

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	66MHz
Connectivity	EBI/EMI, I ² C, IrDA, Memory Card, SPI, SSC, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, WDT
Number of I/O	110
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.75V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-TFBGA
Supplier Device Package	144-FFBGA (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at32uc3a3256s-ctur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

 Table 3-1.
 GPIO Controller Function Multiplexing

				G		-		GPIO fun	oction	-
				P		PIN				
BGA 144	QFP 144	BGA 100	PIN	0	Supply	(2)	A	В	С	D
C7	14	A4	PA30	30	VDDIO	x1	MCI - DATA[1]	USART3 - CLK	DMACA - DMAACK[0]	MSI - DATA[1]
B3	29	C2	PA31	31	VDDIO	x1	MCI - DATA[2]	USART2 - RXD	DMACA - DMARQ[0]	MSI - DATA[2]
A2	30	B1	PB00	32	VDDIO	x1	MCI - DATA[3]	USART2 - TXD	ADC - TRIGGER	MSI - DATA[3]
C4	27	B2	PB01	33	VDDIO	x1	MCI - DATA[4]	ABDAC - DATA[1]	EIC - SCAN[0]	MSI - INS
B4	25	B3	PB02	34	VDDIO	x1	MCI - DATA[5]	ABDAC - DATAN[1]	EIC - SCAN[1]	
A5	24	C4	PB03	35	VDDIO	x1	MCI - DATA[6]	USART2 - CLK	EIC - SCAN[2]	
B6	22	A3	PB04	36	VDDIO	x1	MCI - DATA[7]	USART3 - RXD	EIC - SCAN[3]	
H12	121	F7 ⁽¹⁾	PB05	37	VDDIO	x3	USB - ID	TC0 - A0	EIC - SCAN[4]	
D12	134	D7	PB06	38	VDDIO	x1	USB - VBOF	TC0 - B0	EIC - SCAN[5]	
D11	135	D6	PB07	39	VDDIO	x3	SPI1 - SPCK	SSC - TX_CLOCK	EIC - SCAN[6]	
C8	11	C6	PB08	40	VDDIO	x2	SPI1 - MISO	SSC - TX_DATA	EIC - SCAN[7]	
E7	17	C5	PB09	41	VDDIO	x2	SPI1 - NPCS[0]	SSC - RX_DATA	EBI - NCS[4]	
D7	16	D5	PB10	42	VDDIO	x2	SPI1 - MOSI	SSC - RX_FRAME_SYNC	EBI - NCS[5]	
B2	31	C1	PB11	43	VDDIO	x1	USART1 - RXD	SSC - TX_FRAME_SYNC	PM - GCLK[1]	
K5	98	K5 ⁽¹⁾	PC00	45	VDDIO	x1				
H6	99	K6	PC01	46	VDDIO	x1				
A7	18	A5	PC02	47	VDDIO	x1				
B7	19	A6	PC03	48	VDDIO	x1				
A8	13	B7	PC04	49	VDDIO	x1				
A9	12	A7	PC05	50	VDDIO	x1				
G1	55	G4	PX00	51	VDDIO	x2	EBI - DATA[10]	USART0 - RXD	USART1 - RI	
H1	59	G2	PX01	52	VDDIO	x2	EBI - DATA[9]	USART0 - TXD	USART1 - DTR	
J2	62	G3	PX02	53	VDDIO	x2	EBI - DATA[8]	USART0 - CTS	PM - GCLK[0]	
K1	63	J1	PX03	54	VDDIO	x2	EBI - DATA[7]	USART0 - RTS		
J1	60	H1	PX04	55	VDDIO	x2	EBI - DATA[6]	USART1 - RXD		
G2	58	G1	PX05	56	VDDIO	x2	EBI - DATA[5]	USART1 - TXD		
F3	53	F3	PX06	57	VDDIO	x2	EBI - DATA[4]	USART1 - CTS		
F2	54	F4	PX07	58	VDDIO	x2	EBI - DATA[3]	USART1 - RTS		
D1	50	E3	PX08	59	VDDIO	x2	EBI - DATA[2]	USART3 - RXD		
C1	49	E4	PX09	60	VDDIO	x2	EBI - DATA[1]	USART3 - TXD		
B1	37	D2	PX10	61	VDDIO	x2	EBI - DATA[0]	USART2 - RXD		
L1	67	K7 ⁽¹⁾	PX11	62	VDDIO	x2	EBI - NWE1	USART2 - TXD		
D6	34	D1	PX12	63	VDDIO	x2	EBI - NWE0	USART2 - CTS	MCI - CLK	
C6	33	D3	PX13	64	VDDIO	x2	EBI - NRD	USART2 - RTS	MCI - CLK	
M4	68	K5 ⁽¹⁾	PX14	65	VDDIO	x2	EBI - NCS[1]		TC0 - A0	
E6	40	K4 ⁽¹⁾	PX15	66	VDDIO	x2	EBI - ADDR[19]	USART3 - RTS	TC0 - B0	
C5	32	D4 ⁽¹⁾	PX16	67	VDDIO	x2	EBI - ADDR[18]	USART3 - CTS	TC0 - A1	
K6	83	J10 ⁽¹⁾	PX17	68	VDDIO	x2	EBI - ADDR[17]	DMACA - DMARQ[1]	TC0 - B1	

Table 3-1.	GPIO Controller Function Multiplexing
------------	---------------------------------------

				G			GPIO function				
				Р		PIN					
BGA	QFP	BGA		I		Туре					
144	144	100	PIN	0	Supply	(2)	Α	В	С	D	
J4	78		PX56	107	VDDIO	x2	EBI - ADDR[21]	EIC - SCAN[2]	USART2 - TXD		
H4	76		PX57	108	VDDIO	x2	EBI - ADDR[20]	EIC - SCAN[1]	USART3 - RXD		
H3	57		PX58	109	VDDIO	x2	EBI - NCS[0]	EIC - SCAN[0]	USART3 - TXD		
G3	56	F1 ⁽¹⁾	PX59	110	VDDIO	x2	EBI - NANDWE		MCI - CMD[1]		

Note: 1. Those balls are physically connected to 2 GPIOs. Software must managed carrefully the GPIO configuration to avoid electrical conflict.

2. Refer to "Electrical Characteristics" on page 40 for a description of the electrical properties of the pad types used..

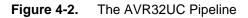
3.2.2 Peripheral Functions

Each GPIO line can be assigned to one of several peripheral functions. The following table describes how the various peripheral functions are selected. The last listed function has priority in case multiple functions are enabled on the same pin.

Table 3-2. Per	ipheral Functions
----------------	-------------------

Function	Description
GPIO Controller Function multiplexing	GPIO and GPIO peripheral selection A to D
Nexus OCD AUX port connections	OCD trace system
JTAG port connections	JTAG debug port
Oscillators	OSC0, OSC1, OSC32

3.2.3 Oscillator Pinout


The oscillators are not mapped to the normal GPIO functions and their muxings are controlled by registers in the Power Mananger (PM). Please refer to the PM chapter for more information about this.

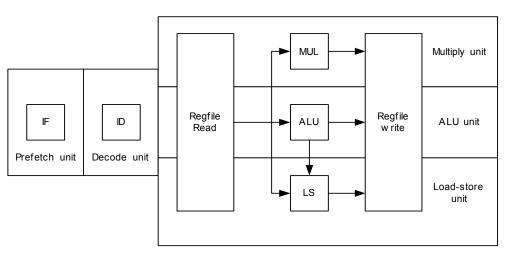

TFBGA144	QFP144	VFBGA100	Pin name	Oscillator pin
A7	18	A5	PC02	XIN0
B7	19	A6	PC03	XOUT0
A8	13	B7	PC04	XIN1
A9	12	A7	PC05	XOUT1
K5	98	K5 ⁽¹⁾	PC00	XIN32
H6	99	K6	PC01	XOUT32

Table 3-3.Oscillator Pinout

Note: 1. This ball is physically connected to 2 GPIOs. Software must managed carrefully the GPIO configuration to avoid electrical conflict

4.3.2 AVR32A Microarchitecture Compliance

AVR32UC implements an AVR32A microarchitecture. The AVR32A microarchitecture is targeted at cost-sensitive, lower-end applications like smaller microcontrollers. This microarchitecture does not provide dedicated hardware registers for shadowing of register file registers in interrupt contexts. Additionally, it does not provide hardware registers for the return address registers and return status registers. Instead, all this information is stored on the system stack. This saves chip area at the expense of slower interrupt handling.

Upon interrupt initiation, registers R8-R12 are automatically pushed to the system stack. These registers are pushed regardless of the priority level of the pending interrupt. The return address and status register are also automatically pushed to stack. The interrupt handler can therefore use R8-R12 freely. Upon interrupt completion, the old R8-R12 registers and status register are restored, and execution continues at the return address stored popped from stack.

The stack is also used to store the status register and return address for exceptions and *scall*. Executing the *rete* or *rets* instruction at the completion of an exception or system call will pop this status register and continue execution at the popped return address.

4.3.3 Java Support

AVR32UC does not provide Java hardware acceleration.

4.3.4 Memory Protection

The MPU allows the user to check all memory accesses for privilege violations. If an access is attempted to an illegal memory address, the access is aborted and an exception is taken. The MPU in AVR32UC is specified in the AVR32UC Technical Reference manual.

4.3.5 Unaligned Reference Handling

AVR32UC does not support unaligned accesses, except for doubleword accesses. AVR32UC is able to perform word-aligned *st.d* and *ld.d*. Any other unaligned memory access will cause an address exception. Doubleword-sized accesses with word-aligned pointers will automatically be performed as two word-sized accesses.

The following table shows the instructions with support for unaligned addresses. All other instructions require aligned addresses.

Table 4-1. Instructions with Unaligned Reference Support

Instruction	Supported alignment
ld.d	Word
st.d	Word

4.3.6 Unimplemented Instructions

The following instructions are unimplemented in AVR32UC, and will cause an Unimplemented Instruction Exception if executed:

- All SIMD instructions
- All coprocessor instructions if no coprocessors are present
- retj, incjosp, popjc, pushjc
- tlbr, tlbs, tlbw
- cache

4.3.7 CPU and Architecture Revision

Three major revisions of the AVR32UC CPU currently exist.

The Architecture Revision field in the CONFIG0 system register identifies which architecture revision is implemented in a specific device.

AVR32UC CPU revision 3 is fully backward-compatible with revisions 1 and 2, ie. code compiled for revision 1 or 2 is binary-compatible with revision 3 CPUs.

All interrupt levels are by default disabled when debug state is entered, but they can individually be switched on by the monitor routine by clearing the respective mask bit in the status register.

Debug state can be entered as described in the AVR32UC Technical Reference Manual.

Debug state is exited by the retd instruction.

4.4.4 System Registers

The system registers are placed outside of the virtual memory space, and are only accessible using the privileged *mfsr* and *mtsr* instructions. The table below lists the system registers specified in the AVR32 architecture, some of which are unused in AVR32UC. The programmer is responsible for maintaining correct sequencing of any instructions following a *mtsr* instruction. For detail on the system registers, refer to the *AVR32UC Technical Reference Manual*.

Table 4-3.	System R	egisters	
Reg #	Address	Name	Function
0	0	SR	Status Register
1	4	EVBA	Exception Vector Base Address
2	8	ACBA	Application Call Base Address
3	12	CPUCR	CPU Control Register
4	16	ECR	Exception Cause Register
5	20	RSR_SUP	Unused in AVR32UC
6	24	RSR_INT0	Unused in AVR32UC
7	28	RSR_INT1	Unused in AVR32UC
8	32	RSR_INT2	Unused in AVR32UC
9	36	RSR_INT3	Unused in AVR32UC
10	40	RSR_EX	Unused in AVR32UC
11	44	RSR_NMI	Unused in AVR32UC
12	48	RSR_DBG	Return Status Register for Debug mode
13	52	RAR_SUP	Unused in AVR32UC
14	56	RAR_INT0	Unused in AVR32UC
15	60	RAR_INT1	Unused in AVR32UC
16	64	RAR_INT2	Unused in AVR32UC
17	68	RAR_INT3	Unused in AVR32UC
18	72	RAR_EX	Unused in AVR32UC
19	76	RAR_NMI	Unused in AVR32UC
20	80	RAR_DBG	Return Address Register for Debug mode
21	84	JECR	Unused in AVR32UC
22	88	JOSP	Unused in AVR32UC
23	92	JAVA_LV0	Unused in AVR32UC
24	96	JAVA_LV1	Unused in AVR32UC
25	100	JAVA_LV2	Unused in AVR32UC

Table 4-3.System Registers

AT32UC3A3

Priority	Handler Address	Name	Event source	Stored Return Address
1	0x8000_0000	Reset	External input	Undefined
2	Provided by OCD system	OCD Stop CPU	OCD system	First non-completed instruction
3	EVBA+0x00	Unrecoverable exception	Internal	PC of offending instruction
4	EVBA+0x04	TLB multiple hit	MPU	
5	EVBA+0x08	Bus error data fetch	Data bus	First non-completed instruction
6	EVBA+0x0C	Bus error instruction fetch	Data bus	First non-completed instruction
7	EVBA+0x10	NMI	External input	First non-completed instruction
8	Autovectored	Interrupt 3 request	External input	First non-completed instruction
9	Autovectored	Interrupt 2 request	External input	First non-completed instruction
10	Autovectored	Interrupt 1 request	External input	First non-completed instruction
11	Autovectored	Interrupt 0 request	External input	First non-completed instruction
12	EVBA+0x14	Instruction Address	CPU	PC of offending instruction
13	EVBA+0x50	ITLB Miss	MPU	
14	EVBA+0x18	ITLB Protection	MPU	PC of offending instruction
15	EVBA+0x1C	Breakpoint	OCD system	First non-completed instruction
16	EVBA+0x20	Illegal Opcode	Instruction	PC of offending instruction
17	EVBA+0x24	Unimplemented instruction	Instruction	PC of offending instruction
18	EVBA+0x28	Privilege violation	Instruction	PC of offending instruction
19	EVBA+0x2C	Floating-point	UNUSED	
20	EVBA+0x30	Coprocessor absent	Instruction	PC of offending instruction
21	EVBA+0x100	Supervisor call	Instruction	PC(Supervisor Call) +2
22	EVBA+0x34	Data Address (Read)	CPU	PC of offending instruction
23	EVBA+0x38	Data Address (Write)	CPU	PC of offending instruction
24	EVBA+0x60	DTLB Miss (Read)	MPU	
25	EVBA+0x70	DTLB Miss (Write)	MPU	
26	EVBA+0x3C	DTLB Protection (Read)	MPU	PC of offending instruction
27	EVBA+0x40	DTLB Protection (Write)	MPU	PC of offending instruction
28	EVBA+0x44	DTLB Modified	UNUSED	

Table 4-4. Priority and Handler Addresses for Events

7. Electrical Characteristics

7.1 Absolute Maximum Ratings*

Operating Temperature40°C to +85°C
Storage Temperature60°C to +150°C
Voltage on Input Pin with respect to Ground0.3V to 3.6V
Maximum Operating Voltage (VDDCORE) 1.95V
Maximum Operating Voltage (VDDIO)
Total DC Output Current on all I/O Pin for TQFP144 package

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

AT32UC3A3

7.2 DC Characteristics

The following characteristics are applicable to the operating temperature range: $T_A = -40^{\circ}C$ to 85°C, unless otherwise specified and are certified for a junction temperature up to $T_J = 100^{\circ}C$.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
VVDDIO	DC Supply Peripheral I/Os			3.0		3.6	V
Vvddana	DC Analog Supply			3.0		3.6	V
		All I/O pins except TWO RESET_N, TCK, TDI	CK, TWD,	-0.3		+0.8	V
V _{IL}	Input Low-level Voltage	TWCK, TWD		V _{VDDIO} x0.7		V _{VDDIO} +0.5	V
		RESET_N, TCK, TDI	RESET_N, TCK, TDI				V
	langet likely langel Maltage	All I/O pins except TWO	CK, TWD	2.0		3.6	V
V _{IH}	Input High-level Voltage	TWCK, TWD					V
V _{OL}	Output Low-level Voltage	I _{OL} = -4mA for Pin drive	$I_{OL} = -2mA$ for Pin drive x1 $I_{OL} = -4mA$ for Pin drive x2 $I_{OL} = -8mA$ for Pin drive x3			0.4	V
V _{OH}	Output High-level Voltage		$I_{OH} = 2mA$ for Pin drive x1 $I_{OH} = 4mA$ for Pin drive x2 $I_{OH} = 8mA$ for Pin drive x3				V
I _{LEAK}	Input Leakage Current	Pullup resistors disable	d		0.05	1	μA
C _{IN}	Input Capacitance				7		pF
R _{PULLUP}	Pull-up Resistance	All I/O pins except RES TDI, TMS	ET_N, TCK,	9	15	25	KΩ
1 OLLOI		RESET_N, TCK, TDI, 1	RESET_N, TCK, TDI, TMS			25	KΩ
۱ ₀	Output Current Pin drive 1x Pin drive 2x Pin drive 3x					2.0 4.0 8.0	mA
1	Static Current	On V _{VDDIN} = 3.3V,	$T_A = 25^{\circ}C$		30		μA
I _{SC}		CPU in static mode	T _A = 85°C		175		μA

Table 7-1.	DC Characteristics
------------	--------------------

7.2.1 I/O Pin Output Level Typical Characteristics

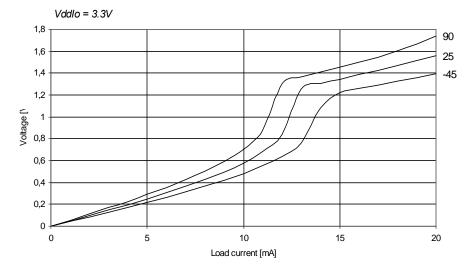
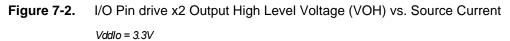
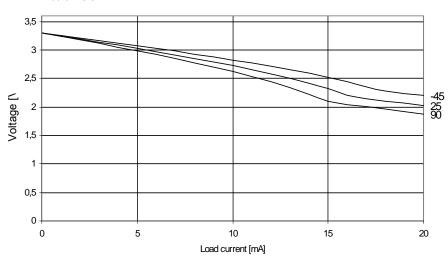




Figure 7-1.I/O Pin drive x2 Output Low Level Voltage (VOL) vs. Source Current

7.3 I/O pin Characteristics

These parameters are given in the following conditions:

- V_{DDCORE} = 1.8V
- V_{DDIO} = 3.3V
- Ambient Temperature = 25°C

Table 7-9.BOD Timing

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
T _{BOD}	Minimum time with VDDCORE < VBOD to detect power failure	Falling VDDCORE from 1.8V to 1.1V		300	800	ns

7.5.3 Reset Sequence

Table 7-10. Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{DDRR}	VDDIN/VDDIO rise rate to ensure power-on-reset		0.8			V/ms
V _{POR+}	Rising threshold voltage: voltage up to which device is kept under reset by POR on rising VDDIN	Rising VDDIN: V _{RESTART} -> V _{POR+}		2.7		V
V _{POR-}	Falling threshold voltage: voltage when POR resets device on falling VDDIN	Falling VDDIN: 3.3V -> V _{POR-}		2.7		V
V _{RESTART}	On falling VDDIN, voltage must go down to this value before supply can rise again to ensure reset signal is released at V _{POR+}	Falling VDDIN: 3.3V -> V _{RESTART}			0.2	V
T _{SSU1}	Time for Cold System Startup: Time for CPU to fetch its first instruction (RCosc not calibrated)		480		960	μs
T _{SSU2}	Time for Hot System Startup: Time for CPU to fetch its first instruction (RCosc calibrated)			420		μs

Peripheral	Тур.	Unit
ADC	7	
AES	80	_
ABDAC	10	
DMACA	70	_
EBI	23	_
EIC	0.5	
GPIO	37	
INTC	3	
MCI	40	
MSI	10	
PDCA	20	
SDRAM	5	μA/MHz
SMC	9	
SPI	6	
SSC	10	
RTC	5	_
тс	8	_
TWIM	2	
TWIS	2	
USART	10	
USBB	90	
WDT	2	

 Table 7-13.
 Typical Cuurent Consumption by Peripheral

Table 7-32. SMC Read Signals with no Hold Settings

Symbol	Parameter	Min.	Unit
	NRD Controlled (REA	D_MODE = 1)	
SMC ₁₉	Data Setup before NRD High	13.7	ns
SMC ₂₀	Data Hold after NRD High	1	
	NRD Controlled (REA	D_MODE = 0)	
SMC ₂₁	Data Setup before NCS High	13.3	ns
SMC ₂₂	Data Hold after NCS High	0	ns

 Table 7-33.
 SMC Write Signals with Hold Settings

Symbol	Parameter	Min.		
	NRD Controlled (RE	AD_MODE = 1)		
SMC ₂₃	SMC ₂₃ Data Out Valid before NWE High (nwe pulse length - 1) * t _{CPSMC} - 0.9		ns	
SMC ₂₄	Data Out Valid after NWE High ⁽¹⁾	nwe hold length * t _{CPSMC} - 6	ns	
SMC ₂₅	NWE High to NBS0/A0 Change ⁽¹⁾	nwe hold length * t _{CPSMC} - 1.9	ns	
SMC ₂₆ NWE High to NBS1 Change ⁽¹⁾ nwe hold length * t _{CPSMC} - 1.9		nwe hold length * t _{CPSMC} - 1.9	ns	
SMC ₂₉	NWE High to A1 Change ⁽¹⁾	nwe hold length * t _{CPSMC} - 1.9	ns	
SMC ₃₁	NWE High to A2 - A23 Change ⁽¹⁾	nwe hold length * t _{CPSMC} - 1.7	ns	
SMC ₃₂	MC ₃₂ NWE High to NCS Inactive ⁽¹⁾ (nwe hold length - ncs wr hold length)* t _{CPSMC} - 2.9		ns	
SMC ₃₃	NWE Pulse Width	nwe pulse length * t _{CPSMC} - 0.9	ns	
	NRD Controlled (RE	AD_MODE = 0)		
SMC ₃₄	Data Out Valid before NCS High	(ncs wr pulse length - 1)* t _{CPSMC} - 4.6	ns	
SMC ₃₅	Data Out Valid after NCS High ⁽¹⁾	ncs wr hold length * t _{CPSMC} - 5.8	ns	
SMC ₃₆	NCS High to NWE Inactive ⁽¹⁾	(ncs wr hold length - nwe hold length)* t _{CPSMC} - 0.6		

Note: 1. hold length = total cycle duration - setup duration - pulse duration. "hold length" is for "ncs wr hold length" or "nwe hold length"

Table 7-34.	SMC Write Signals with No Hold Settings (NWE Controlled only)

Symbol	Parameter	Min.	Unit
SMC ₃₇	NWE Rising to A2-A25 Valid	5.4	ns
SMC ₃₈	NWE Rising to NBS0/A0 Valid	5	ns
SMC ₃₉	NWE Rising to NBS1 Change	5	ns
SMC ₄₀	NWE Rising to A1/NBS2 Change	5	ns
SMC ₄₁	NWE Rising to NBS3 Change	5	ns
SMC ₄₂	NWE Rising to NCS Rising	5.1	ns

Table 7-38. SPI Timings

Symbol	Parameter	Conditions ⁽¹⁾	Min.	Max.	Unit
SPI ₀	MISO Setup time before SPCK rises (master)	3.3V domain	22 + (t _{СРМСК})/2 ⁽²⁾		ns
SPI1	MISO Hold time after SPCK rises (master)	3.3V domain	0		ns
SPI ₂	SPCK rising to MOSI Delay (master)	3.3V domain		7	ns
SPI ₃	MISO Setup time before SPCK <u>falls</u> (master)	3.3V domain	22 + (t _{CPMCK})/2 ⁽³⁾		ns
SPI ₄	MISO Hold time after SPCK falls (master)	3.3V domain	0		ns
SPI ₅	SPCK falling to MOSI Delay master)	3.3V domain		7	ns
SPI ₆	SPCK falling to MISO Delay (slave)	3.3V domain		26.5	ns
SPI7	MOSI Setup time before SPCK rises (slave)	3.3V domain	0		ns
SPI ₈	MOSI Hold time after SPCK rises (slave)	3.3V domain	1.5		ns
SPI ₉	SPCK rising to MISO Delay (slave)	3.3V domain		27	ns
SPI ₁₀	MOSI Setup time before SPCK falls (slave)	3.3V domain	0		ns
SPI ₁₁	MOSI Hold time after SPCK falls (slave)	3.3V domain	1		ns

1. 3.3V domain: V_{VDDIO} from 3.0V to 3.6V, maximum external capacitor = 40 pF

2. t_{CPMCK}: Master Clock period in ns.

3. t_{CPMCK}: Master Clock period in ns.

7.14 MCI

The High Speed MultiMedia Card Interface (MCI) sup<u>por</u>ts the MultiMedia Card (MMC) Specification V4.2, the SD Memory Card Specification V2.0, the SDIO V1.1 specification and CE-ATA V1.1.

Тур

40.3

9.5

28.5

6.9

31.1

6.9

TFBGA144

TFBGA144

VFBGA100

VFBGA100

Unit

°C/W

°C/W

°C/W

8. Mechanical Characteristics

8.1 Thermal Considerations

8.1.1 Thermal Data

Table 8-1 summarizes the thermal resistance data depending on the package.

Symbol Parameter		Parameter	Condition	Package
	θ_{JA}	Junction-to-ambient thermal resistance	Still Air	TQFP144
	θ_{JC}	Junction-to-case thermal resistance		TQFP144

Junction-to-ambient thermal resistance

Junction-to-ambient thermal resistance

Junction-to-case thermal resistance

Junction-to-case thermal resistance

Table 8-1.Thermal Resistance Data

8.1.2 Junction Temperature

The average chip-junction temperature, T_J, in °C can be obtained from the following:

$$1. \quad T_J = T_A + (P_D \times \theta_{JA})$$

2.
$$T_J = T_A + (P_D \times (\theta_{HEATSINK} + \theta_{JC}))$$

where:

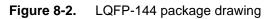
 θ_{JA}

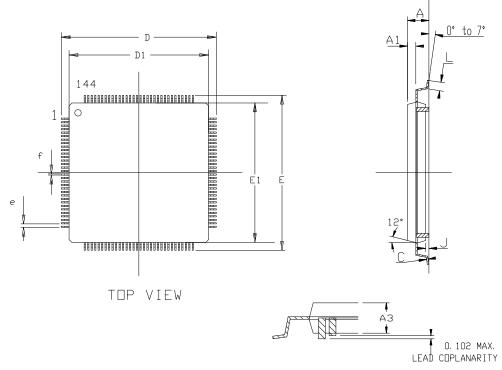
 θ_{JC}

 θ_{JA}

 θ_{JC}

θ_{JA} = package thermal resistance, Junction-to-ambient (°C/W), provided in Table 8-1 on page 68.


Still Air


Still Air

- θ_{JC} = package thermal resistance, Junction-to-case thermal resistance (°C/W), provided in Table 8-1 on page 68.
- $\theta_{HEAT SINK}$ = cooling device thermal resistance (°C/W), provided in the device datasheet.
- P_D = device power consumption (W) estimated from data provided in the section "Regulator characteristics" on page 43.
- T_A = ambient temperature (°C).

From the first equation, the user can derive the estimated lifetime of the chip and decide if a cooling device is necessary or not. If a cooling device is to be fitted on the chip, the second equation should be used to compute the resulting average chip-junction temperature T_J in °C.

	Min	MM Nom	Max	Min	INCH Nom	Max
Α	-	-	1.60	-	-	. 063
С	0, 09	-	0. 20	. 004	-	, 008
A3	1. 35	1.40	1.45	. 053	. 055	. 057
D	21.90	22. 00	22, 10	. 862	. 866	. 870
D 1	19.90	20. 00	20.10	. 783	. 787	. 791
E	21.90	22. 00	22. 10	. 862	. 866	. 870
E 1	19.90	20. 00	20. 10	. 783	. 787	. 791
J	0, 05	-	0.15	. 002	-	. 006
L	0, 45	0, 60	0, 75	. 018	. 024	. 030
e		0.50 BSC			,0197 BSC	
f		0.22 BSC			,009 BSC	

Table 8-2. Device and Package Maximum Weight

1300		mg
Table 8-3.	Package Characteristics	

Moisture Sensitivity Level MSL3

Table 8-4. Package Reference

JEDEC Drawing Reference	MS-026
JESD97 Classification	E3

		For higher polling time, the software must freeze the pipe for the desired period in order to prevent any "extra" token.
10.1.5	ADC	
		 Sleep Mode activation needs additional A to D conversion If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode before after the next AD conversion. Fix/Workaround Activate the sleep mode in the mode register and then perform an AD conversion.
10.1.6	USART	
		ISO7816 info register US_NER cannot be read The NER register always returns zero. Fix/Workaround None.
		The LIN ID is not transmitted in mode PDCM='0'
		Fix/Workaround Using USART in mode LIN master with the PDCM bit = '0', the LINID written at the first address of the transmit buffer is not used. The LINID must be written in the LINIR register, after the configuration and start of the PDCA transfer. Writing the LINID in the LINIR register will start the transfer whenever the PDCA transfer is ready.
		The LINID interrupt is only available for the header reception and not available for the header transmission Fix/Workaround None.
		USART LIN mode is not functional with the PDCA if PDCM bit in LINMR register is set
		to 1 If a PDCA transfer is initiated in USART LIN mode with PDCM bit set to 1, the transfer never starts. Fix/Workaround
		Only use PDCM=0 configuration with the PDCA transfer.
10.1.7	SPI	
		 SPI disable does not work in SLAVE mode SPI disable does not work in SLAVE mode. Fix/Workaround Read the last received data, then perform a software reset by writing a one to the Software Reset bit in the Control Register (CR.SWRST).
		SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and NCPHA=0 When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one (CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0, then an additional pulse will be generated on SCK. Fix/Workaround When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1

if CSRn.CPOL=1 and CSRn.NCPHA=0.

SPI data transfer hangs with CSR0.CSAAT==1 and MR.MODFDIS==0

When CSR0.CSAAT==1 and mode fault detection is enabled (MR.MODFDIS==0), the SPI module will not start a data transfer.

Fix/Workaround

Disable mode fault detection by writing a one to MR.MODFDIS.

Disabling SPI has no effect on the SR.TDRE bit

Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer is empty, and this data will be lost.

Fix/Workaround

Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the SPI and PDCA.

10.1.8 Power Manager

OSC32 not functionnal in Crystal Modes (OSC32CTRL.MODE=1 or OSC32CTRL.MODE=2)

OSC32 clock output is not active even if the oscillation signal is present on XIN32/XOUT32 pins.

OSC32RDY bit may still set even if the CLK32 is not active.

External clock mode (OSC32CTRL.MODE=0) is not affected.

Fix/Workaround

None.

Clock sources will not be stopped in STATIC sleep mode if the difference between CPU and PBx division factor is too high

If the division factor between the CPU/HSB and PBx frequencies is more than 4 when going to a sleep mode where the system RC oscillator is turned off, then high speed clock sources will not be turned off. This will result in a significantly higher power consumption during the sleep mode.

Fix/Workaround

Before going to sleep modes where the system RC oscillator is stopped, make sure that the factor between the CPU/HSB and PBx frequencies is less than or equal to 4.

10.1.9 PDCA

PCONTROL.CHxRES is non-functional

PCONTROL.CHxRES is non-functional. Counters are reset at power-on, and cannot be reset by software.

Fix/Workaround

Software needs to keep history of performance counters.

Transfer error will stall a transmit peripheral handshake interface

If a transfer error is encountered on a channel transmitting to a peripheral, the peripheral handshake of the active channel will stall and the PDCA will not do any more transfers on the affected peripheral handshake interface.

Fix/Workaround

Disable and then enable the peripheral after the transfer error.

When the main clock is generated from RCSYS, TIMER_CLOCK5 is equal to PBA Clock and not PBA Clock / 128.

Fix/Workaround None.

RETE instruction does not clear SREG[L] from interrupts

The RETE instruction clears SREG[L] as expected from exceptions.

Fix/Workaround

When using the STCOND instruction, clear SREG[L] in the stacked value of SR before returning from interrupts with RETE.

RETS behaves incorrectly when MPU is enabled

RETS behaves incorrectly when MPU is enabled and MPU is configured so that system stack is not readable in unprivileged mode.

Fix/Workaround

Make system stack readable in unprivileged mode, or return from supervisor mode using rete instead of rets. This requires:

1. Changing the mode bits from 001 to 110 before issuing the instruction. Updating the mode bits to the desired value must be done using a single mtsr instruction so it is done atomically. Even if this step is generally described as not safe in the UC technical reference manual, it is safe in this very specific case.

2. Execute the RETE instruction.

In the PRAS and PRBS registers, the MxPR fields are only two bits

In the PRAS and PRBS registers, the MxPR fields are only two bits wide, instead of four bits. The unused bits are undefined when reading the registers.

Fix/Workaround

Mask undefined bits when reading PRAS and PRBS.

Multiply instructions do not work on RevD

All the multiply instructions do not work. **Fix/Workaround** Do not use the multiply instructions.

10.3.3 MPU

Privilege violation when using interrupts in application mode with protected system stack

If the system stack is protected by the MPU and an interrupt occurs in application mode, an MPU DTLB exception will occur.

Fix/Workaround

Make a DTLB Protection (Write) exception handler which permits the interrupt request to be handled in privileged mode.

10.3.4 USB

UPCFGn.INTFRQ is irrelevant for isochronous pipe

As a consequence, isochronous IN and OUT tokens are sent every 1ms (Full Speed), or every 125uS (High Speed).

Fix/Workaround

For higher polling time, the software must freeze the pipe for the desired period in order to prevent any "extra" token.

11. Datasheet Revision History						
		Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.				
11.1	Rev. H– 10/12					
		1.	Updated max frequency			
		2.	Added Flash Read High Speed Mode description in FLASHC chapter			
		3.	Updated Electrical Characteristics accordingly to new max frequency			
		4.	Fixed wrong description of PLLOPT[0] in PM chapter			
		5.	Updated Errata section according to new maximum frequency			
		6.	Added USB hi-speed PLL electrical characteristics			
		7	Added OSC32 Errata in Power Management sections for Rev D,E and H			
11.2	Rev. G– 11/11					
		1.	Add recommandation for MCI connection with more than 1 slot			
11.3	Rev. F – 08/11					
		1.	Final version			
11.4	Rev. E – 06/11					
		1.	Updated Errata for E and D			
		2.	Updated FLASHC chapter with HSEN and HSDIS commands			
11.5	Rev. D – 04/11					
		1.	Updated Errata for revision H and E			
		2.	Updated Reset Sequence			
		3.	Updated Peripherals' current consumption and others minor electrical charateristics			
		4.	Updated Peripherals chapters			
11.6	Rev. C – 03/10)				

1. Updated the datasheet with new revision H features.

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: (+1)(408) 441-0311 Fax: (+1)(408) 487-2600 www.atmel.com Atmel Asia Limited Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon HONG KONG Tel: (+852) 2245-6100 Fax: (+852) 2722-1369 Atmel Munich GmbH Business Campus Parkring 4 D-85748 Garching b. Munich GERMANY Tel: (+49) 89-31970-0 Fax: (+49) 89-3194621

Atmel Japan

16F, Shin Osaki Kangyo Bldg. 1-6-4 Osaka Shinagawa-ku Tokyo 104-0032 JAPAN Tel: (+81) 3-6417-0300 Fax: (+81) 3-6417-0370

© 2012 Atmel Corporation. All rights reserved.

Atmel[®], Atmel logo and combinations thereof AVR[®], Qtouch[®], and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIFCT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROF-ITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.