
Microchip Technology - AT32UC3A3128S-CTUT Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 32-Bit Single-Core

Speed 66MHz

Connectivity EBI/EMI, I²C, IrDA, Memory Card, SPI, SSC, UART/USART, USB OTG

Peripherals Brown-out Detect/Reset, DMA, POR, WDT

Number of I/O 110

Program Memory Size 128KB (128K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 128K x 8

Voltage - Supply (Vcc/Vdd) 1.75V ~ 3.6V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 144-TFBGA

Supplier Device Package 144-FFBGA (11x11)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/at32uc3a3128s-ctut

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/at32uc3a3128s-ctut-4415357
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

7
32072SH–AVR32–10/2012

AT32UC3A3

Figure 3-2. LQFP144 Pinout

USB_VBUS
1

VDDIO
2

USB_VBIAS
3

GNDIO
4

DM
HS

5
DPHS

6
GNDIO

7
DM

FS
8

DPFS
9

VDDIO
10

PB08
11

PC05
12

PC04
13

PA30
14

PA02
15

PB10
16

PB09
17

PC02
18

PC03
19

GNDIO
20

VDDIO
21

PB04
22

PA29
23

PB03
24

PB02
25

PA27
26

PB01
27

PA28
28

PA31
29

PB00
30

PB11
31

PX16
32

PX13
33

PX12
34

PX19
35

PX40
36

PX1037
PX3538
PX4739
PX1540
PX4841
PX5342
PX4943
PX3644
PX3745
PX5446
GNDIO47
VDDIO48
PX0949
PX0850
PX3851
PX3952
PX0653
PX0754
PX0055
PX5956
PX5857
PX0558
PX0159
PX0460
PX3461
PX0262
PX0363
VDDIO64
GNDIO65
PX4466
PX1167
PX1468
PX4269
PX4570
PX4171
PX2272

TD
I

10
8

TC
K

10
7

RE
SE

T_
N

10
6

TD
O

10
5

TM
S

10
4

VD
DI

O
10

3
GN

DI
O

10
2

PA
15

10
1

PA
14

10
0

PC
01

99
PC

00
98

PX
31

97
PX

30
96

PX
33

95
PX

29
94

PX
32

93
PX

25
92

PX
28

91
PX

26
90

PX
27

89
PX

43
88

PX
52

87
PX

24
86

PX
23

85
PX

18
84

PX
17

83
GN

DI
O

82
VD

DI
O

81
PX

21
80

PX
55

79
PX

56
78

PX
51

77
PX

57
76

PX
50

75
PX

46
74

PX
20

73

PA21 109
PA22 110
PA23 111
PA24 112
PA20 113
PA19 114
PA18 115
PA17 116

GNDANA 117
VDDANA 118

PA25 119
PA26 120
PB05 121
PA00 122
PA01 123
PA05 124
PA03 125
PA04 126
PA06 127
PA16 128
PA13 129

VDDIO 130
GNDIO 131

PA12 132
PA07 133
PB06 134
PB07 135
PA11 136
PA08 137
PA10 138
PA09 139

GNDCORE 140
VDDCORE 141

VDDIN 142
VDDIN 143

GNDPLL 144

9
32072SH–AVR32–10/2012

AT32UC3A3

3.2 Peripheral Multiplexing on I/O lines

3.2.1 Multiplexed Signals

Each GPIO line can be assigned to one of the peripheral functions. The following table
describes the peripheral signals multiplexed to the GPIO lines.

Note that GPIO 44 is physically implemented in silicon but it must be kept unused and config-
ured in input mode.

Table 3-1. GPIO Controller Function Multiplexing

BGA

144

QFP

144

BGA

100 PIN

G

P

I

O Supply

PIN

Type
(2)

GPIO function

A B C D

G11 122 G8(1) PA00 0 VDDIO x3 USART0 - RTS TC0 - CLK1 SPI1 - NPCS[3]

G12 123 G10(1) PA01 1 VDDIO x1 USART0 - CTS TC0 - A1 USART2 - RTS

D8 15 E1(1) PA02 2 VDDIO x1 USART0 - CLK TC0 - B1 SPI0 - NPCS[0]

G10 125 F9 PA03 3 VDDIO x1 USART0 - RXD EIC - EXTINT[4] ABDAC - DATA[0]

F9 126 E9 PA04 4 VDDIO x1 USART0 - TXD EIC - EXTINT[5] ABDAC - DATAN[0]

F10 124 G9 PA05 5 VDDIO x1 USART1 - RXD TC1 - CLK0 USB - ID

F8 127 E8(1) PA06 6 VDDIO x1 USART1 - TXD TC1 - CLK1 USB - VBOF

E10 133 H10(1) PA07 7 VDDIO x1 SPI0 - NPCS[3] ABDAC - DATAN[0] USART1 - CLK

C11 137 F8 PA08 8 VDDIO x3 SPI0 - SPCK ABDAC - DATA[0] TC1 - B1

B12 139 D8 PA09 9 VDDIO x2 SPI0 - NPCS[0] EIC - EXTINT[6] TC1 - A1

C12 138 C10 PA10 10 VDDIO x2 SPI0 - MOSI USB - VBOF TC1 - B0

D10 136 C9 PA11 11 VDDIO x2 SPI0 - MISO USB - ID TC1 - A2

E12 132 G7(1) PA12 12 VDDIO x1 USART1 - CTS SPI0 - NPCS[2] TC1 - A0

F11 129 E8(1) PA13 13 VDDIO x1 USART1 - RTS SPI0 - NPCS[1] EIC - EXTINT[7]

J6 100 K7(1) PA14 14 VDDIO x1 SPI0 - NPCS[1] TWIMS0 - TWALM TWIMS1 - TWCK

J7 101 J7(1) PA15 15 VDDIO x1 MCI - CMD[1] SPI1 - SPCK TWIMS1 - TWD

F12 128 E7 PA16 16 VDDIO x1 MCI - DATA[11] SPI1 - MOSI TC1 - CLK2

H7 116 G10(1) PA17 17 VDDANA x1 MCI - DATA[10] SPI1 - NPCS[1] ADC - AD[7]

K8 115 G8(1) PA18 18 VDDANA x1 MCI - DATA[9] SPI1 - NPCS[2] ADC - AD[6]

J8 114 H10(1) PA19 19 VDDANA x1 MCI - DATA[8] SPI1 - MISO ADC - AD[5]

J9 113 H9(1) PA20 20 VDDANA x1 EIC - NMI SSC - RX_FRAME_SYNC ADC - AD[4]

H9 109 K10(1) PA21 21 VDDANA x1 ADC - AD[0] EIC - EXTINT[0] USB - ID

H10 110 H6(1) PA22 22 VDDANA x1 ADC - AD[1] EIC - EXTINT[1] USB - VBOF

G8 111 G6(1) PA23 23 VDDANA x1 ADC - AD[2] EIC - EXTINT[2] ABDAC - DATA[1]

G9 112 J10(1) PA24 24 VDDANA x1 ADC - AD[3] EIC - EXTINT[3] ABDAC - DATAN[1]

E9 119 G7(1) PA25 25 VDDIO x1 TWIMS0 - TWD TWIMS1 - TWALM USART1 - DCD

D9 120 F7(1)) PA26 26 VDDIO x1 TWIMS0 - TWCK USART2 - CTS USART1 - DSR

A4 26 A2 PA27 27 VDDIO x2 MCI - CLK SSC - RX_DATA USART3 - RTS MSI - SCLK

A3 28 A1 PA28 28 VDDIO x1 MCI - CMD[0] SSC - RX_CLOCK USART3 - CTS MSI - BS

A6 23 B4 PA29 29 VDDIO x1 MCI - DATA[0] USART3 - TXD TC0 - CLK0 MSI - DATA[0]

13
32072SH–AVR32–10/2012

AT32UC3A3

3.2.4 JTAG port connections

3.2.5 Nexus OCD AUX port connections
If the OCD trace system is enabled, the trace system will take control over a number of pins, irre-
spective of the GPIO configuration. Three differents OCD trace pin mappings are possible,
depending on the configuration of the OCD AXS register. For details, see the AVR32 UC Tech-
nical Reference Manual.

Table 3-4. JTAG Pinout

 TFBGA144 QFP144 VFBGA100 Pin name JTAG pin

K12 107 K9 TCK TCK

L12 108 K8 TDI TDI

J11 105 J8 TDO TDO

J10 104 H7 TMS TMS

Table 3-5. Nexus OCD AUX port connections

 Pin AXS=0 AXS=1 AXS=2

EVTI_N PB05 PA08 PX00

MDO[5] PA00 PX56 PX06

MDO[4] PA01 PX57 PX05

MDO[3] PA03 PX58 PX04

MDO[2] PA16 PA24 PX03

MDO[1] PA13 PA23 PX02

MDO[0] PA12 PA22 PX01

MSEO[1] PA10 PA07 PX08

MSEO[0] PA11 PX55 PX07

MCKO PB07 PX00 PB09

EVTO_N PB06 PB06 PB06

24
32072SH–AVR32–10/2012

AT32UC3A3

Figure 4-2. The AVR32UC Pipeline

4.3.2 AVR32A Microarchitecture Compliance
AVR32UC implements an AVR32A microarchitecture. The AVR32A microarchitecture is tar-
geted at cost-sensitive, lower-end applications l ike smaller microcontrollers. This
microarchitecture does not provide dedicated hardware registers for shadowing of register file
registers in interrupt contexts. Additionally, it does not provide hardware registers for the return
address registers and return status registers. Instead, all this information is stored on the system
stack. This saves chip area at the expense of slower interrupt handling.

Upon interrupt initiation, registers R8-R12 are automatically pushed to the system stack. These
registers are pushed regardless of the priority level of the pending interrupt. The return address
and status register are also automatically pushed to stack. The interrupt handler can therefore
use R8-R12 freely. Upon interrupt completion, the old R8-R12 registers and status register are
restored, and execution continues at the return address stored popped from stack.

The stack is also used to store the status register and return address for exceptions and scall.
Executing the rete or rets instruction at the completion of an exception or system call will pop
this status register and continue execution at the popped return address.

4.3.3 Java Support
AVR32UC does not provide Java hardware acceleration.

4.3.4 Memory Protection
The MPU allows the user to check all memory accesses for privilege violations. If an access is
attempted to an illegal memory address, the access is aborted and an exception is taken. The
MPU in AVR32UC is specified in the AVR32UC Technical Reference manual.

4.3.5 Unaligned Reference Handling
AVR32UC does not support unaligned accesses, except for doubleword accesses. AVR32UC is
able to perform word-aligned st.d and ld.d. Any other unaligned memory access will cause an
address exception. Doubleword-sized accesses with word-aligned pointers will automatically be
performed as two word-sized accesses.

IF ID ALU

MUL

Regf ile
w rite

Prefetch unit Decode unit

ALU unit

Multiply unit

Load-store
unitLS

Regf ile
Read

25
32072SH–AVR32–10/2012

AT32UC3A3

The following table shows the instructions with support for unaligned addresses. All other
instructions require aligned addresses.

4.3.6 Unimplemented Instructions
The following instructions are unimplemented in AVR32UC, and will cause an Unimplemented
Instruction Exception if executed:

• All SIMD instructions

• All coprocessor instructions if no coprocessors are present

• retj, incjosp, popjc, pushjc

• tlbr, tlbs, tlbw

• cache

4.3.7 CPU and Architecture Revision
Three major revisions of the AVR32UC CPU currently exist.

The Architecture Revision field in the CONFIG0 system register identifies which architecture
revision is implemented in a specific device.

AVR32UC CPU revision 3 is fully backward-compatible with revisions 1 and 2, ie. code compiled
for revision 1 or 2 is binary-compatible with revision 3 CPUs.

Table 4-1. Instructions with Unaligned Reference Support

Instruction Supported alignment

ld.d Word

st.d Word

26
32072SH–AVR32–10/2012

AT32UC3A3

4.4 Programming Model

4.4.1 Register File Configuration
The AVR32UC register file is shown below.

Figure 4-3. The AVR32UC Register File

4.4.2 Status Register Configuration
The Status Register (SR) is split into two halfwords, one upper and one lower, see Figure 4-4 on
page 26 and Figure 4-5 on page 27. The lower word contains the C, Z, N, V, and Q condition
code flags and the R, T, and L bits, while the upper halfword contains information about the
mode and state the processor executes in. Refer to the AVR32 Architecture Manual for details.

Figure 4-4. The Status Register High Halfword

Application

Bit 0

Supervisor

Bit 31

PC

SR

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4
R3

R1
R2

R0

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

INT0

SP_APP SP_SYS
R12
R11

R9
R10

R8

Exception NMIINT1 INT2 INT3

LRLR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SYS
LR

Secure

Bit 0Bit 31

PC

SR

R12

INT0PC

FINTPC
INT1PC

SMPC

R7

R5
R6

R4

R11

R9
R10

R8

R3

R1
R2

R0

SP_SEC
LR

SS_STATUS
SS_ADRF
SS_ADRR
SS_ADR0
SS_ADR1

SS_SP_SYS
SS_SP_APP

SS_RAR
SS_RSR

Bit 31

0 0 0

Bit 16

Interrupt Level 0 Mask
Interrupt Level 1 Mask

Interrupt Level 3 Mask
Interrupt Level 2 Mask

10 0 0 0 1 1 0 0 0 00 0

FE I0M GMM1- D M0 EM I2MDM - M2LC
1

Initial value

Bit nameI1M

Mode Bit 0
Mode Bit 1

-

Mode Bit 2
Reserved
Debug State

- I3M

Reserved

Exception Mask

Global Interrupt Mask

Debug State Mask

-

28
32072SH–AVR32–10/2012

AT32UC3A3

All interrupt levels are by default disabled when debug state is entered, but they can individually
be switched on by the monitor routine by clearing the respective mask bit in the status register.

Debug state can be entered as described in the AVR32UC Technical Reference Manual.

Debug state is exited by the retd instruction.

4.4.4 System Registers
The system registers are placed outside of the virtual memory space, and are only accessible
using the privileged mfsr and mtsr instructions. The table below lists the system registers speci-
fied in the AVR32 architecture, some of which are unused in AVR32UC. The programmer is
responsible for maintaining correct sequencing of any instructions following a mtsr instruction.
For detail on the system registers, refer to the AVR32UC Technical Reference Manual.

Table 4-3. System Registers

Reg # Address Name Function

0 0 SR Status Register

1 4 EVBA Exception Vector Base Address

2 8 ACBA Application Call Base Address

3 12 CPUCR CPU Control Register

4 16 ECR Exception Cause Register

5 20 RSR_SUP Unused in AVR32UC

6 24 RSR_INT0 Unused in AVR32UC

7 28 RSR_INT1 Unused in AVR32UC

8 32 RSR_INT2 Unused in AVR32UC

9 36 RSR_INT3 Unused in AVR32UC

10 40 RSR_EX Unused in AVR32UC

11 44 RSR_NMI Unused in AVR32UC

12 48 RSR_DBG Return Status Register for Debug mode

13 52 RAR_SUP Unused in AVR32UC

14 56 RAR_INT0 Unused in AVR32UC

15 60 RAR_INT1 Unused in AVR32UC

16 64 RAR_INT2 Unused in AVR32UC

17 68 RAR_INT3 Unused in AVR32UC

18 72 RAR_EX Unused in AVR32UC

19 76 RAR_NMI Unused in AVR32UC

20 80 RAR_DBG Return Address Register for Debug mode

21 84 JECR Unused in AVR32UC

22 88 JOSP Unused in AVR32UC

23 92 JAVA_LV0 Unused in AVR32UC

24 96 JAVA_LV1 Unused in AVR32UC

25 100 JAVA_LV2 Unused in AVR32UC

31
32072SH–AVR32–10/2012

AT32UC3A3

The user must also make sure that the system stack is large enough so that any event is able to
push the required registers to stack. If the system stack is full, and an event occurs, the system
will enter an UNDEFINED state.

4.5.2 Exceptions and Interrupt Requests
When an event other than scall or debug request is received by the core, the following actions
are performed atomically:

1. The pending event will not be accepted if it is masked. The I3M, I2M, I1M, I0M, EM, and
GM bits in the Status Register are used to mask different events. Not all events can be
masked. A few critical events (NMI, Unrecoverable Exception, TLB Multiple Hit, and
Bus Error) can not be masked. When an event is accepted, hardware automatically
sets the mask bits corresponding to all sources with equal or lower priority. This inhibits
acceptance of other events of the same or lower priority, except for the critical events
listed above. Software may choose to clear some or all of these bits after saving the
necessary state if other priority schemes are desired. It is the event source’s respons-
ability to ensure that their events are left pending until accepted by the CPU.

2. When a request is accepted, the Status Register and Program Counter of the current
context is stored to the system stack. If the event is an INT0, INT1, INT2, or INT3, reg-
isters R8-R12 and LR are also automatically stored to stack. Storing the Status
Register ensures that the core is returned to the previous execution mode when the
current event handling is completed. When exceptions occur, both the EM and GM bits
are set, and the application may manually enable nested exceptions if desired by clear-
ing the appropriate bit. Each exception handler has a dedicated handler address, and
this address uniquely identifies the exception source.

3. The Mode bits are set to reflect the priority of the accepted event, and the correct regis-
ter file bank is selected. The address of the event handler, as shown in Table 4-4, is
loaded into the Program Counter.

The execution of the event handler routine then continues from the effective address calculated.

The rete instruction signals the end of the event. When encountered, the Return Status Register
and Return Address Register are popped from the system stack and restored to the Status Reg-
ister and Program Counter. If the rete instruction returns from INT0, INT1, INT2, or INT3,
registers R8-R12 and LR are also popped from the system stack. The restored Status Register
contains information allowing the core to resume operation in the previous execution mode. This
concludes the event handling.

4.5.3 Supervisor Calls
The AVR32 instruction set provides a supervisor mode call instruction. The scall instruction is
designed so that privileged routines can be called from any context. This facilitates sharing of
code between different execution modes. The scall mechanism is designed so that a minimal
execution cycle overhead is experienced when performing supervisor routine calls from time-
critical event handlers.

The scall instruction behaves differently depending on which mode it is called from. The behav-
iour is detailed in the instruction set reference. In order to allow the scall routine to return to the
correct context, a return from supervisor call instruction, rets, is implemented. In the AVR32UC
CPU, scall and rets uses the system stack to store the return address and the status register.

4.5.4 Debug Requests
The AVR32 architecture defines a dedicated Debug mode. When a debug request is received by
the core, Debug mode is entered. Entry into Debug mode can be masked by the DM bit in the

44
32072SH–AVR32–10/2012

AT32UC3A3

7.5 Analog characteristics

7.5.1 ADC

7.5.2 BOD

Table 7-7 describes the values of the BODLEVEL field in the flash FGPFR register.

Table 7-8 describes the values of the BOD33.LEVEL field in the PM module

Table 7-5. Electrical Characteristics

Symbol Parameter Conditions Min. Typ. Max. Unit

VVDDANA Analog Power Supply 3.0 3.6 V

Table 7-6. Decoupling Requirements

Symbol Parameter Conditions Typ. Technology Unit

CVDDANA Power Supply Capacitor 100 NPO nF

Table 7-7. 1.8V BOD Level Values

Symbol Parameter Value Conditions Min. Typ. Max. Unit

BODLEVEL

00 1111b 1.79 V

01 0111b 1.70 V

01 1111b 1.61 V

10 0111b 1.52 V

Table 7-8. 3.3V BOD Level Values

Symbol Parameter Value Conditions Min. Typ. Max. Unit

BOD33LEVEL

Reset value 2.71 V

1011 2.27 V

1010 2.37 V

1001 2.46 V

1000 2.56 V

0111 2.66 V

0110 2.76 V

0101 2.86 V

0100 2.96 V

0011 3.06 V

0010 3.15 V

0001 3.25 V

0000 3.35 V

48
32072SH–AVR32–10/2012

AT32UC3A3

7.6 Power Consumption
The values in Table 7-12 and Table 7-13 on page 50 are measured values of power consump-
tion with operating conditions as follows:

•VDDIO = 3.3V

•TA = 25°C

•I/Os are configured in input, pull-up enabled.

Figure 7-6. Measurement Setup

These figures represent the power consumption measured on the power supplies

Internal
Voltage

Regulator

Amp0

VDDANA

VDDIO

VDDIN

VDDCORE

GNDPLL

GNDCORE

50
32072SH–AVR32–10/2012

AT32UC3A3

Table 7-13. Typical Cuurent Consumption by Peripheral

Peripheral Typ. Unit

ADC 7

µA/MHz

AES 80

ABDAC 10

DMACA 70

EBI 23

EIC 0.5

GPIO 37

INTC 3

MCI 40

MSI 10

PDCA 20

SDRAM 5

SMC 9

SPI 6

SSC 10

RTC 5

TC 8

TWIM 2

TWIS 2

USART 10

USBB 90

WDT 2

53
32072SH–AVR32–10/2012

AT32UC3A3

7.8.3 Main Oscillators

7.8.4 Phase Lock Loop (PLL0, PLL1)

7.8.5 USB Hi-Speed Phase Lock Loop

Table 7-19. Main Oscillators Characteristics

Symbol Parameter Conditions Min. Typ. Max. Unit

1/(tCPMAIN) Oscillator Frequency
External clock on XIN 50 MHz

Crystal 0.4 20 MHz

CL1, CL2 Internal Load Capacitance (CL1 = CL2) 7 pF

ESR Crystal Equivalent Series Resistance 75 Ω

Duty Cycle 40 50 60 %

tST Startup Time

f = 400 KHz
f = 8 MHz
f = 16 MHz
f = 20 MHz

25
4

1.4
1

ms

tCH XIN Clock High Half-period 0.4 tCP 0.6 tCP

tCL XIN Clock Low Half-period 0.4 tCP 0.6 tCP

CIN XIN Input Capacitance 7 pF

IOSC Current Consumption

Active mode at 400 KHz. Gain = G0
Active mode at 8 MHz. Gain = G1
Active mode at 16 MHz. Gain = G2
Active mode at 20 MHz. Gain = G3

30
45
95

205

µA

Table 7-20. PLL Characteristics

Symbol Parameter Conditions Min. Typ. Max. Unit

FOUT VCO Output Frequency 80 240 MHz

FIN Input Frequency (after input divider) 4 16 MHz

IPLL Current Consumption
Active mode (Fout=80 MHz) 250 µA

Active mode (Fout=240 MHz) 600 µA

Table 7-21. PLL Characteristics

Symbol Parameter Conditions Min. Typ. Max. Unit

FOUT VCO Output Frequency 480 MHz

FIN Input Frequency 12 MHz

Delta FIN

Input Frequency Accuracy (applicable
to Clock signal on XIN or to Quartz
tolerance)

-500 +500 ppm

IPLL Current Consumption Active mode @480MHz @1.8V 2.5 mA

59
32072SH–AVR32–10/2012

AT32UC3A3

Figure 7-7. SMC Signals for NCS Controlled Accesses.

SMC43 Data Out Valid before NWE Rising (nwe pulse length - 1) * tCPSMC - 1.2 ns

SMC44 Data Out Valid after NWE Rising 5 ns

SMC45 NWE Pulse Width nwe pulse length * tCPSMC - 0.9 ns

Table 7-34. SMC Write Signals with No Hold Settings (NWE Controlled only)

Symbol Parameter Min. Unit

NRD

NCS

D0 - D15

NWE

A2-A25

A0/A1/NBS[3:0]

SMC34 SMC35SMC10 SMC11

SMC16

SMC15

SMC22SMC21

SMC17

SMC18

SMC14
SMC13
SMC12

SMC18

SMC17

SMC16

SMC15
SMC14
SMC13
SMC12

SMC18

SMC36

SMC16

SMC15
SMC14
SMC13
SMC12

64
32072SH–AVR32–10/2012

AT32UC3A3

Figure 7-10. JTAG Interface Signals

7.13 SPI Characteristics

Figure 7-11. SPI Master mode with (CPOL= NCPHA= 0) or (CPOL= NCPHA= 1)

TCK

JTAG9

TMS/TDI

TDO

Device
Outputs

JTAG5

JTAG4JTAG3

 JTAG
0 JTAG1

JTAG2

JTAG10

Device
 Inputs

JTAG8JTAG7

JTAG6

SPCK

MISO

MOSI

SPI2

SPI0 SPI1

70
32072SH–AVR32–10/2012

AT32UC3A3

Figure 8-2. LQFP-144 package drawing

Table 8-2. Device and Package Maximum Weight

1300 mg

Table 8-3. Package Characteristics

Moisture Sensitivity Level MSL3

Table 8-4. Package Reference

JEDEC Drawing Reference MS-026

JESD97 Classification E3

76
32072SH–AVR32–10/2012

AT32UC3A3

SPI data transfer hangs with CSR0.CSAAT==1 and MR.MODFDIS==0
When CSR0.CSAAT==1 and mode fault detection is enabled (MR.MODFDIS==0), the SPI
module will not start a data transfer.
Fix/Workaround
Disable mode fault detection by writing a one to MR.MODFDIS.

Disabling SPI has no effect on the SR.TDRE bit
Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered
when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is
disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer
is empty, and this data will be lost.
Fix/Workaround
Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the
SPI and PDCA.

10.1.8 Power Manager

OSC32 not functionnal in Crystal Modes (OSC32CTRL.MODE=1 or
OSC32CTRL.MODE=2)
OSC32 clock output is not active even if the oscillation signal is present on XIN32/XOUT32
pins.
OSC32RDY bit may still set even if the CLK32 is not active.
External clock mode (OSC32CTRL.MODE=0) is not affected.

Fix/Workaround
None.

Clock sources will not be stopped in STATIC sleep mode if the difference between
CPU and PBx division factor is too high
If the division factor between the CPU/HSB and PBx frequencies is more than 4 when going
to a sleep mode where the system RC oscillator is turned off, then high speed clock sources
will not be turned off. This will result in a significantly higher power consumption during the
sleep mode.
Fix/Workaround
Before going to sleep modes where the system RC oscillator is stopped, make sure that the
factor between the CPU/HSB and PBx frequencies is less than or equal to 4.

10.1.9 PDCA

PCONTROL.CHxRES is non-functional
PCONTROL.CHxRES is non-functional. Counters are reset at power-on, and cannot be
reset by software.
Fix/Workaround
Software needs to keep history of performance counters.

Transfer error will stall a transmit peripheral handshake interface
If a transfer error is encountered on a channel transmitting to a peripheral, the peripheral
handshake of the active channel will stall and the PDCA will not do any more transfers on
the affected peripheral handshake interface.
Fix/Workaround
Disable and then enable the peripheral after the transfer error.

80
32072SH–AVR32–10/2012

AT32UC3A3

Fix/Workaround
For higher polling time, the software must freeze the pipe for the desired period in order to
prevent any "extra" token.

10.2.5 ADC

Sleep Mode activation needs additional A to D conversion
If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode
before after the next AD conversion.
Fix/Workaround
Activate the sleep mode in the mode register and then perform an AD conversion.

10.2.6 USART

ISO7816 info register US_NER cannot be read
The NER register always returns zero.
Fix/Workaround
None.

The LIN ID is not transmitted in mode PDCM='0'
Fix/Workaround
Using USART in mode LIN master with the PDCM bit = '0', the LINID written at the first
address of the transmit buffer is not used. The LINID must be written in the LINIR register,
after the configuration and start of the PDCA transfer. Writing the LINID in the LINIR register
will start the transfer whenever the PDCA transfer is ready.

The LINID interrupt is only available for the header reception and not available for the
header transmission
Fix/Workaround
None.

USART LIN mode is not functional with the PDCA if PDCM bit in LINMR register is set
to 1
If a PDCA transfer is initiated in USART LIN mode with PDCM bit set to 1, the transfer never
starts.
Fix/Workaround
Only use PDCM=0 configuration with the PDCA transfer.

The RTS output does not function correctly in hardware handshaking mode
The RTS signal is not generated properly when the USART receives data in hardware hand-
shaking mode. When the Peripheral DMA receive buffer becomes full, the RTS output
should go high, but it will stay low.
Fix/Workaround
Do not use the hardware handshaking mode of the USART. If it is necessary to drive the
RTS output high when the Peripheral DMA receive buffer becomes full, use the normal
mode of the USART. Configure the Peripheral DMA Controller to signal an interrupt when
the receive buffer is full. In the interrupt handler code, write a one to the RTSDIS bit in the
USART Control Register (CR). This will drive the RTS output high. After the next DMA trans-
fer is started and a receive buffer is available, write a one to the RTSEN bit in the USART
CR so that RTS will be driven low.

ISO7816 Mode T1: RX impossible after any TX
RX impossible after any TX.

86
32072SH–AVR32–10/2012

AT32UC3A3

10.3.5 ADC

Sleep Mode activation needs additional A to D conversion
If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode
before after the next AD conversion.
Fix/Workaround
Activate the sleep mode in the mode register and then perform an AD conversion.

10.3.6 USART

ISO7816 info register US_NER cannot be read
The NER register always returns zero.
Fix/Workaround
None.

The LIN ID is not transmitted in mode PDCM='0'
Fix/Workaround
Using USART in mode LIN master with the PDCM bit = '0', the LINID written at the first
address of the transmit buffer is not used. The LINID must be written in the LINIR register,
after the configuration and start of the PDCA transfer. Writing the LINID in the LINIR register
will start the transfer whenever the PDCA transfer is ready.

The LINID interrupt is only available for the header reception and not available for the
header transmission
Fix/Workaround
None.

USART LIN mode is not functional with the PDCA if PDCM bit in LINMR register is set
to 1
If a PDCA transfer is initiated in USART LIN mode with PDCM bit set to 1, the transfer never
starts.
Fix/Workaround
Only use PDCM=0 configuration with the PDCA transfer.

The RTS output does not function correctly in hardware handshaking mode
The RTS signal is not generated properly when the USART receives data in hardware hand-
shaking mode. When the Peripheral DMA receive buffer becomes full, the RTS output
should go high, but it will stay low.
Fix/Workaround
Do not use the hardware handshaking mode of the USART. If it is necessary to drive the
RTS output high when the Peripheral DMA receive buffer becomes full, use the normal
mode of the USART. Configure the Peripheral DMA Controller to signal an interrupt when
the receive buffer is full. In the interrupt handler code, write a one to the RTSDIS bit in the
USART Control Register (CR). This will drive the RTS output high. After the next DMA trans-
fer is started and a receive buffer is available, write a one to the RTSEN bit in the USART
CR so that RTS will be driven low.

ISO7816 Mode T1: RX impossible after any TX
RX impossible after any TX.
Fix/Workaround
SOFT_RESET on RX+ Config US_MR + Config_US_CR.

91
32072SH–AVR32–10/2012

AT32UC3A3

11.7 Rev. B – 08/09

11.8 Rev. A – 03/09

1. Updated the datasheet with new device AT32UC3A4.

1. Initial revision.

32072SH–AVR32–10/2012

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

Atmel Asia Limited
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

Atmel Japan
16F, Shin Osaki Kangyo Bldg.
1-6-4 Osaka Shinagawa-ku
Tokyo 104-0032
JAPAN
Tel: (+81) 3-6417-0300
Fax: (+81) 3-6417-0370

© 2012 Atmel Corporation. All rights reserved.

Atmel®, Atmel logo and combinations thereof AVR®, Qtouch®, and others are registered trademarks or trademarks of Atmel Corpora-
tion or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY
EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT,
INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROF-
ITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or com-
pleteness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice.
Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suit-
able for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applica-
tions intended to support or sustain life.

