 59

The "Global Macro and Placement Selections" section is new (SARs 20646,
24779).

64

v1.4
(December 2008)

The "Global Architecture" section was updated to include 10 k devices, and to
include information about VersaNet global support for IGLOO nano devices.

47

The Table 3-1 • Flash-Based FPGAs was updated to include IGLOO nano and
ProASIC3 nano devices.

48

The "VersaNet Global Network Distribution" section was updated to include 10 k
devices and to note an exception in global lines for nano devices.

49

Figure 3-2 • Simplified VersaNet Global Network (30 k gates and below) is new. 50

The "Spine Architecture" section was updated to clarify support for 10 k and nano
devices.

57

Table 3-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices was updated
to include IGLOO nano and ProASIC3 nano devices.

57

The figure in the CLKBUF_LVDS/LVPECL row of Table 3-8 • Clock Macros was
updated to change CLKBIBUF to CLKBUF.

62

v1.3
(October 2008)

A third bullet was added to the beginning of the "Global Architecture" section: In
Fusion devices, the west CCC also contains a PLL core. In the two larger devices
(AFS600 and AFS1500), the west and east CCCs each contain a PLL.

47

The "Global Resource Support in Flash-Based Devices" section was revised to
include new families and make the information more concise.

48

Table 3-4 • Globals/Spines/Rows for IGLOO and ProASIC3 Devices was updated
to include A3PE600/L in the device column.

57

Table note 1 was revised in Table 3-9 • I/O Standards within CLKBUF to include
AFS600 and AFS1500.

63

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 3-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V. 
• The number of PLLs for ProASIC3E was changed from five to six.

48
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Feedback Configuration
The PLL provides both internal and external feedback delays. Depending on the configuration, various 
combinations of feedback delays can be achieved.

Internal Feedback Configuration
This configuration essentially sets the feedback multiplexer to route the VCO output of the PLL core as 
the input to the feedback of the PLL. The feedback signal can be processed with the fixed system and 
the adjustable feedback delay, as shown in Figure 4-24. The dividers are automatically configured by 
SmartGen based on the user input.
Indicated below is the System Delay pull-down menu. The System Delay can be bypassed by setting it to 
0. When set, it adds a 2 ns delay to the feedback path (which results in delay advancement of the output 
clock by 2 ns). 

Figure 4-25 shows the controllable Feedback Delay. If set properly in conjunction with the fixed System 
Delay, the total output delay can be advanced significantly. 

Figure 4-24 • Internal Feedback with Selectable System Delay

Figure 4-25 • Internal Feedback with Selectable Feedback Delay
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FlashROM in Microsemi’s Low Power Flash Devices
Conclusion 
The Fusion, IGLOO, and ProASIC3 families are the only FPGAs that offer on-chip FlashROM support.
This document presents information on the FlashROM architecture, possible applications, programming,
access through the JTAG and UJTAG interface, and integration into your design. In addition, the Libero
tool set enables easy creation and modification of the FlashROM content. 
The nonvolatile FlashROM block in the FPGA can be customized, enabling multiple applications. 
Additionally, the security offered by the low power flash devices keeps both the contents of FlashROM
and the FPGA design safe from system over-builders, system cloners, and IP thieves. 

Related Documents

User’s Guides
FlashPro User’s Guide
http://www.microsemi.com/documents/FlashPro_UG.pdf

List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

July 2010 This chapter is no longer published separately with its own part number and version
but is now part of several FPGA fabric user’s guides.

N/A

v1.4
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to Table 5-1 • Flash-Based
FPGAs.

134

v1.3
(October 2008)

The "FlashROM Support in Flash-Based Devices" section was revised to include
new families and make the information more concise.

134

Figure 5-2 • Fusion Device Architecture Overview (AFS600) was replaced.
Figure 5-5 • Programming FlashROM Using AES was revised to change "Fusion" to
"Flash Device."

135, 137

The FlashPoint User’s Guide was removed from the "User’s Guides" section, as its
content is now part of the FlashPro User’s Guide.

146

v1.2
(June 2008)

The following changes were made to the family descriptions in Table 5-1 • Flash-
Based FPGAs:
• ProASIC3L was updated to include 1.5 V. 
• The number of PLLs for ProASIC3E was changed from five to six.

134

v1.1
(March 2008)

The chapter was updated to include the IGLOO PLUS family and information
regarding 15 k gate devices. The "IGLOO Terminology" section and "ProASIC3
Terminology" section are new.

N/A
146 Revision 4
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SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
BLKA and BLKB
These signals are active-low and will enable the respective ports when asserted. When a BLKx signal is
deasserted, that port’s outputs hold the previous value.
Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, BLKB should

be tied to ground. 
WENA and WENB
These signals switch the RAM between read and write modes for the respective ports. A LOW on these
signals indicates a write operation, and a HIGH indicates a read.
Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, WENB should

be tied to ground.
CLKA and CLKB
These are the clock signals for the synchronous read and write operations. These can be driven
independently or with the same driver.
Note: For Automotive ProASIC3 devices, dual-port mode is supported if the clocks to the two

SRAM ports are the same and 180° out of phase (i.e., the port A clock is the inverse of the
port B clock). For use of this macro as a single-port SRAM, the inputs and clock of one port
should be tied off (grounded) to prevent errors during design compile.

PIPEA and PIPEB 
These signals are used to specify pipelined read on the output. A LOW on PIPEA or PIPEB indicates a
nonpipelined read, and the data appears on the corresponding output in the same clock cycle. A HIGH
indicates a pipelined read, and data appears on the corresponding output in the next clock cycle.
Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, PIPEB should

be tied to ground. For use in dual-port mode, the same clock with an inversion between the
two clock pins of the macro should be used in the design to prevent errors during compile.

WMODEA and WMODEB
These signals are used to configure the behavior of the output when the RAM is in write mode. A LOW
on these signals makes the output retain data from the previous read. A HIGH indicates pass-through
behavior, wherein the data being written will appear immediately on the output. This signal is overridden
when the RAM is being read.
Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, WMODEB

should be tied to ground.

RESET
This active-low signal resets the control logic, forces the output hold state registers to zero, disables
reads and writes from the SRAM block, and clears the data hold registers when asserted. It does not
reset the contents of the memory array.
While the RESET signal is active, read and write operations are disabled. As with any asynchronous
reset signal, care must be taken not to assert it too close to the edges of active read and write clocks. 

ADDRA and ADDRB
These are used as read or write addresses, and they are 12 bits wide. When a depth of less than 4 k is
specified, the unused high-order bits must be grounded (Table 6-3 on page 155).

Table 6-2 • Allowable Aspect Ratio Settings for WIDTHA[1:0]

WIDTHA[1:0] WIDTHB[1:0] D×W

00 00 4k×1

01 01 2k×2

10 10 1k×4

11 11 512×9

Note: The aspect ratio settings are constant and cannot be changed on the fly.
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SRAM and FIFO Memories in Microsemi's Low Power Flash Devices
Software Support
The SmartGen core generator is the easiest way to select and configure the memory blocks
(Figure 6-12). SmartGen automatically selects the proper memory block type and aspect ratio, and
cascades the memory blocks based on the user's selection. SmartGen also configures any additional
signals that may require tie-off. 
SmartGen will attempt to use the minimum number of blocks required to implement the desired memory.
When cascading, SmartGen will configure the memory for width before configuring for depth. For
example, if the user requests a 256×8 FIFO, SmartGen will use a 512×9 FIFO configuration, not 256×18. 

Figure 6-12 • SmartGen Core Generator Interface 
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I/O Structures in IGLOO and ProASIC3 Devices
I/O Features 
Low power flash devices support multiple I/O features that make board design easier. For example, an
I/O feature like Schmitt Trigger in the ProASIC3E input buffer saves the board space that would be used
by an external Schmitt trigger for a slow or noisy input signal. These features are also programmable for
each I/O, which in turn gives flexibility in interfacing with other components. The following is a detailed
description of all available features in low power flash devices.

I/O Programmable Features
Low power flash devices offer many flexible I/O features to support a wide variety of board designs.
Some of the features are programmable, with a range for selection. Table 7-7 lists programmable I/O
features and their ranges.

Hot-Swap Support
A pull-up clamp diode must not be present in the I/O circuitry if the hot-swap feature is used. The 3.3 V
PCI standard requires a pull-up clamp diode on the I/O, so it cannot be selected if hot-swap capability is
required. The A3P030 device does not support 3.3 V PCI, so it is the only device in the ProASIC3 family
that supports the hot-swap feature. All devices in the ProASIC3E family are hot-swappable. All standards
except LVCMOS 2.5/5.0 V and 3.3 V PCI/PCI-X support the hot-swap feature.
The hot-swap feature appears as a read-only check box in the I/O Attribute Editor that shows whether an
I/O is hot-swappable or not. Refer to the "Power-Up/-Down Behavior of Low Power Flash Devices"
section on page 373 for details on hot-swapping. 
Hot-swapping (also called hot-plugging) is the operation of hot insertion or hot removal of a card in a
powered-up system. The levels of hot-swap support and examples of related applications are described
in Table 7-8 on page 189 to Table 7-11 on page 190. The I/Os also need to be configured in hot-insertion
mode if hot-plugging compliance is required. The AGL030 and A3P030 devices have an I/O structure
that allows the support of Level 3 and Level 4 hot-swap with only two levels of staging. 

Table 7-7 • Programmable I/O Features (user control via I/O Attribute Editor)

Feature1 Description Range

Slew Control Output slew rate HIGH, LOW

Output Drive (mA) Output drive strength 2, 4, 6, 8, 12, 16, 24

Skew Control Output tristate enable delay option ON, OFF

Resistor Pull Resistor pull circuit Up, Down, None

Input Delay2 Input delay OFF, 0–7

Schmitt Trigger Schmitt trigger for input only ON, OFF

Notes:
1. Limitations of these features with respect to different devices are discussed in later sections.
2. Programmable input delay is applicable only to ProASIC3EL and RT ProASIC3 devices.
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I/O Software Control in Low Power Flash Devices
I/O Attribute Constraint

set_io Sets the attributes of an
I/O

set_io portname
[-pinname value]
[-fixed value]
[-iostd value]
[-out_drive value]
[-slew value]
[-res_pull value]
[-schmitt_trigger value]
[-in_delay value]
[-skew value]
[-out_load value]
[-register value]

set_io IN2 -pinname 28
-fixed yes -iostd LVCMOS15
-out_drive 12 -slew high
-RES_PULL None
-SCHMITT_TRIGGER Off
-IN_DELAY Off –skew off
-REGISTER No 

If the I/O macro is generic
(e.g., INBUF) or technology-
specific (INBUF_LVCMOS25),
then all I/O attributes can be
assigned using this constraint.
If the netlist has an I/O macro
that specifies one of its
attributes, that attribute
cannot be changed using this
constraint, though other
attributes can be changed. 
Example: OUTBUF_S_24
(low slew, output drive 24 mA)
Slew and output drive cannot
be changed.

I/O Region Placement Constraints

define_region Defines either a
rectangular region or a
rectilinear region

define_region
-name [region_name]
-type [region_type] x1 y1 x2 y2

define_region -name test
-type inclusive 0 15 2 29

If any number of I/Os must be
assigned to a particular I/O
region, such a region can be
created with this constraint. 

assign_region Assigns a set of macros
to a specified region

assign_region [region name]
[macro_name...]

assign_region test U12

This constraint assigns I/O
macros to the I/O regions.
When assigning an I/O macro,
PDC naming conventions
must be followed if the macro
name contains special
characters; e.g., if the macro
name is \\$1I19\\, the correct
use of escape characters is
\\\\\$1I19\\\\.

Table 9-3 • PDC I/O Constraints (continued)

Command Action Example Comment

Note: Refer to the Libero SoC User’s Guide for detailed rules on PDC naming and syntax conventions.
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I/O Software Control in Low Power Flash Devices
Assigning VREF Pins for a Bank
The user can use default pins for VREF. In this case, select the Use default pins for VREFs check box
(Figure 9-13). This option guarantees full VREF coverage of the bank. The equivalent PDC command is
as follows:
set_vref_default [bank name]

To be able to choose VREF pins, adequate VREF pins must be created to allow legal placement of the
compatible voltage-referenced I/Os. 
To assign VREF pins manually, the PDC command is as follows:
set_vref –bank [bank name] [package pin numbers]

For ChipPlanner/PinEditor to show the range of a VREF pin, perform the following steps:
1. Assign VCCI to a bank using MVN > Edit > I/O Bank Settings. 
2. Open ChipPlanner. Zoom in on an I/O package pin in that bank.
3. Highlight the pin and then right-click. Choose Use Pin for VREF.

Figure 9-13 • Selecting VREF Voltage for the I/O Bank

VREF for GTL+ 3.3 V
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ProASIC3L FPGA Fabric User’s Guide
4. Right-click and then choose Highlight VREF range. All the pins covered by that VREF pin will be
highlighted (Figure 9-14).  

Using PinEditor or ChipPlanner, VREF pins can also be assigned (Figure 9-15).  

To unassign a VREF pin:
1. Select the pin to unassign.
2. Right-click and choose Use Pin for VREF. The check mark next to the command disappears. The

VREF pin is now a regular pin.
Resetting the pin may result in unassigning I/O cores, even if they are locked. In this case, a warning
message appears so you can cancel the operation.
After you assign the VREF pins, right-click a VREF pin and choose Highlight VREF Range to see how
many I/Os are covered by that pin. To unhighlight the range, choose Unhighlight All from the Edit
menu.

Figure 9-14 • VREF Range

Figure 9-15 • Assigning VREF from PinEditor
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DDR for Microsemi’s Low Power Flash Devices
DDR Support in Flash-Based Devices 
The flash FPGAs listed in Table 10-1 support the DDR feature and the functions described in this
document. 

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 10-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 10-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 10-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Fusion Fusion Mixed signal FPGA integrating ProASIC3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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DDR for Microsemi’s Low Power Flash Devices
DDR Output Register

Verilog
module DDR_OutBuf_SSTL3_I(DataR,DataF,CLR,CLK,PAD);

input   DataR, DataF, CLR, CLK;
output  PAD;

wire Q, VCC;

VCC VCC_1_net(.Y(VCC));
DDR_OUT DDR_OUT_0_inst(.DR(DataR),.DF(DataF),.CLK(CLK),.CLR(CLR),.Q(Q));
OUTBUF_SSTL3_I OUTBUF_SSTL3_I_0_inst(.D(Q),.PAD(PAD));

endmodule

VHDL
library ieee;
use ieee.std_logic_1164.all;
library proasic3; use proasic3.all;

entity DDR_OutBuf_SSTL3_I is 
port(DataR, DataF, CLR, CLK : in std_logic;  PAD : out std_logic) ;

end DDR_OutBuf_SSTL3_I;

architecture DEF_ARCH of  DDR_OutBuf_SSTL3_I is

component DDR_OUT
port(DR, DF, CLK, CLR : in std_logic := 'U'; Q : out std_logic) ;

end component;

component OUTBUF_SSTL3_I
port(D : in std_logic := 'U'; PAD : out std_logic) ;

end component;

component VCC
port( Y : out std_logic);

end component;

signal Q, VCC_1_net : std_logic ;

begin

VCC_2_net : VCC port map(Y => VCC_1_net);
DDR_OUT_0_inst : DDR_OUT
port map(DR => DataR, DF => DataF, CLK => CLK, CLR => CLR, Q => Q);
OUTBUF_SSTL3_I_0_inst : OUTBUF_SSTL3_I
port map(D => Q, PAD => PAD);

end DEF_ARCH;

Figure 10-6 • DDR Output Register (SSTL3 Class I)
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ProASIC3L FPGA Fabric User’s Guide
Security Architecture
Fusion, IGLOO, and ProASIC3 devices have been designed with the most comprehensive programming
logic design security in the industry. In the architecture of these devices, security has been designed into
the very fabric. The flash cells are located beneath seven metal layers, and the use of many device
design and layout techniques makes invasive attacks difficult. Since device layers cannot be removed
without disturbing the charge on the programmed (or erased) flash gates, devices cannot be easily
deconstructed to decode the design. Low power flash devices are unique in being reprogrammable and
having inherent resistance to both invasive and noninvasive attacks on valuable IP. Secure, remote ISP
is now possible with AES encryption capability for the programming file during electronic transfer.
Figure 12-2 shows a view of the AES decryption core inside an IGLOO device; Figure 12-3 on page 304
shows the AES decryption core inside a Fusion device. The AES core is used to decrypt the encrypted
programming file when programming.

Note: *ISP AES Decryption is not supported by 30 k gate devices and smaller. For details of other architecture features
by device, refer to the appropriate family datasheet. 

Figure 12-2 • Block Representation of the AES Decryption Core in IGLOO and ProASIC3 Devices 
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Application 1: Trusted Environment 
As illustrated in Figure 12-7, this application allows the programming of devices at design locations
where research and development take place. Therefore, encryption is not necessary and is optional to
the user. This is often a secure way to protect the design, since the design program files are not sent
elsewhere. In situations where production programming is not available at the design location,
programming centers (such as Microsemi In-House Programming) provide a way of programming
designs at an alternative, secure, and trusted location. In this scenario, the user generates a STAPL
programming file from the Designer software in plaintext format, containing information on the entire
design or the portion of the design to be programmed. The user can choose to employ the FlashLock
Pass Key feature with the design. Once the design is programmed to unprogrammed devices, the design
is protected by this FlashLock Pass Key. If no future programming is needed, the user can consider
permanently securing the IGLOO and ProASIC3 device, as discussed in the "Permanent FlashLock"
section on page 307.

Application 2: Nontrusted Environment—Unsecured Location
Often, programming of devices is not performed in the same location as actual design implementation, to
reduce manufacturing cost. Overseas programming centers and contract manufacturers are examples of
this scenario. 
To achieve security in this case, the AES key and the FlashLock Pass Key can be initially programmed
in-house (trusted environment). This is done by generating a programming file with only the security
settings and no design contents. The design FPGA core, FlashROM, and (for Fusion) FB contents are
generated in a separate programming file. This programming file must be set with the same AES key that
was used to program to the device previously so the device will correctly decrypt this encrypted
programming file. As a result, the encrypted design content programming file can be safely sent off-site
to nontrusted programming locations for design programming. Figure 12-7 shows a more detailed flow
for this application.

Notes:
1. Programmed portion indicated with dark gray.
2. Programming of FBs applies to Fusion only.
Figure 12-7 • Application 2: Device Programming in a Nontrusted Environment 
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Generating Programming Files

Generation of the Programming File in a Trusted Environment—
Application 1
As discussed in the "Application 1: Trusted Environment" section on page 309, in a trusted environment,
the user can choose to program the device with plaintext bitstream content. It is possible to use plaintext
for programming even when the FlashLock Pass Key option has been selected. In this application, it is
not necessary to employ AES encryption protection. For AES encryption settings, refer to the next
sections.
The generated programming file will include the security setting (if selected) and the plaintext
programming file content for the FPGA array, FlashROM, and/or FBs. These options are indicated in
Table 12-2 and Table 12-3.

For this scenario, generate the programming file as follows:
1. Select the Silicon features to be programmed (Security Settings, FPGA Array, FlashROM,

Flash Memory Blocks), as shown in Figure 12-10 on page 314 and Figure 12-11 on page 314.
Click Next.
If Security Settings is selected (i.e., the FlashLock security Pass Key feature), an additional
dialog will be displayed to prompt you to select the security level setting. If no security setting is
selected, you will be directed to Step 3.

Table 12-2 • IGLOO and ProASIC3 Plaintext Security Options, No AES 

Security Protection FlashROM Only FPGA Core Only
Both FlashROM 

and FPGA
No AES / no FlashLock ✓ ✓ ✓

FlashLock only ✓ ✓ ✓

AES and FlashLock – – –

Table 12-3 • Fusion Plaintext Security Options
Security Protection FlashROM Only FPGA Core Only FB Core Only All
No AES / no FlashLock ✓ ✓ ✓ ✓

FlashLock ✓ ✓ ✓ ✓

AES and FlashLock – – – –

Note: For all instructions, the programming of Flash Blocks refers to Fusion only.
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14 – Core Voltage Switching Circuit for IGLOO and 
ProASIC3L In-System Programming

Introduction
The IGLOO® and ProASIC®3L families offer devices that can be powered by either 1.5 V or, in the case
of V2 devices, a core supply voltage anywhere in the range of 1.2 V to 1.5 V, in 50 mV increments.
Since IGLOO and ProASIC3L devices are flash-based, they can be programmed and reprogrammed
multiple times in-system using Microsemi FlashPro3. FlashPro3 uses the JTAG standard interface (IEEE
1149.1) and STAPL file (defined in JESD 71 to support programming of programmable devices using
IEEE 1149.1) for in-system configuration/programming (IEEE 1532) of a device. Programming can also
be executed by other methods, such as an embedded microcontroller that follows the same standards
above.
All IGLOO and ProASIC3L devices must be programmed with the VCC core voltage at 1.5 V. Therefore,
applications using IGLOO or ProASIC3L devices powered by a 1.2 V supply must switch the core supply
to 1.5 V for in-system programming.
The purpose of this document is to describe an easy-to-use and cost-effective solution for switching the
core supply voltage from 1.2 V to 1.5 V during in-system programming for IGLOO and ProASIC3L
devices.
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Programming Algorithm

JTAG Interface
The low power flash families are fully compliant with the IEEE 1149.1 (JTAG) standard. They support all
the mandatory boundary scan instructions (EXTEST, SAMPLE/PRELOAD, and BYPASS) as well as six
optional public instructions (USERCODE, IDCODE, HIGHZ, and CLAMP). 

IEEE 1532
The low power flash families are also fully compliant with the IEEE 1532 programming standard. The
IEEE 1532 standard adds programming instructions and associated data registers to devices that comply
with the IEEE 1149.1 standard (JTAG). These instructions and registers extend the capabilities of the
IEEE 1149.1 standard such that the Test Access Port (TAP) can be used for configuration activities. The
IEEE 1532 standard greatly simplifies the programming algorithm, reducing the amount of time needed
to implement microprocessor ISP.

Implementation Overview
To implement device programming with a microprocessor, the user should first download the C-based
STAPL player or DirectC code from the Microsemi SoC Products Group website. Refer to the website for
future updates regarding the STAPL player and DirectC code. 

http://www.microsemi.com/soc/download/program_debug/stapl/default.aspx
http://www.microsemi.com/soc/download/program_debug/directc/default.aspx

Using the easy-to-follow user's guide, create the low-level application programming interface (API) to
provide the necessary basic functions. These API functions act as the interface between the
programming software and the actual hardware (Figure 15-2). 

The API is then linked with the STAPL player or DirectC and compiled using the microprocessor's
compiler. Once the entire code is compiled, the user must download the resulting binary into the MCU
system's program memory (such as ROM, EEPROM, or flash). The system is now ready for
programming.
To program a design into the FPGA, the user creates a bitstream or STAPL file using the Microsemi
Designer software, downloads it into the MCU system's volatile memory, and activates the stored
programming binary file (Figure 15-3 on page 352). Once the programming is completed, the bitstream
or STAPL file can be removed from the system, as the configuration profile is stored in the flash FPGA
fabric and does not need to be reloaded at every system power-on.

Figure 15-2 • Device Programming Code Relationship
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STAPL vs. DirectC
Programming the low power flash devices is performed using DirectC or the STAPL player. Both tools
use the STAPL file as an input. DirectC is a compiled language, whereas STAPL is an interpreted
language. Microprocessors will be able to load the FPGA using DirectC much more quickly than STAPL.
This speed advantage becomes more apparent when lower clock speeds of 8- or 16-bit microprocessors
are used. DirectC also requires less memory than STAPL, since the programming algorithm is directly
implemented. STAPL does have one advantage over DirectC—the ability to upgrade. When a new
programming algorithm is required, the STAPL user simply needs to regenerate a STAPL file using the
latest version of the Designer software and download it to the system. The DirectC user must download
the latest version of DirectC from Microsemi, compile everything, and download the result into the system
(Figure 15-4).

Figure 15-4 • STAPL vs. DirectC
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Brownout Voltage
Brownout is a condition in which the voltage supplies are lower than normal, causing the device to 
malfunction as a result of insufficient power. In general, Microsemi does not guarantee the functionality of 
the design inside the flash FPGA if voltage supplies are below their minimum recommended operating 
condition. Microsemi has performed measurements to characterize the brownout levels of FPGA power 
supplies. Refer to Table 18-3 for device-specific brownout deactivation levels. For the purpose of 
characterization, a direct path from the device input to output is monitored while voltage supplies are 
lowered gradually. The brownout point is defined as the voltage level at which the output stops following 
the input. Characterization tests performed on several IGLOO, ProASIC3L, and ProASIC3 devices in 
typical operating conditions showed the brownout voltage levels to be within the specification. 
During device power-down, the device I/Os become tristated once the first supply in the power-down 
sequence drops below its brownout deactivation voltage. 

PLL Behavior at Brownout Condition
When PLL power supply voltage and/or VCC levels drop below the VCC brownout levels mentioned 
above for 1.5 V and 1.2 V devices, the PLL output lock signal goes LOW and/or the output clock is lost. 
The following sections explain PLL behavior during and after the brownout condition.

VCCPLL and VCC Tied Together 
In this condition, both VCC and VCCPLL drop below the 0.75 V (± 0.25 V or ± 0.2 V) brownout level. 
During the brownout recovery, once VCCPLL and VCC reach the activation point (0.85 ± 0.25 V or 
± 0.2 V) again, the PLL output lock signal may still remain LOW with the PLL output clock signal toggling. 
If this condition occurs, there are two ways to recover the PLL output lock signal:

1. Cycle the power supplies of the PLL (power off and on) by using the PLL POWERDOWN signal.
2. Turn off the input reference clock to the PLL and then turn it back on.

Only VCCPLL Is at Brownout 
In this case, only VCCPLL drops below the 0.75 V (± 0.25 V or ± 0.2 V) brownout level and the VCC 
supply remains at nominal recommended operating voltage (1.5 V ± 0.075 V for 1.5 V devices and 1.2 V 
± 0.06 V for 1.2 V devices). In this condition, the PLL behavior after brownout recovery is similar to initial 
power-up condition, and the PLL will regain lock automatically after VCCPLL is ramped up above the 
activation level (0.85 ± 0.25 V or ± 0.2 V). No intervention is necessary in this case.

Only VCC Is at Brownout
In this condition, VCC drops below the 0.75 V (± 0.25 V or ± 0.2 V) brownout level and VCCPLL remains 
at nominal recommended operating voltage (1.5 V ± 0.075 V for 1.5 V devices and 1.2 V ± 0.06 V for 
1.2 V devices). During the brownout recovery, once VCC reaches the activation point again (0.85 ± 
0.25 V or ± 0.2 V), the PLL output lock signal may still remain LOW with the PLL output clock signal 
toggling. If this condition occurs, there are two ways to recover the PLL output lock signal: 

1. Cycle the power supplies of the PLL (power off and on) by using the PLL POWERDOWN signal.
2. Turn off the input reference clock to the PLL and then turn it back on.

It is important to note that Microsemi recommends using a monotonic power supply or voltage regulator 
to ensure proper power-up behavior. 

Table 18-3 • Brownout Deactivation Levels for VCC and VCCI

Devices
VCC Brownout 

Deactivation Level (V)
VCCI Brownout 

Deactivation Level (V)

ProASIC3, ProASIC3 nano, IGLOO, IGLOO nano, 
IGLOO PLUS and ProASIC3L devices running at 
VCC = 1.5 V

0.75 V ± 0.25 V 0.8 V ± 0.3 V

IGLOO, IGLOO nano, IGLOO PLUS, and 
ProASIC3L devices running at VCC = 1.2 V

0.75 V ± 0.2 V 0.8 V ± 0.15 V
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