
Microchip Technology - AT32UC3A3256-CTUT Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 32-Bit Single-Core

Speed 66MHz

Connectivity EBI/EMI, I²C, IrDA, Memory Card, SPI, SSC, UART/USART, USB OTG

Peripherals Brown-out Detect/Reset, DMA, POR, WDT

Number of I/O 110

Program Memory Size 256KB (256K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 128K x 8

Voltage - Supply (Vcc/Vdd) 1.75V ~ 3.6V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 144-TFBGA

Supplier Device Package 144-FFBGA (11x11)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/at32uc3a3256-ctut

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/at32uc3a3256-ctut-4388905
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

4
32072SH–AVR32–10/2012

AT32UC3A3

2. Overview

2.1 Block Diagram

Figure 2-1. Block Diagram

AVR32UC
CPUNEXUS

CLASS 2+
OCD

INSTR
INTERFACE

DATA
INTERFACE

TIMER/COUNTER
0/1

INTERRUPT
CONTROLLER

REAL TIME
COUNTER

PERIPHERAL
DMA

CONTROLLER

256/128/64
KB

FLASH

HSB-PB
BRIDGE B

HSB-PB
BRIDGE A

M
EM

OR
Y

IN
TE

RF
AC

E

S

M M M
M

M

S

S

S
S

S

M

EXTERNAL
INTERRUPT

CONTROLLER

HIGH SPEED
BUS MATRIX

FAST GPIO

GE
NE

RA
L

PU
RP

OS
E

IO
s

64 KB
SRAM

GE
NE

RA
L

PU
RP

OS
E

IO
sPA

PB
PC
PX

A[2..0]
B[2..0]

CLK[2..0]

EXTINT[7..0]
SCAN[7..0]

NMI

GCLK[3..0]

XIN32
XOUT32

XIN0

XOUT0

PA
PB
PC
PX

RESET_N

EX
TE

RN
AL

 B
US

 IN
TE

RF
AC

E
(S

DR
AM

, S
TA

TI
C

M
EM

OR
Y,

 C
OM

PA
CT

FL

AS
H

&
NA

ND
 F

LA
SH

)

CAS
RAS

SDA10
SDCK

SDCKE

SDWE

NCS[5..0]
NRD

NWAIT
NWE0

DATA[15..0]

USB HS
INTERFACE

DMA

ID
VBOF

DMFS, DMHS

32 KHz
OSC

115 kHz
RCSYS

OSC0

PLL0

USART3

SERIAL
PERIPHERAL

INTERFACE 0/1

TWO-WIRE
INTERFACE 0/1

DM
A

DM
A

DM
A

RXD
TXD
CLK

MISO, MOSI

NPCS[3..1]

TWCK

TWD

USART1

DM
A

RXD
TXD
CLK

RTS, CTS
DSR, DTR, DCD, RI

USART0
USART2DM
A

RXD
TXD
CLK

RTS, CTS

SYNCHRONOUS
SERIAL

CONTROLLERDM
A

TX_CLOCK, TX_FRAME_SYNC

RX_DATA

TX_DATA

RX_CLOCK, RX_FRAME_SYNC

ANALOG TO
DIGITAL

CONVERTER

DM
A AD[7..0]

WATCHDOG
TIMER

XIN1

XOUT1
OSC1

PLL1

SPCK

JTAG
INTERFACE

MCKO
MDO[5..0]

MSEO[1..0]
EVTI_N
EVTO_N

TCK
TDO
TDI
TMS

POWER
MANAGER

RESET
CONTROLLER

ADDR[23..0]

SLEEP
CONTROLLER

CLOCK
CONTROLLER

CLOCK
GENERATOR

FL
AS

H
CO

NT
RO

LL
ER

CONFIGURATION REGISTERS BUS

MEMORY PROTECTION UNIT

PB

PB

HSBHSB

NWE1
NWE3

PB
A

PB
B

NPCS0

LOCAL BUS
INTERFACE

AUDIO
BITSTREAM

DACDM
A DATA[1..0]

DATAN[1..0]

M

MULTIMEDIA CARD
& MEMORY STICK

INTERFACE

CLK

CMD[1..0]

DATA[15..0]

DM
A

SAES

DM
A

CFCE1
CFCE2
CFRW

NANDOE
NANDWE

32KB RAM

32KB RAM HR
AM

0/
1

DPFS, DPHS

USB_VBIAS
USB_VBUS

S

S

VDDIN

VDDCORE

GNDCORE

DMACA

1V8
Regulator

TWALM

7
32072SH–AVR32–10/2012

AT32UC3A3

Figure 3-2. LQFP144 Pinout

USB_VBUS
1

VDDIO
2

USB_VBIAS
3

GNDIO
4

DM
HS

5
DPHS

6
GNDIO

7
DM

FS
8

DPFS
9

VDDIO
10

PB08
11

PC05
12

PC04
13

PA30
14

PA02
15

PB10
16

PB09
17

PC02
18

PC03
19

GNDIO
20

VDDIO
21

PB04
22

PA29
23

PB03
24

PB02
25

PA27
26

PB01
27

PA28
28

PA31
29

PB00
30

PB11
31

PX16
32

PX13
33

PX12
34

PX19
35

PX40
36

PX1037
PX3538
PX4739
PX1540
PX4841
PX5342
PX4943
PX3644
PX3745
PX5446
GNDIO47
VDDIO48
PX0949
PX0850
PX3851
PX3952
PX0653
PX0754
PX0055
PX5956
PX5857
PX0558
PX0159
PX0460
PX3461
PX0262
PX0363
VDDIO64
GNDIO65
PX4466
PX1167
PX1468
PX4269
PX4570
PX4171
PX2272

TD
I

10
8

TC
K

10
7

RE
SE

T_
N

10
6

TD
O

10
5

TM
S

10
4

VD
DI

O
10

3
GN

DI
O

10
2

PA
15

10
1

PA
14

10
0

PC
01

99
PC

00
98

PX
31

97
PX

30
96

PX
33

95
PX

29
94

PX
32

93
PX

25
92

PX
28

91
PX

26
90

PX
27

89
PX

43
88

PX
52

87
PX

24
86

PX
23

85
PX

18
84

PX
17

83
GN

DI
O

82
VD

DI
O

81
PX

21
80

PX
55

79
PX

56
78

PX
51

77
PX

57
76

PX
50

75
PX

46
74

PX
20

73

PA21 109
PA22 110
PA23 111
PA24 112
PA20 113
PA19 114
PA18 115
PA17 116

GNDANA 117
VDDANA 118

PA25 119
PA26 120
PB05 121
PA00 122
PA01 123
PA05 124
PA03 125
PA04 126
PA06 127
PA16 128
PA13 129

VDDIO 130
GNDIO 131

PA12 132
PA07 133
PB06 134
PB07 135
PA11 136
PA08 137
PA10 138
PA09 139

GNDCORE 140
VDDCORE 141

VDDIN 142
VDDIN 143

GNDPLL 144

9
32072SH–AVR32–10/2012

AT32UC3A3

3.2 Peripheral Multiplexing on I/O lines

3.2.1 Multiplexed Signals

Each GPIO line can be assigned to one of the peripheral functions. The following table
describes the peripheral signals multiplexed to the GPIO lines.

Note that GPIO 44 is physically implemented in silicon but it must be kept unused and config-
ured in input mode.

Table 3-1. GPIO Controller Function Multiplexing

BGA

144

QFP

144

BGA

100 PIN

G

P

I

O Supply

PIN

Type
(2)

GPIO function

A B C D

G11 122 G8(1) PA00 0 VDDIO x3 USART0 - RTS TC0 - CLK1 SPI1 - NPCS[3]

G12 123 G10(1) PA01 1 VDDIO x1 USART0 - CTS TC0 - A1 USART2 - RTS

D8 15 E1(1) PA02 2 VDDIO x1 USART0 - CLK TC0 - B1 SPI0 - NPCS[0]

G10 125 F9 PA03 3 VDDIO x1 USART0 - RXD EIC - EXTINT[4] ABDAC - DATA[0]

F9 126 E9 PA04 4 VDDIO x1 USART0 - TXD EIC - EXTINT[5] ABDAC - DATAN[0]

F10 124 G9 PA05 5 VDDIO x1 USART1 - RXD TC1 - CLK0 USB - ID

F8 127 E8(1) PA06 6 VDDIO x1 USART1 - TXD TC1 - CLK1 USB - VBOF

E10 133 H10(1) PA07 7 VDDIO x1 SPI0 - NPCS[3] ABDAC - DATAN[0] USART1 - CLK

C11 137 F8 PA08 8 VDDIO x3 SPI0 - SPCK ABDAC - DATA[0] TC1 - B1

B12 139 D8 PA09 9 VDDIO x2 SPI0 - NPCS[0] EIC - EXTINT[6] TC1 - A1

C12 138 C10 PA10 10 VDDIO x2 SPI0 - MOSI USB - VBOF TC1 - B0

D10 136 C9 PA11 11 VDDIO x2 SPI0 - MISO USB - ID TC1 - A2

E12 132 G7(1) PA12 12 VDDIO x1 USART1 - CTS SPI0 - NPCS[2] TC1 - A0

F11 129 E8(1) PA13 13 VDDIO x1 USART1 - RTS SPI0 - NPCS[1] EIC - EXTINT[7]

J6 100 K7(1) PA14 14 VDDIO x1 SPI0 - NPCS[1] TWIMS0 - TWALM TWIMS1 - TWCK

J7 101 J7(1) PA15 15 VDDIO x1 MCI - CMD[1] SPI1 - SPCK TWIMS1 - TWD

F12 128 E7 PA16 16 VDDIO x1 MCI - DATA[11] SPI1 - MOSI TC1 - CLK2

H7 116 G10(1) PA17 17 VDDANA x1 MCI - DATA[10] SPI1 - NPCS[1] ADC - AD[7]

K8 115 G8(1) PA18 18 VDDANA x1 MCI - DATA[9] SPI1 - NPCS[2] ADC - AD[6]

J8 114 H10(1) PA19 19 VDDANA x1 MCI - DATA[8] SPI1 - MISO ADC - AD[5]

J9 113 H9(1) PA20 20 VDDANA x1 EIC - NMI SSC - RX_FRAME_SYNC ADC - AD[4]

H9 109 K10(1) PA21 21 VDDANA x1 ADC - AD[0] EIC - EXTINT[0] USB - ID

H10 110 H6(1) PA22 22 VDDANA x1 ADC - AD[1] EIC - EXTINT[1] USB - VBOF

G8 111 G6(1) PA23 23 VDDANA x1 ADC - AD[2] EIC - EXTINT[2] ABDAC - DATA[1]

G9 112 J10(1) PA24 24 VDDANA x1 ADC - AD[3] EIC - EXTINT[3] ABDAC - DATAN[1]

E9 119 G7(1) PA25 25 VDDIO x1 TWIMS0 - TWD TWIMS1 - TWALM USART1 - DCD

D9 120 F7(1)) PA26 26 VDDIO x1 TWIMS0 - TWCK USART2 - CTS USART1 - DSR

A4 26 A2 PA27 27 VDDIO x2 MCI - CLK SSC - RX_DATA USART3 - RTS MSI - SCLK

A3 28 A1 PA28 28 VDDIO x1 MCI - CMD[0] SSC - RX_CLOCK USART3 - CTS MSI - BS

A6 23 B4 PA29 29 VDDIO x1 MCI - DATA[0] USART3 - TXD TC0 - CLK0 MSI - DATA[0]

15
32072SH–AVR32–10/2012

AT32UC3A3

RESET_N Reset Pin Input Low

DMA Controller - DMACA (optional)

DMAACK[1:0] DMA Acknowledge Output

DMARQ[1:0] DMA Requests Input

External Interrupt Controller - EIC

EXTINT[7:0] External Interrupt Pins Input

SCAN[7:0] Keypad Scan Pins Output

NMI Non-Maskable Interrupt Pin Input Low

General Purpose Input/Output pin - GPIOA, GPIOB, GPIOC, GPIOX

PA[31:0] Parallel I/O Controller GPIO port A I/O

PB[11:0] Parallel I/O Controller GPIO port B I/O

PC[5:0] Parallel I/O Controller GPIO port C I/O

PX[59:0] Parallel I/O Controller GPIO port X I/O

External Bus Interface - EBI

ADDR[23:0] Address Bus Output

CAS Column Signal Output Low

CFCE1 Compact Flash 1 Chip Enable Output Low

CFCE2 Compact Flash 2 Chip Enable Output Low

CFRNW Compact Flash Read Not Write Output

DATA[15:0] Data Bus I/O

NANDOE NAND Flash Output Enable Output Low

NANDWE NAND Flash Write Enable Output Low

NCS[5:0] Chip Select Output Low

NRD Read Signal Output Low

NWAIT External Wait Signal Input Low

NWE0 Write Enable 0 Output Low

NWE1 Write Enable 1 Output Low

RAS Row Signal Output Low

Table 3-6. Signal Description List

Signal Name Function Type
Active
Level Comments

18
32072SH–AVR32–10/2012

AT32UC3A3

DMHS USB High Speed Data - Analog

DPHS USB High Speed Data + Analog

USB_VBIAS USB VBIAS reference Analog

Connect to the ground through a
6810 ohms (+/- 1%) resistor in
parallel with a 10pf capacitor.

If USB hi-speed feature is not
required, leave this pin
unconnected to save power

USB_VBUS USB VBUS signal Output

VBOF USB VBUS on/off bus power control port Output

ID ID Pin fo the USB bus Input

Table 3-6. Signal Description List

Signal Name Function Type
Active
Level Comments

22
32072SH–AVR32–10/2012

AT32UC3A3

The register file is organized as sixteen 32-bit registers and includes the Program Counter, the
Link Register, and the Stack Pointer. In addition, register R12 is designed to hold return values
from function calls and is used implicitly by some instructions.

4.3 The AVR32UC CPU
The AVR32UC CPU targets low- and medium-performance applications, and provides an
advanced OCD system, no caches, and a Memory Protection Unit (MPU). Java acceleration
hardware is not implemented.

AVR32UC provides three memory interfaces, one High Speed Bus master for instruction fetch,
one High Speed Bus master for data access, and one High Speed Bus slave interface allowing
other bus masters to access data RAMs internal to the CPU. Keeping data RAMs internal to the
CPU allows fast access to the RAMs, reduces latency, and guarantees deterministic timing.
Also, power consumption is reduced by not needing a full High Speed Bus access for memory
accesses. A dedicated data RAM interface is provided for communicating with the internal data
RAMs.

A local bus interface is provided for connecting the CPU to device-specific high-speed systems,
such as floating-point units and fast GPIO ports. This local bus has to be enabled by writing the
LOCEN bit in the CPUCR system register. The local bus is able to transfer data between the
CPU and the local bus slave in a single clock cycle. The local bus has a dedicated memory
range allocated to it, and data transfers are performed using regular load and store instructions.
Details on which devices that are mapped into the local bus space is given in the Memories
chapter of this data sheet.

Figure 4-1 on page 23 displays the contents of AVR32UC.

25
32072SH–AVR32–10/2012

AT32UC3A3

The following table shows the instructions with support for unaligned addresses. All other
instructions require aligned addresses.

4.3.6 Unimplemented Instructions
The following instructions are unimplemented in AVR32UC, and will cause an Unimplemented
Instruction Exception if executed:

• All SIMD instructions

• All coprocessor instructions if no coprocessors are present

• retj, incjosp, popjc, pushjc

• tlbr, tlbs, tlbw

• cache

4.3.7 CPU and Architecture Revision
Three major revisions of the AVR32UC CPU currently exist.

The Architecture Revision field in the CONFIG0 system register identifies which architecture
revision is implemented in a specific device.

AVR32UC CPU revision 3 is fully backward-compatible with revisions 1 and 2, ie. code compiled
for revision 1 or 2 is binary-compatible with revision 3 CPUs.

Table 4-1. Instructions with Unaligned Reference Support

Instruction Supported alignment

ld.d Word

st.d Word

27
32072SH–AVR32–10/2012

AT32UC3A3

Figure 4-5. The Status Register Low Halfword

4.4.3 Processor States

4.4.3.1 Normal RISC State
The AVR32 processor supports several different execution contexts as shown in Table 4-2 on
page 27.

Mode changes can be made under software control, or can be caused by external interrupts or
exception processing. A mode can be interrupted by a higher priority mode, but never by one
with lower priority. Nested exceptions can be supported with a minimal software overhead.

When running an operating system on the AVR32, user processes will typically execute in the
application mode. The programs executed in this mode are restricted from executing certain
instructions. Furthermore, most system registers together with the upper halfword of the status
register cannot be accessed. Protected memory areas are also not available. All other operating
modes are privileged and are collectively called System Modes. They have full access to all priv-
ileged and unprivileged resources. After a reset, the processor will be in supervisor mode.

4.4.3.2 Debug State
The AVR32 can be set in a debug state, which allows implementation of software monitor rou-
tines that can read out and alter system information for use during application development. This
implies that all system and application registers, including the status registers and program
counters, are accessible in debug state. The privileged instructions are also available.

Bit 15 Bit 0

Reserved

Carry
Zero
Sign

0 0 0 00000000000

- - --T- Bit name

Initial value0 0

L Q V N Z C-

Overflow
Saturation

- - -

Lock

Reserved
Scratch

Table 4-2. Overview of Execution Modes, their Priorities and Privilege Levels.

Priority Mode Security Description

1 Non Maskable Interrupt Privileged Non Maskable high priority interrupt mode

2 Exception Privileged Execute exceptions

3 Interrupt 3 Privileged General purpose interrupt mode

4 Interrupt 2 Privileged General purpose interrupt mode

5 Interrupt 1 Privileged General purpose interrupt mode

6 Interrupt 0 Privileged General purpose interrupt mode

N/A Supervisor Privileged Runs supervisor calls

N/A Application Unprivileged Normal program execution mode

29
32072SH–AVR32–10/2012

AT32UC3A3

26 104 JAVA_LV3 Unused in AVR32UC

27 108 JAVA_LV4 Unused in AVR32UC

28 112 JAVA_LV5 Unused in AVR32UC

29 116 JAVA_LV6 Unused in AVR32UC

30 120 JAVA_LV7 Unused in AVR32UC

31 124 JTBA Unused in AVR32UC

32 128 JBCR Unused in AVR32UC

33-63 132-252 Reserved Reserved for future use

64 256 CONFIG0 Configuration register 0

65 260 CONFIG1 Configuration register 1

66 264 COUNT Cycle Counter register

67 268 COMPARE Compare register

68 272 TLBEHI Unused in AVR32UC

69 276 TLBELO Unused in AVR32UC

70 280 PTBR Unused in AVR32UC

71 284 TLBEAR Unused in AVR32UC

72 288 MMUCR Unused in AVR32UC

73 292 TLBARLO Unused in AVR32UC

74 296 TLBARHI Unused in AVR32UC

75 300 PCCNT Unused in AVR32UC

76 304 PCNT0 Unused in AVR32UC

77 308 PCNT1 Unused in AVR32UC

78 312 PCCR Unused in AVR32UC

79 316 BEAR Bus Error Address Register

80 320 MPUAR0 MPU Address Register region 0

81 324 MPUAR1 MPU Address Register region 1

82 328 MPUAR2 MPU Address Register region 2

83 332 MPUAR3 MPU Address Register region 3

84 336 MPUAR4 MPU Address Register region 4

85 340 MPUAR5 MPU Address Register region 5

86 344 MPUAR6 MPU Address Register region 6

87 348 MPUAR7 MPU Address Register region 7

88 352 MPUPSR0 MPU Privilege Select Register region 0

89 356 MPUPSR1 MPU Privilege Select Register region 1

90 360 MPUPSR2 MPU Privilege Select Register region 2

91 364 MPUPSR3 MPU Privilege Select Register region 3

Table 4-3. System Registers (Continued)

Reg # Address Name Function

51
32072SH–AVR32–10/2012

AT32UC3A3

7.7 System Clock Characteristics

These parameters are given in the following conditions:

• VDDCORE = 1.8V

7.7.1 CPU/HSB Clock Characteristics

7.7.2 PBA Clock Characteristics

7.7.3 PBB Clock Characteristics

Table 7-14. Core Clock Waveform Parameters

Symbol Parameter Conditions Min. Typ. Max. Unit

1/(tCPCPU) CPU Clock Frequency -40°C < Ambient Temperature < 70°C 84 MHz

1/(tCPCPU) CPU Clock Frequency -40°C < Ambient Temperature < 85°C 66 MHz

Table 7-15. PBA Clock Waveform Parameters

Symbol Parameter Conditions Min. Typ. Max. Unit

1/(tCPPBA) PBA Clock Frequency -40°C < Ambient Temperature < 70°C 84 MHz

1/(tCPPBA) PBA Clock Frequency -40°C < Ambient Temperature < 85°C 66 MHz

Table 7-16. PBB Clock Waveform Parameters

Symbol Parameter Conditions Min. Typ. Max. Unit

1/(tCPPBB) PBB Clock Frequency -40°C < Ambient Temperature < 70°C 84 MHz

1/(tCPPBB) PBB Clock Frequency -40°C < Ambient Temperature < 85°C 66 MHz

53
32072SH–AVR32–10/2012

AT32UC3A3

7.8.3 Main Oscillators

7.8.4 Phase Lock Loop (PLL0, PLL1)

7.8.5 USB Hi-Speed Phase Lock Loop

Table 7-19. Main Oscillators Characteristics

Symbol Parameter Conditions Min. Typ. Max. Unit

1/(tCPMAIN) Oscillator Frequency
External clock on XIN 50 MHz

Crystal 0.4 20 MHz

CL1, CL2 Internal Load Capacitance (CL1 = CL2) 7 pF

ESR Crystal Equivalent Series Resistance 75 Ω

Duty Cycle 40 50 60 %

tST Startup Time

f = 400 KHz
f = 8 MHz
f = 16 MHz
f = 20 MHz

25
4

1.4
1

ms

tCH XIN Clock High Half-period 0.4 tCP 0.6 tCP

tCL XIN Clock Low Half-period 0.4 tCP 0.6 tCP

CIN XIN Input Capacitance 7 pF

IOSC Current Consumption

Active mode at 400 KHz. Gain = G0
Active mode at 8 MHz. Gain = G1
Active mode at 16 MHz. Gain = G2
Active mode at 20 MHz. Gain = G3

30
45
95

205

µA

Table 7-20. PLL Characteristics

Symbol Parameter Conditions Min. Typ. Max. Unit

FOUT VCO Output Frequency 80 240 MHz

FIN Input Frequency (after input divider) 4 16 MHz

IPLL Current Consumption
Active mode (Fout=80 MHz) 250 µA

Active mode (Fout=240 MHz) 600 µA

Table 7-21. PLL Characteristics

Symbol Parameter Conditions Min. Typ. Max. Unit

FOUT VCO Output Frequency 480 MHz

FIN Input Frequency 12 MHz

Delta FIN

Input Frequency Accuracy (applicable
to Clock signal on XIN or to Quartz
tolerance)

-500 +500 ppm

IPLL Current Consumption Active mode @480MHz @1.8V 2.5 mA

54
32072SH–AVR32–10/2012

AT32UC3A3

7.9 ADC Characteristics

Table 7-22. Channel Conversion Time and ADC Clock

Parameter Conditions Min. Typ. Max. Unit

ADC Clock Frequency
10-bit resolution mode 5 MHz

8-bit resolution mode 8 MHz

Startup Time Return from Idle Mode 20 µs

Track and Hold Acquisition Time 600 ns

Conversion Time
ADC Clock = 5 MHz 2 µs

ADC Clock = 8 MHz 1.25 µs

Throughput Rate
ADC Clock = 5 MHz 384 (1)

1. Corresponds to 13 clock cycles: 3 clock cycles for track and hold acquisition time and 10 clock cycles for conversion.

kSPS

ADC Clock = 8 MHz 533 (2)

2. Corresponds to 15 clock cycles: 5 clock cycles for track and hold acquisition time and 10 clock cycles for conversion.

kSPS

Table 7-23. ADC Power Consumption

Parameter Conditions Min. Typ. Max. Unit

Current Consumption on VDDANA (1)

1. Including internal reference input current

On 13 samples with ADC clock = 5 MHz 1.25 mA

Table 7-24. Analog Inputs

Parameter Conditions Min. Typ. Max. Unit

Input Voltage Range 0 VDDANA V

Input Leakage Current 1 µA

Input Capacitance 7 pF

Input Resistance 350 850 Ohm

Table 7-25. Transfer Characteristics in 8-bit mode

Parameter Conditions Min. Typ. Max. Unit

Resolution 8 Bit

Absolute Accuracy
ADC Clock = 5 MHz 0.8 LSB

ADC Clock = 8 MHz 1.5 LSB

Integral Non-linearity
ADC Clock = 5 MHz 0.35 0.5 LSB

ADC Clock = 8 MHz 0.5 1.5 LSB

Differential Non-linearity
ADC Clock = 5 MHz 0.3 0.5 LSB

ADC Clock = 8 MHz 0.5 1.5 LSB

Offset Error ADC Clock = 5 MHz -1.5 1.5 LSB

Gain Error ADC Clock = 5 MHz -0.5 0.5 LSB

62
32072SH–AVR32–10/2012

AT32UC3A3

Figure 7-9. SDRAMC Signals relative to SDCK.

RAS

A0 - A9,
A11 - A13

D0 - D15
Read

SDCK

SDA10

D0 - D15
to Write

SDRAMC1

SDCKE

SDRAMC2 SDRAMC3 SDRAMC4

SDCS

SDRAMC5 SDRAMC6 SDRAMC5 SDRAMC6 SDRAMC5 SDRAMC6

SDRAMC7 SDRAMC8

CAS

SDRAMC15 SDRAMC16 SDRAMC15 SDRAMC16

SDWE

SDRAMC23 SDRAMC24

SDRAMC9 SDRAMC10SDRAMC9 SDRAMC10SDRAMC9 SDRAMC10

SDRAMC11 SDRAMC12 SDRAMC11 SDRAMC12SDRAMC11 SDRAMC12

BA0/BA1

SDRAMC13 SDRAMC14 SDRAMC13 SDRAMC14 SDRAMC13 SDRAMC14

SDRAMC17 SDRAMC18SDRAMC17 SDRAMC18

DQM0 -
DQM3

SDRAMC19 SDRAMC20

SDRAMC25 SDRAMC26

63
32072SH–AVR32–10/2012

AT32UC3A3

7.12 JTAG Characteristics

7.12.1 JTAG Interface Signals

Table 7-37. JTAG Interface Timing Specification

Symbol Parameter Conditions (1)

1. VVDDIO from 3.0V to 3.6V, maximum external capacitor = 40pF

Min. Max. Unit

JTAG0 TCK Low Half-period 6 ns

JTAG1 TCK High Half-period 3 ns

JTAG2 TCK Period 9 ns

JTAG3 TDI, TMS Setup before TCK High 1 ns

JTAG4 TDI, TMS Hold after TCK High 0 ns

JTAG5 TDO Hold Time 4 ns

JTAG6 TCK Low to TDO Valid 6 ns

JTAG7 Device Inputs Setup Time ns

JTAG8 Device Inputs Hold Time ns

JTAG9 Device Outputs Hold Time ns

JTAG10 TCK to Device Outputs Valid ns

64
32072SH–AVR32–10/2012

AT32UC3A3

Figure 7-10. JTAG Interface Signals

7.13 SPI Characteristics

Figure 7-11. SPI Master mode with (CPOL= NCPHA= 0) or (CPOL= NCPHA= 1)

TCK

JTAG9

TMS/TDI

TDO

Device
Outputs

JTAG5

JTAG4JTAG3

 JTAG
0 JTAG1

JTAG2

JTAG10

Device
 Inputs

JTAG8JTAG7

JTAG6

SPCK

MISO

MOSI

SPI2

SPI0 SPI1

69
32072SH–AVR32–10/2012

AT32UC3A3

8.2 Package Drawings

Figure 8-1. TFBGA 144 package drawing

71
32072SH–AVR32–10/2012

AT32UC3A3

Figure 8-3. VFBGA-100 package drawing

75
32072SH–AVR32–10/2012

AT32UC3A3

For higher polling time, the software must freeze the pipe for the desired period in order to
prevent any "extra" token.

10.1.5 ADC

Sleep Mode activation needs additional A to D conversion
If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode
before after the next AD conversion.
Fix/Workaround
Activate the sleep mode in the mode register and then perform an AD conversion.

10.1.6 USART

ISO7816 info register US_NER cannot be read
The NER register always returns zero.
Fix/Workaround
None.

The LIN ID is not transmitted in mode PDCM='0'
Fix/Workaround
Using USART in mode LIN master with the PDCM bit = '0', the LINID written at the first
address of the transmit buffer is not used. The LINID must be written in the LINIR register,
after the configuration and start of the PDCA transfer. Writing the LINID in the LINIR register
will start the transfer whenever the PDCA transfer is ready.

The LINID interrupt is only available for the header reception and not available for the
header transmission
Fix/Workaround
None.

USART LIN mode is not functional with the PDCA if PDCM bit in LINMR register is set
to 1
If a PDCA transfer is initiated in USART LIN mode with PDCM bit set to 1, the transfer never
starts.
Fix/Workaround
Only use PDCM=0 configuration with the PDCA transfer.

10.1.7 SPI

SPI disable does not work in SLAVE mode
SPI disable does not work in SLAVE mode.
Fix/Workaround
Read the last received data, then perform a software reset by writing a one to the Software
Reset bit in the Control Register (CR.SWRST).

SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and
NCPHA=0
When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one
(CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0,
then an additional pulse will be generated on SCK.
Fix/Workaround
When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1
if CSRn.CPOL=1 and CSRn.NCPHA=0.

77
32072SH–AVR32–10/2012

AT32UC3A3

10.1.10 AES

URAD (Unspecified Register Access Detection Status) does not detect read accesses
to the write-only KEYW[5..8]R registers
Fix/Workaround
None.

10.1.11 HMATRIX

In the PRAS and PRBS registers, the MxPR fields are only two bits
In the PRAS and PRBS registers, the MxPR fields are only two bits wide, instead of four bits.
The unused bits are undefined when reading the registers.
Fix/Workaround
Mask undefined bits when reading PRAS and PRBS.

10.1.12 TWIM

TWIM SR.IDLE goes high immediately when NAK is received
When a NAK is received and there is a non-zero number of bytes to be transmitted,
SR.IDLE goes high immediately and does not wait for the STOP condition to be sent. This
does not cause any problem just by itself, but can cause a problem if software waits for
SR.IDLE to go high and then immediately disables the TWIM by writing a one to CR.MDIS.
Disabling the TWIM causes the TWCK and TWD pins to go high immediately, so the STOP
condition will not be transmitted correctly.
Fix/Workaround
If possible, do not disable the TWIM. If it is absolutely necessary to disable the TWIM, there
must be a software delay of at least two TWCK periods between the detection of
SR.IDLE==1 and the disabling of the TWIM.

TWIM TWALM polarity is wrong
The TWALM signal in the TWIM is active high instead of active low.
Fix/Workaround
Use an external inverter to invert the signal going into the TWIM. When using both TWIM
and TWIS on the same pins, the TWALM cannot be used.

SMBALERT bit may be set after reset
The SMBus Alert (SMBALERT) bit in the Status Register (SR) might be erroneously set after
system reset.
Fix/Workaround
After system reset, clear the SR.SMBALERT bit before commencing any TWI transfer.

10.1.13 TWIS

Clearing the NAK bit before the BTF bit is set locks up the TWI bus
When the TWIS is in transmit mode, clearing the NAK Received (NAK) bit of the Status Reg-
ister (SR) before the end of the Acknowledge/Not Acknowledge cycle will cause the TWIS to
attempt to continue transmitting data, thus locking up the bus.
Fix/Workaround
Clear SR.NAK only after the Byte Transfer Finished (BTF) bit of the same register has been
set.

86
32072SH–AVR32–10/2012

AT32UC3A3

10.3.5 ADC

Sleep Mode activation needs additional A to D conversion
If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode
before after the next AD conversion.
Fix/Workaround
Activate the sleep mode in the mode register and then perform an AD conversion.

10.3.6 USART

ISO7816 info register US_NER cannot be read
The NER register always returns zero.
Fix/Workaround
None.

The LIN ID is not transmitted in mode PDCM='0'
Fix/Workaround
Using USART in mode LIN master with the PDCM bit = '0', the LINID written at the first
address of the transmit buffer is not used. The LINID must be written in the LINIR register,
after the configuration and start of the PDCA transfer. Writing the LINID in the LINIR register
will start the transfer whenever the PDCA transfer is ready.

The LINID interrupt is only available for the header reception and not available for the
header transmission
Fix/Workaround
None.

USART LIN mode is not functional with the PDCA if PDCM bit in LINMR register is set
to 1
If a PDCA transfer is initiated in USART LIN mode with PDCM bit set to 1, the transfer never
starts.
Fix/Workaround
Only use PDCM=0 configuration with the PDCA transfer.

The RTS output does not function correctly in hardware handshaking mode
The RTS signal is not generated properly when the USART receives data in hardware hand-
shaking mode. When the Peripheral DMA receive buffer becomes full, the RTS output
should go high, but it will stay low.
Fix/Workaround
Do not use the hardware handshaking mode of the USART. If it is necessary to drive the
RTS output high when the Peripheral DMA receive buffer becomes full, use the normal
mode of the USART. Configure the Peripheral DMA Controller to signal an interrupt when
the receive buffer is full. In the interrupt handler code, write a one to the RTSDIS bit in the
USART Control Register (CR). This will drive the RTS output high. After the next DMA trans-
fer is started and a receive buffer is available, write a one to the RTSEN bit in the USART
CR so that RTS will be driven low.

ISO7816 Mode T1: RX impossible after any TX
RX impossible after any TX.
Fix/Workaround
SOFT_RESET on RX+ Config US_MR + Config_US_CR.

