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Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
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their reliability and ability to handle complex algorithms
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Common Subcategories of Embedded -
FPGAs
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of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
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meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
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offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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FPGA Array Architecture in Low Power Flash Devices
Array Coordinates
During many place-and-route operations in the Microsemi Designer software tool, it is possible to set
constraints that require array coordinates. Table 1-2 provides array coordinates of core cells and memory
blocks for IGLOO and ProASIC3 devices. Table 1-3 provides the information for IGLOO PLUS devices.
Table 1-4 on page 17 provides the information for IGLOO nano and ProASIC3 nano devices. The array
coordinates are measured from the lower left (0, 0). They can be used in region constraints for specific
logic groups/blocks, designated by a wildcard, and can contain core cells, memories, and I/Os.
I/O and cell coordinates are used for placement constraints. Two coordinate systems are needed
because there is not a one-to-one correspondence between I/O cells and core cells. In addition, the I/O
coordinate system changes depending on the die/package combination. It is not listed in Table 1-2. The
Designer ChipPlanner tool provides the array coordinates of all I/O locations. I/O and cell coordinates are
used for placement constraints. However, I/O placement is easier by package pin assignment. 
Figure 1-9 on page 17 illustrates the array coordinates of a 600 k gate device. For more information on
how to use array coordinates for region/placement constraints, see the Designer User's Guide or online
help (available in the software) for software tools.

Table 1-2 • IGLOO and ProASIC3 Array Coordinates

Device

VersaTiles Memory Rows Entire Die

Min. Max. Bottom Top Min. Max.

IGLOO
ProASIC3/
ProASIC3L x y x y (x, y) (x, y) (x, y) (x, y)

AGL015 A3P015 3 2 34 13 None None (0, 0) (37, 15)

AGL030 A3P030 3 3 66 13 None None (0, 0) (69, 15)

AGL060 A3P060 3 2 66 25 None (3, 26) (0, 0) (69, 29)

AGL125 A3P125 3 2 130 25 None (3, 26) (0, 0) (133, 29)

AGL250 A3P250/L 3 2 130 49 None (3, 50) (0, 0) (133, 53)

AGL400 A3P400 3 2 194 49 None (3, 50) (0, 0) (197, 53)

AGL600 A3P600/L 3 4 194 75 (3, 2) (3, 76) (0, 0) (197, 79)

AGL1000 A3P1000/L 3 4 258 99 (3, 2) (3, 100) (0, 0) (261, 103)

AGLE600 A3PE600/L,
RT3PE600L

3 4 194 75 (3, 2) (3, 76) (0, 0) (197, 79)

A3PE1500 3 4 322 123 (3, 2) (3, 124) (0, 0) (325, 127)

AGLE3000 A3PE3000/L,
RT3PE3000L

3 6 450 173 (3, 2) 
or 

(3, 4) 

(3, 174) 
or 

(3, 176)

(0, 0) (453, 179)

Table 1-3 • IGLOO PLUS Array Coordinates

Device

VersaTiles Memory Rows Entire Die

Min. Max. Bottom Top Min. Max.

IGLOO PLUS x y x y (x, y) (x, y) (x, y) (x, y)

AGLP030 2 3 67 13 None None (0, 0) (69, 15)

AGLP060 2 2 67 25 None (3, 26) (0, 0) (69, 29)

AGLP125 2 2 131 25 None (3, 26) (0, 0) (133, 29)
16 Revision 4
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ProASIC3L FPGA Fabric User’s Guide
Figure 2-3 • Flash*Freeze Mode Type 2 – Controlled by Flash*Freeze Pin and Internal Logic (LSICC signal)

Figure 2-4 • Flash*Freeze Mode Type 2 – Timing Diagram
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Table 3-3 • Quadrant Global Pin Name 

I/O Type Beginning of I/O Name Notes

Single-Ended GAAO/IOuxwByVz
GAA1/IOuxwByVz
GAA2/IOuxwByVz

Only one of the I/Os can be directly connected to a
quadrant global at a time

GABO/IOuxwByVz
GAB1/IOuxwByVz
GAB2/IOuxwByVz

Only one of the I/Os can be directly connected to a
quadrant global at a time.

GAC0/IOuxwByVz
GAC1/IOuxwByVz
GAC2/IOuxwByVz

Only one of the I/Os can be directly connected to a
quadrant global at a time.

GBAO/IOuxwByVz
GBA1/IOuxwByVz
GBA2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GBBO/IOuxwByVz
GBB1/IOuxwByVz
GBB2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GBC0/IOuxwByVz
GBC1/IOuxwByVz
GBC2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GDAO/IOuxwByVz
GDA1/IOuxwByVz
GDA2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GDBO/IOuxwByVz
GDB1/IOuxwByVz
GDB2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GDC0/IOuxwByVz
GDC1/IOuxwByVz
GDC2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GEAO/IOuxwByVz
GEA1/IOuxwByVz
GEA2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GEBO/IOuxwByVz
GEB1/IOuxwByVz
GEB2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

GEC0/IOuxwByVz
GEC1/IOuxwByVz
GEC2/IOuxwByVz

Only one of the I/Os can be directly connected to a global
at a time.

Note: Only one of the I/Os can be directly connected to a quadrant at a time. 
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Spine Access
The physical location of each spine is identified by the letter T (top) or B (bottom) and an accompanying
number (Tn or Bn). The number n indicates the horizontal location of the spine; 1 refers to the first spine
on the left side of the die. Since there are six chip spines in each spine tree, there are up to six spines
available for each combination of T (or B) and n (for example, six T1 spines). Similarly, there are three
quadrant spines available for each combination of T (or B) and n (for example, four T1 spines), as shown
in Figure 3-7.

A spine is also called a local clock network, and is accessed by the dedicated global MUX architecture.
These MUXes define how a particular spine is driven. Refer to Figure 3-8 on page 60 for the global MUX
architecture. The MUXes for each chip global spine are located in the middle of the die. Access to the top
and bottom chip global spine is available from the middle of the die. There is no control dependency
between the top and bottom spines. If a top spine, T1, of a chip global network is assigned to a net, B1 is
not wasted and can be used by the global clock network. The signal assigned only to the top or bottom
spine cannot access the middle two rows of the architecture. However, if a spine is using the top and
bottom at the same time (T1 and B1, for instance), the previous restriction is lifted. 
The MUXes for each quadrant global spine are located in the north and south sides of the die. Access to
the top and bottom quadrant global spines is available from the north and south sides of the die. Since
the MUXes for quadrant spines are located in the north and south sides of the die, you should not try to
drive T1 and B1 quadrant spines from the same signal. 

Figure 3-7 • Chip Global Aggregation
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You can use the syn_global_buffers attribute in Synplify to specify a maximum number of global macros
to be inserted in the netlist. This can also be used to restrict the number of global buffers inserted. In the
Synplicity 8.1 version or newer, a new attribute, syn_global_minfanout, has been added for low power
flash devices. This enables you to promote only the high-fanout signal to global. However, be aware that
you can only have six signals assigned to chip global networks, and the rest of the global signals should
be assigned to quadrant global networks. So, if the netlist has 18 global macros, the remaining 12 global
macros should have fanout that allows the instances driven by these globals to be placed inside a
quadrant.

Global Promotion and Demotion Using PDC
The HDL source file or schematic is the preferred place for defining which signals should be assigned to
a clock network using clock macro instantiation. This method is preferred because it is guaranteed to be
honored by the synthesis tools and Designer software and stop any replication on this net by the
synthesis tool. Note that a signal with fanout may have logic replication if it is not promoted to global
during synthesis. In that case, the user cannot promote that signal to global using PDC. See Synplicity
Help for details on using this attribute. To help you with global management, Designer allows you to
promote a signal to a global network or demote a global macro to a regular macro from the user netlist
using the compile options and/or PDC commands. 
The following are the PDC constraints you can use to promote a signal to a global network:

1. PDC syntax to promote a regular net to a chip global clock:
assign_global_clock –net netname

The following will happen during promotion of a regular signal to a global network:
– If the net is external, the net will be driven by a CLKINT inserted automatically by Compile. 
– The I/O macro will not be changed to CLKBUF macros. 
– If the net is an internal net, the net will be driven by a CLKINT inserted automatically by

Compile.
2. PDC syntax to promote a net to a quadrant clock: 

assign_local_clock –net netname –type quadrant UR|UL|LR|LL

This follows the same rule as the chip global clock network.
The following PDC command demotes the clock nets to regular nets.
unassign_global_clock -net netname

Note: OAVDIVRST exists only in the Fusion PLL.
Figure 3-15 • PLLs in Low Power Flash Devices 
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Clock Conditioning Circuits in Low Power Flash Devices and Mixed Signal FPGAs
Note: Fusion CCCs have additional source selections (RCOSC, XTAL).
Figure 4-9 • Illustration of Hardwired I/O (global input pins) Usage for IGLOO and ProASIC3 devices 60 k Gates 

and Larger

Figure 4-10 • Illustration of Hardwired I/O (global input pins) Usage for IGLOO and ProASIC3 devices 30 k 
Gates and Smaller
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difference will cause the VCO to increase its frequency until the output signal is phase-identical to the 
input after undergoing division. In other words, lock in both frequency and phase is achieved when the 
output frequency is M times the input. Thus, clock division in the feedback path results in multiplication at 
the output.
A similar argument can be made when the delay element is inserted into the feedback path. To achieve 
steady-state lock, the VCO output signal will be delayed by the input period less the feedback delay. For 
periodic signals, this is equivalent to time-advancing the output clock by the feedback delay. 
Another key parameter of a PLL system is the acquisition time. Acquisition time is the amount of time it 
takes for the PLL to achieve lock (i.e., phase-align the feedback signal with the input reference clock). 
For example, suppose there is no voltage applied to the VCO, allowing it to operate at its free-running 
frequency. Should an input reference clock suddenly appear, a lock would be established within the 
maximum acquisition time.

Functional Description
This section provides detailed descriptions of PLL block functionality: clock dividers and multipliers, clock 
delay adjustment, phase adjustment, and dynamic PLL configuration.

Clock Dividers and Multipliers
The PLL block contains five programmable dividers. Figure 4-20 shows a simplified PLL block. 

Figure 4-20 • PLL Block Diagram
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SRAM Features
RAM4K9 Macro
RAM4K9 is the dual-port configuration of the RAM block (Figure 6-4). The RAM4K9 nomenclature refers
to both the deepest possible configuration and the widest possible configuration the dual-port RAM block
can assume, and does not denote a possible memory aspect ratio. The RAM block can be configured to
the following aspect ratios: 4,096×1, 2,048×2, 1,024×4, and 512×9. RAM4K9 is fully synchronous and
has the following features:

• Two ports that allow fully independent reads and writes at different frequencies
• Selectable pipelined or nonpipelined read
• Active-low block enables for each port
• Toggle control between read and write mode for each port
• Active-low asynchronous reset
• Pass-through write data or hold existing data on output. In pass-through mode, the data written to

the write port will immediately appear on the read port.
• Designer software will automatically facilitate falling-edge clocks by bubble-pushing the inversion

to previous stages.

Signal Descriptions for RAM4K9
Note: Automotive ProASIC3 devices support single-port SRAM capabilities, or dual-port SRAM

only under specific conditions. Dual-port mode is supported if the clocks to the two SRAM
ports are the same and 180° out of phase (i.e., the port A clock is the inverse of the port B
clock). Since Libero SoC macro libraries support a dual-port macro only, certain
modifications must be made. These are detailed below. 

The following signals are used to configure the RAM4K9 memory element:

WIDTHA and WIDTHB
These signals enable the RAM to be configured in one of four allowable aspect ratios (Table 6-2 on
page 154).
Note: When using the SRAM in single-port mode for Automotive ProASIC3 devices, WIDTHB

should be tied to ground.

Note: For timing diagrams of the RAM signals, refer to the appropriate family datasheet.
Figure 6-4 • RAM4K9 Simplified Configuration
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IGLOO and ProASIC3
For boards and cards with three levels of staging, card power supplies must have time to reach their final
values before the I/Os are connected. Pay attention to the sizing of power supply decoupling capacitors
on the card to ensure that the power supplies are not overloaded with capacitance.
Cards with three levels of staging should have the following sequence: 

• Grounds
• Powers 
• I/Os and other pins

For Level 3 and Level 4 compliance with the 30K gate device, cards with two levels of staging should
have the following sequence:

• Grounds
• Powers, I/Os, and other pins

Cold-Sparing Support
Cold-sparing refers to the ability of a device to leave system data undisturbed when the system is
powered up, while the component itself is powered down, or when power supplies are floating.
The resistor value is calculated based on the decoupling capacitance on a given power supply. The RC
constant should be greater than 3 µs.
To remove resistor current during operation, it is suggested that the resistor be disconnected (e.g., with
an NMOS switch) from the power supply after the supply has reached its final value. Refer to the "Power-
Up/-Down Behavior of Low Power Flash Devices" section on page 373 for details on cold-sparing. 
Cold-sparing means that a subsystem with no power applied (usually a circuit board) is electrically
connected to the system that is in operation. This means that all input buffers of the subsystem must
present very high input impedance with no power applied so as not to disturb the operating portion of the
system.
The 30 k gate devices fully support cold-sparing, since the I/O clamp diode is always off (see Table 7-12 on
page 193). If the 30 k gate device is used in applications requiring cold-sparing, a discharge path from
the power supply to ground should be provided. This can be done with a discharge resistor or a switched
resistor. This is necessary because the 30K gate devices do not have built-in I/O clamp diodes. 
For other IGLOO and ProASIC3 devices, since the I/O clamp diode is always active, cold-sparing can be
accomplished either by employing a bus switch to isolate the device I/Os from the rest of the system or
by driving each I/O pin to 0 V. If the resistor is chosen, the resistor value must be calculated based on
decoupling capacitance on a given power supply on the board (this decoupling capacitance is in parallel
with the resistor). The RC time constant should ensure full discharge of supplies before cold-sparing
functionality is required. The resistor is necessary to ensure that the power pins are discharged to ground
every time there is an interruption of power to the device.
IGLOOe and ProASIC3E devices support cold-sparing for all I/O configurations. Standards, such as PCI,
that require I/O clamp diodes can also achieve cold-sparing compliance, since clamp diodes get
disconnected internally when the supplies are at 0 V.
When targeting low power applications, I/O cold-sparing may add additional current if a pin is configured
with either a pull-up or pull-down resistor and driven in the opposite direction. A small static current is
induced on each I/O pin when the pin is driven to a voltage opposite to the weak pull resistor. The current
is equal to the voltage drop across the input pin divided by the pull resistor. Refer to the "Detailed I/O DC
Characteristics" section of the appropriate family datasheet for the specific pull resistor value for the
corresponding I/O standard.
For example, assuming an LVTTL 3.3 V input pin is configured with a weak pull-up resistor, a current will
flow through the pull-up resistor if the input pin is driven LOW. For LVTTL 3.3 V, the pull-up resistor is
~45 kΩ, and the resulting current is equal to 3.3 V / 45 kΩ = 73 µA for the I/O pin. This is true also when
a weak pull-down is chosen and the input pin is driven HIGH. This current can be avoided by driving the
input LOW when a weak pull-down resistor is used and driving it HIGH when a weak pull-up resistor is
used.
This current draw can occur in the following cases:
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I/O Structures in IGLOO and ProASIC3 Devices
At the system level, the skew circuit can be used in applications where transmission activities on
bidirectional data lines need to be coordinated. This circuit, when selected, provides a timing margin that
can prevent bus contention and subsequent data loss and/or transmitter over-stress due to transmitter-
to-transmitter current shorts. Figure 7-16 presents an example of the skew circuit implementation in a
bidirectional communication system. Figure 7-17 on page 201 shows how bus contention is created, and
Figure 7-18 on page 201 shows how it can be avoided with the skew circuit.  

Figure 7-15 • Timing Diagram (option 2: enables skew circuit)
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Figure 7-16 • Example of Implementation of Skew Circuits in Bidirectional Transmission Systems Using 
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Figure 7-17 • Timing Diagram (bypasses skew circuit)

Figure 7-18 • Timing Diagram (with skew circuit selected)
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I/O Structures in IGLOOe and ProASIC3E Devices
5 V Output Tolerance
IGLOO and ProASIC3 I/Os must be set to 3.3 V LVTTL or 3.3 V LVCMOS mode to reliably drive 5 V TTL 
receivers. It is also critical that there be NO external I/O pull-up resistor to 5 V, since this resistor would 
pull the I/O pad voltage beyond the 3.6 V absolute maximum value and consequently cause damage to 
the I/O. 
When set to 3.3 V LVTTL or 3.3 V LVCMOS mode, the I/Os can directly drive signals into 5 V TTL 
receivers. In fact, VOL = 0.4 V and VOH = 2.4 V in both 3.3 V LVTTL and 3.3 V LVCMOS modes 
exceeds the VIL = 0.8 V and VIH = 2 V level requirements of 5 V TTL receivers. Therefore, level 1 and 
level 0 will be recognized correctly by 5 V TTL receivers.

Schmitt Trigger
A Schmitt trigger is a buffer used to convert a slow or noisy input signal into a clean one before passing it 
to the FPGA. Using Schmitt trigger buffers guarantees a fast, noise-free input signal to the FPGA.
ProASIC3E devices have Schmitt triggers built into their I/O circuitry. The Schmitt trigger is available for 
the LVTTL, LVCMOS, and 3.3 V PCI I/O standards.
This feature can be implemented by using a Physical Design Constraints (PDC) command (Table 8-6 on 
page 218) or by selecting a check box in the I/O Attribute Editor in Designer. The check box is cleared by 
default.

Selectable Skew between Output Buffer Enable and Disable Times
Low power flash devices have a configurable skew block in the output buffer circuitry that can be enabled 
to delay output buffer assertion without affecting deassertion time. Since this skew block is only available 
for the OE signal, the feature can be used in tristate and bidirectional buffers. A typical 1.2 ns delay is 
added to the OE signal to prevent potential bus contention. Refer to the appropriate family datasheet for 
detailed timing diagrams and descriptions.
The Skew feature is available for all I/O standards.
This feature can be implemented by using a PDC command (Table 8-6 on page 218) or by selecting a 
check box in the I/O Attribute Editor in Designer. The check box is cleared by default.
The configurable skew block is used to delay output buffer assertion (enable) without affecting 
deassertion (disable) time.

Figure 8-14 • Block Diagram of Output Enable Path
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I/O Software Control in Low Power Flash Devices
Implementing I/Os in Microsemi Software
Microsemi Libero SoC software is integrated with design entry tools such as the SmartGen macro
builder, the ViewDraw schematic entry tool, and an HDL editor. It is also integrated with the synthesis and
Designer tools. In this section, all necessary steps to implement the I/Os are discussed.

Design Entry
There are three ways to implement I/Os in a design:

1. Use the SmartGen macro builder to configure I/Os by generating specific I/O library macros and
then instantiating them in top-level code. This is especially useful when creating I/O bus
structures.

2. Use an I/O buffer cell in a schematic design.
3. Manually instantiate specific I/O macros in the top-level code.

If technology-specific macros, such as INBUF_LVCMOS33 and OUTBUF_PCI, are used in the HDL
code or schematic, the user will not be able to change the I/O standard later on in Designer. If generic I/O
macros are used, such as INBUF, OUTBUF, TRIBUF, CLKBUF, and BIBUF, the user can change the I/O
standard using the Designer I/O Attribute Editor tool. 

Using SmartGen for I/O Configuration
The SmartGen tool in Libero SoC provides a GUI-based method of configuring the I/O attributes. The
user can select certain I/O attributes while configuring the I/O macro in SmartGen. The steps to configure
an I/O macro with specific I/O attributes are as follows:

1. Open Libero SoC.
2. On the left-hand side of the Catalog View, select I/O, as shown in Figure 9-2. 

Figure 9-2 • SmartGen Catalog
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– The I/O standard of technology-specific I/O macros cannot be changed in the I/O Attribute
Editor (see Figure 9-6).

– The user MUST instantiate differential I/O macros (LVDS/LVPECL) in the design. This is the
only way to use these standards in the design (IGLOO nano and ProASIC3 nano devices do
not support differential inputs).

– To implement the DDR I/O function, the user must instantiate a DDR_REG or DDR_OUT
macro. This is the only way to use a DDR macro in the design.  

Performing Place-and-Route on the Design
The netlist created by the synthesis tool should now be imported into Designer and compiled. During
Compile, the user can specify the I/O placement and attributes by importing the PDC file. The user can
also specify the I/O placement and attributes using ChipPlanner and the I/O Attribute Editor under MVN.

Defining I/O Assignments in the PDC File
A PDC file is a Tcl script file specifying physical constraints. This file can be imported to and exported
from Designer. 
Table 9-3 shows I/O assignment constraints supported in the PDC file.

Figure 9-6 • Assigning a Different I/O Standard to the Generic I/O Macro

Table 9-3 • PDC I/O Constraints

Command Action Example Comment

I/O Banks Setting Constraints

set_iobank Sets the I/O supply
voltage, VCCI, and the
input reference voltage,
VREF, for the specified I/O
bank.

set_iobank bankname
[-vcci vcci_voltage]
[-vref vref_voltage]

set_iobank Bank7 -vcci 1.50 
-vref 0.75 

Must use in case of mixed I/O
voltage (VCCI) design

set_vref Assigns a VREF pin to a
bank. 

set_vref -bank [bankname]
[pinnum]

set_vref -bank Bank0
685 704 723 742 761

Must use if voltage-
referenced I/Os are used

set_vref_defaults Sets the default VREF
pins for the specified
bank. This command is
ignored if the bank does
not need a VREF pin. 

set_vref_defaults bankname

set_vref_defaults bank2

Note: Refer to the Libero SoC User’s Guide for detailed rules on PDC naming and syntax conventions.
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FlashROM and Programming Files
Each low power flash device has 1 kbit of on-chip, nonvolatile flash memory that can be accessed from
the FPGA core. This nonvolatile FlashROM is arranged in eight pages of 128 bits (Figure 13-3). Each
page can be programmed independently, with or without the 128-bit AES encryption. The FlashROM can
only be programmed via the IEEE 1532 JTAG port and cannot be programmed from the FPGA core. In
addition, during programming of the FlashROM, the FPGA core is powered down automatically by the
on-chip programming control logic.

When using FlashROM combined with AES, many subscription-based applications or device
serialization applications are possible. The FROM configurator found in the Libero SoC Catalog supports
easy management of the FlashROM contents, even over large numbers of devices. The FROM
configurator can support FlashROM contents that contain the following:

• Static values
• Random numbers
• Values read from a file
• Independent updates of each page

In addition, auto-incrementing of fields is possible. In applications where the FlashROM content is
different for each device, you have the option to generate a single STAPL file for all the devices or
individual serialization files for each device. For more information on how to generate the FlashROM
content for device serialization, refer to the "FlashROM in Microsemi’s Low Power Flash Devices" section
on page 133. 
Libero SoC includes a unique tool to support the generation and management of FlashROM and FPGA
programming files. This tool is called FlashPoint. 
Depending on the applications, designers can use the FlashPoint software to generate a STAPL file with
different contents. In each case, optional AES encryption and/or different security settings can be set. 
In Designer, when you click the Programming File icon, FlashPoint launches, and you can generate
STAPL file(s) with four different cases (Figure 13-4 on page 334). When the serialization feature is used
during the configuration of FlashROM, you can generate a single STAPL file that will program all the
devices or an individual STAPL file for each device. 
The following cases present the FPGA core and FlashROM programming file combinations that can be
used for different applications. In each case, you can set the optional security settings (FlashLock Pass
Key and/or AES Key) depending on the application.

1. A single STAPL file or multiple STAPL files with multiple FlashROM contents and the FPGA core
content. A single STAPL file will be generated if the device serialization feature is not used. You
can program the whole FlashROM or selectively program individual pages.

2. A single STAPL file for the FPGA core content

Figure 13-3 • FlashROM Architecture
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Boundary Scan in Low Power Flash Devices
Microsemi’s Flash Devices Support the JTAG Feature
The flash-based FPGAs listed in Table 16-1 support the JTAG feature and the functions described in this
document.

IGLOO Terminology
In documentation, the terms IGLOO series and IGLOO devices refer to all of the IGLOO devices as listed
in Table 16-1. Where the information applies to only one product line or limited devices, these exclusions
will be explicitly stated. 

ProASIC3 Terminology
In documentation, the terms ProASIC3 series and ProASIC3 devices refer to all of the ProASIC3 devices
as listed in Table 16-1. Where the information applies to only one product line or limited devices, these
exclusions will be explicitly stated.
To further understand the differences between the IGLOO and ProASIC3 devices, refer to the Industry’s
Lowest Power FPGAs Portfolio.

Table 16-1 • Flash-Based FPGAs

Series Family* Description

IGLOO IGLOO Ultra-low power 1.2 V to 1.5 V FPGAs with Flash*Freeze technology

IGLOOe Higher density IGLOO FPGAs with six PLLs and additional I/O standards

IGLOO nano The industry’s lowest-power, smallest-size solution

IGLOO PLUS IGLOO FPGAs with enhanced I/O capabilities

ProASIC3 ProASIC3 Low power, high-performance 1.5 V FPGAs

ProASIC3E Higher density ProASIC3 FPGAs with six PLLs and additional I/O standards

ProASIC3 nano Lowest-cost solution with enhanced I/O capabilities

ProASIC3L ProASIC3 FPGAs supporting 1.2 V to 1.5 V with Flash*Freeze technology

RT ProASIC3 Radiation-tolerant RT3PE600L and RT3PE3000L

Military ProASIC3/EL Military temperature A3PE600L, A3P1000, and A3PE3000L

Automotive ProASIC3 ProASIC3 FPGAs qualified for automotive applications 

Fusion Fusion Mixed signal FPGA integrating ProASIC®3 FPGA fabric, programmable
analog block, support for ARM® Cortex™-M1 soft processors, and flash
memory into a monolithic device

Note: *The device names link to the appropriate datasheet, including product brief, DC and switching characteristics,
and packaging information.
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SRAM Initialization
Users can also initialize embedded SRAMs of the low power flash devices. The initialization of the
embedded SRAM blocks of the design can be done using UJTAG tiles, where the initialization data is
imported using the TAP Controller. Similar functionality is available in ProASICPLUS devices using JTAG.
The guidelines for implementation and design examples are given in the RAM Initialization and ROM
Emulation in ProASICPLUS Devices application note.
SRAMs are volatile by nature; data is lost in the absence of power. Therefore, the initialization process
should be done at each power-up if necessary.

FlashROM Read-Back Using JTAG
The low power flash architecture contains a dedicated nonvolatile FlashROM block, which is formatted
into eight 128-bit pages. For more information on FlashROM, refer to the "FlashROM in Microsemi’s Low
Power Flash Devices" section on page 133. The contents of FlashROM are available to the VersaTiles
during normal operation through a read operation. As a result, the UJTAG macro can be used to provide
the FlashROM contents to the JTAG port during normal operation. Figure 17-7 illustrates a simple block
diagram of using UJTAG to read the contents of FlashROM during normal operation.
The FlashROM read address can be provided from outside the FPGA through the TDI input or can be
generated internally using the core logic. In either case, data serialization logic is required (Figure 17-7)
and should be designed using the VersaTile core logic. FlashROM contents are read asynchronously in
parallel from the flash memory and shifted out in a synchronous serial format to TDO. Shifting the serial
data out of the serialization block should be performed while the TAP is in UDRSH mode. The
coordination between TCK and the data shift procedure can be done using the TAP state machine by
monitoring UDRSH, UDRCAP, and UDRUPD.

Figure 17-7 • Block Diagram of Using UJTAG to Read FlashROM Contents
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Power-Up/-Down Behavior of Low Power Flash Devices
Related Documents

Datasheets
ProASIC3 Flash Family FPGAs
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ProASIC3E Flash Family FPGAs
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List of Changes
The following table lists critical changes that were made in each revision of the chapter.

Date Changes Page

v1.2
(December 2008)

IGLOO nano and ProASIC3 nano devices were added to the document as 
supported device types. 

v1.1
(October 2008)

The "Introduction" section was updated to add Military ProASIC3EL and RT 
ProASIC3 devices to the list of devices that can have inputs driven in while the 
device is not powered.

373

The "Flash Devices Support Power-Up Behavior" section was revised to include 
new families and make the information more concise.

374

The "Cold-Sparing" section was revised to add Military ProASIC3/EL and RT 
ProASIC3 devices to the lists of devices with and without cold-sparing support.

382

The "Hot-Swapping" section was revised to add Military ProASIC3/EL and RT 
ProASIC3 devices to the lists of devices with and without hot-swap support. 
AGL400 was added to the list of devices that do not support hot-swapping.

383

v1.0
(August 2008)

This document was revised, renamed, and assigned a new part number. It now 
includes data for the IGLOO and ProASIC3L families.

N/A

v1.3
(March 2008)

The "List of Changes" section was updated to include the three different I/O 
Structure handbook chapters.

384

v1.2
(February 2008)

The first sentence of the "PLL Behavior at Brownout Condition" section was 
updated to read, "When PLL power supply voltage and/or VCC levels drop below the 
VCC brownout levels (0.75 V ± 0.25 V), the PLL output lock signal goes low and/or 
the output clock is lost."

381

v1.1
(January 2008)

The "PLL Behavior at Brownout Condition" section was added. 381
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