

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	66MHz
Connectivity	EBI/EMI, I ² C, IrDA, Memory Card, SPI, SSC, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, WDT
Number of I/O	110
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.75V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-TFBGA
Supplier Device Package	144-FFBGA (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at32uc3a364-ctur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Description

The AT32UC3A3/A4 is a complete System-On-Chip microcontroller based on the AVR32 UC RISC processor running at frequencies up to 84MHz. AVR32 UC is a high-performance 32-bit RISC microprocessor core, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption, high code density and high performance.

The processor implements a Memory Protection Unit (MPU) and a fast and flexible interrupt controller for supporting modern operating systems and real-time operating systems. Higher computation capabilities are achievable using a rich set of DSP instructions.

The AT32UC3A3/A4 incorporates on-chip Flash and SRAM memories for secure and fast access. 64 KBytes of SRAM are directly coupled to the AVR32 UC for performances optimization. Two blocks of 32 Kbytes SRAM are independently attached to the High Speed Bus Matrix, allowing real ping-pong management.

The Peripheral Direct Memory Access Controller (PDCA) enables data transfers between peripherals and memories without processor involvement. The PDCA drastically reduces processing overhead when transferring continuous and large data streams.

The Power Manager improves design flexibility and security: the on-chip Brown-Out Detector monitors the power supply, the CPU runs from the on-chip RC oscillator or from one of external oscillator sources, a Real-Time Clock and its associated timer keeps track of the time.

The device includes two sets of three identical 16-bit Timer/Counter (TC) channels. Each channel can be independently programmed to perform frequency measurement, event counting, interval measurement, pulse generation, delay timing and pulse width modulation. 16-bit channels are combined to operate as 32-bit channels.

The AT32UC3A3/A4 also features many communication interfaces for communication intensive applications like UART, SPI or TWI. The USART supports different communication modes, like SPI Mode and LIN Mode. Additionally, a flexible Synchronous Serial Controller (SSC) is available. The SSC provides easy access to serial communication protocols and audio standards like I2S.

The AT32UC3A3/A4 includes a powerfull External Bus Interface to interface all standard memory device like SRAM, SDRAM, NAND Flash or parallel interfaces like LCD Module.

The peripheral set includes a High Speed MCI for SDIO/SD/MMC and a hardware encryption module based on AES algorithm.

The device embeds a 10-bit ADC and a Digital Audio bistream DAC.

The Direct Memory Access controller (DMACA) allows high bandwidth data flows between high speed peripherals (USB, External Memories, MMC, SDIO, ...) and through high speed internal features (AES, internal memories).

The High-Speed (480MBit/s) USB 2.0 Device and Host interface supports several USB Classes at the same time thanks to the rich Endpoint configuration. The Embedded Host interface allows device like a USB Flash disk or a USB printer to be directly connected to the processor. This periphal has its own dedicated DMA and is perfect for Mass Storage application.

AT32UC3A3/A4 integrates a class 2+ Nexus 2.0 On-Chip Debug (OCD) System, with non-intrusive real-time trace, full-speed read/write memory access in addition to basic runtime control.

2.2 Configuration Summary

The table below lists all AT32UC3A3/A4 memory and package configurations:

Feature	AT32UC3A3256/128/64	AT32UC3A4256/128/64	
Flash		8/64 KB	
SRAM	64	КВ	
HSB RAM	64	КВ	
EBI	Full	Nand flash only	
GPIO	110	70	
External Interrupts	8	8	
TWI	2	2	
USART		4	
Peripheral DMA Channels	8	8	
Generic DMA Channels		4	
SPI	2	2	
MCI slots	2 MMC/SD slots	1 MMC/SD slot + 1 SD slot	
High Speed USB		1	
AES (S option)		1	
SSC		1	
Audio Bitstream DAC		1	
Timer/Counter Channels	(6	
Watchdog Timer		1	
Real-Time Clock Timer		1	
Power Manager		1	
Oscillators	Crystal Oscillators 0.4- Crystal Oscillator	Hz (PLL0/PLL1) 20 MHz (OSC0/OSC1) 32 KHz (OSC32K) 15 kHz (RCSYS)	
10-bit ADC number of channels	1 8		
JTAG	1		
Max Frequency	84 1	MHz	
Package	LQFP144, TFBGA144	VFBGA100	

Table 2-1.Configuration Summary

3.4 I/O Line Considerations

3.4.1 JTAG Pins

TMS and TDI pins have pull-up resistors. TDO pin is an output, driven at up to VDDIO, and has no pull-up resistor.

3.4.2 RESET_N Pin

The RESET_N pin is a schmitt input and integrates a permanent pull-up resistor to VDDIO. As the product integrates a power-on reset cell, the RESET_N pin can be left unconnected in case no reset from the system needs to be applied to the product.

3.4.3 TWI Pins

When these pins are used for TWI, the pins are open-drain outputs with slew-rate limitation and inputs with inputs with spike filtering. When used as GPIO pins or used for other peripherals, the pins have the same characteristics as other GPIO pins.

3.4.4 GPIO Pins

All the I/O lines integrate a programmable pull-up resistor. Programming of this pull-up resistor is performed independently for each I/O line through the I/O Controller. After reset, I/O lines default as inputs with pull-up resistors disabled, except when indicated otherwise in the column "Reset State" of the I/O Controller multiplexing tables.

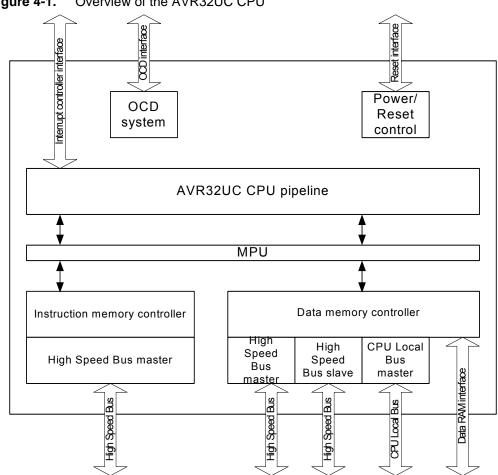
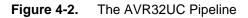
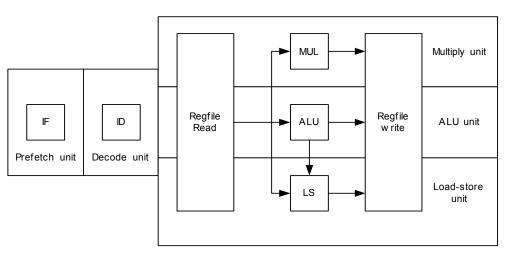


Figure 4-1. Overview of the AVR32UC CPU


4.3.1 Pipeline Overview


AVR32UC has three pipeline stages, Instruction Fetch (IF), Instruction Decode (ID), and Instruction Execute (EX). The EX stage is split into three parallel subsections, one arithmetic/logic (ALU) section, one multiply (MUL) section, and one load/store (LS) section.

Instructions are issued and complete in order. Certain operations require several clock cycles to complete, and in this case, the instruction resides in the ID and EX stages for the required number of clock cycles. Since there is only three pipeline stages, no internal data forwarding is required, and no data dependencies can arise in the pipeline.

Figure 4-2 on page 24 shows an overview of the AVR32UC pipeline stages.

4.3.2 AVR32A Microarchitecture Compliance

AVR32UC implements an AVR32A microarchitecture. The AVR32A microarchitecture is targeted at cost-sensitive, lower-end applications like smaller microcontrollers. This microarchitecture does not provide dedicated hardware registers for shadowing of register file registers in interrupt contexts. Additionally, it does not provide hardware registers for the return address registers and return status registers. Instead, all this information is stored on the system stack. This saves chip area at the expense of slower interrupt handling.

Upon interrupt initiation, registers R8-R12 are automatically pushed to the system stack. These registers are pushed regardless of the priority level of the pending interrupt. The return address and status register are also automatically pushed to stack. The interrupt handler can therefore use R8-R12 freely. Upon interrupt completion, the old R8-R12 registers and status register are restored, and execution continues at the return address stored popped from stack.

The stack is also used to store the status register and return address for exceptions and *scall*. Executing the *rete* or *rets* instruction at the completion of an exception or system call will pop this status register and continue execution at the popped return address.

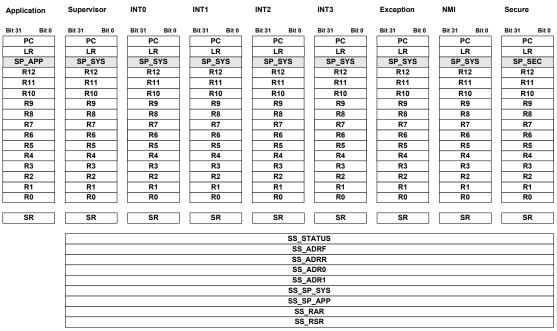
4.3.3 Java Support

AVR32UC does not provide Java hardware acceleration.

4.3.4 Memory Protection

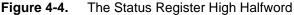
The MPU allows the user to check all memory accesses for privilege violations. If an access is attempted to an illegal memory address, the access is aborted and an exception is taken. The MPU in AVR32UC is specified in the AVR32UC Technical Reference manual.

4.3.5 Unaligned Reference Handling


AVR32UC does not support unaligned accesses, except for doubleword accesses. AVR32UC is able to perform word-aligned *st.d* and *ld.d*. Any other unaligned memory access will cause an address exception. Doubleword-sized accesses with word-aligned pointers will automatically be performed as two word-sized accesses.

4.4 Programming Model

4.4.1 Register File Configuration


The AVR32UC register file is shown below.

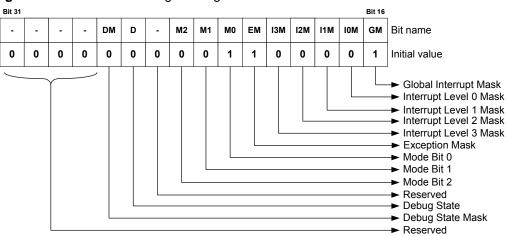


Figure 4-3. The AVR32UC Register File

4.4.2 Status Register Configuration

The Status Register (SR) is split into two halfwords, one upper and one lower, see Figure 4-4 on page 26 and Figure 4-5 on page 27. The lower word contains the C, Z, N, V, and Q condition code flags and the R, T, and L bits, while the upper halfword contains information about the mode and state the processor executes in. Refer to the *AVR32 Architecture Manual* for details.

status register. Upon entry into Debug mode, hardware sets the SR[D] bit and jumps to the Debug Exception handler. By default, Debug mode executes in the exception context, but with dedicated Return Address Register and Return Status Register. These dedicated registers remove the need for storing this data to the system stack, thereby improving debuggability. The mode bits in the status register can freely be manipulated in Debug mode, to observe registers in all contexts, while retaining full privileges.

Debug mode is exited by executing the *retd* instruction. This returns to the previous context.

4.5.5 Entry Points for Events

Several different event handler entry points exists. In AVR32UC, the reset address is 0x8000_0000. This places the reset address in the boot flash memory area.

TLB miss exceptions and *scall* have a dedicated space relative to EVBA where their event handler can be placed. This speeds up execution by removing the need for a jump instruction placed at the program address jumped to by the event hardware. All other exceptions have a dedicated event routine entry point located relative to EVBA. The handler routine address identifies the exception source directly.

AVR32UC uses the ITLB and DTLB protection exceptions to signal a MPU protection violation. ITLB and DTLB miss exceptions are used to signal that an access address did not map to any of the entries in the MPU. TLB multiple hit exception indicates that an access address did map to multiple TLB entries, signalling an error.

All external interrupt requests have entry points located at an offset relative to EVBA. This autovector offset is specified by an external Interrupt Controller. The programmer must make sure that none of the autovector offsets interfere with the placement of other code. The autovector offset has 14 address bits, giving an offset of maximum 16384 bytes.

Special considerations should be made when loading EVBA with a pointer. Due to security considerations, the event handlers should be located in non-writeable flash memory, or optionally in a privileged memory protection region if an MPU is present.

If several events occur on the same instruction, they are handled in a prioritized way. The priority ordering is presented in Table 4-4. If events occur on several instructions at different locations in the pipeline, the events on the oldest instruction are always handled before any events on any younger instruction, even if the younger instruction has events of higher priority than the oldest instruction. An instruction B is younger than an instruction A if it was sent down the pipeline later than A.

The addresses and priority of simultaneous events are shown in Table 4-4. Some of the exceptions are unused in AVR32UC since it has no MMU, coprocessor interface, or floating-point unit.

		Size	Size	Size
Device	Start Address	AT32UC3A3256S AT32UC3A3256 AT32UC3A4256S AT32UC3A4256S	AT32UC3A3128S AT32UC3A3128 AT32UC3A4128S AT32UC3A4128S	AT32UC3A364S AT32UC3A364 AT32UC3A464S AT32UC3A464
HRAMC0	0xFF000000	32KByte	32KByte	32KByte
HRAMC1	0xFF008000	32KByte	32KByte	32KByte
HSB-PB Bridge A	0xFFFF0000	64KByte	64KByte	64KByte
HSB-PB Bridge B	0xFFFE0000	64KByte	64KByte	64KByte

 Table 5-1.
 AT32UC3A3A4 Physical Memory Map

5.3 Peripheral Address Map

Table 5-2. Peripheral Address Mapping

Address		Peripheral Name
0xFF100000	DMACA	DMA Controller - DMACA
0xFFFD0000	AES	Advanced Encryption Standard - AES
0xFFFE0000	USB	USB 2.0 Device and Host Interface - USB
0xFFFE1000	HMATRIX	HSB Matrix - HMATRIX
0xFFFE1400	FLASHC	Flash Controller - FLASHC
0xFFFE1C00	SMC	Static Memory Controller - SMC
0xFFFE2000	SDRAMC	SDRAM Controller - SDRAMC
0xFFFE2400	ECCHRS	Error code corrector Hamming and Reed Solomon - ECCHRS
0xFFFE2800	BUSMON	Bus Monitor module - BUSMON
0xFFFE4000	MCI	Mulitmedia Card Interface - MCI
0xFFFE8000	MSI	Memory Stick Interface - MSI
0xFFFF0000	PDCA	Peripheral DMA Controller - PDCA
0xFFFF0800	INTC	Interrupt controller - INTC

 Table 5-2.
 Peripheral Address Mapping

0xFFFF5000	TWIS0	Two-wire Slave Interface - TWIS0
0xFFFF5400	TWIS1	Two-wire Slave Interface - TWIS1

5.4 CPU Local Bus Mapping

Some of the registers in the GPIO module are mapped onto the CPU local bus, in addition to being mapped on the Peripheral Bus. These registers can therefore be reached both by accesses on the Peripheral Bus, and by accesses on the local bus.

Mapping these registers on the local bus allows cycle-deterministic toggling of GPIO pins since the CPU and GPIO are the only modules connected to this bus. Also, since the local bus runs at CPU speed, one write or read operation can be performed per clock cycle to the local busmapped GPIO registers.

The following GPIO registers are mapped on the local bus:

 Table 5-3.
 Local Bus Mapped GPIO Registers

Port	Register	Mode	Local Bus Address	Access
0	Output Driver Enable Register (ODER)	WRITE	0x40000040	Write-only
		SET	0x40000044	Write-only
		CLEAR	0x40000048	Write-only
		TOGGLE	0x4000004C	Write-only
	Output Value Register (OVR)	WRITE	0x40000050	Write-only
		SET	0x40000054	Write-only
		CLEAR	0x40000058	Write-only
		TOGGLE	0x4000005C	Write-only
	Pin Value Register (PVR)	-	0x40000060	Read-only
1	Output Driver Enable Register (ODER)	WRITE	0x40000140	Write-only
		SET	0x40000144	Write-only
		CLEAR	0x40000148	Write-only
		TOGGLE	0x4000014C	Write-only
	Output Value Register (OVR)	WRITE	0x40000150	Write-only
		SET	0x40000154	Write-only
		CLEAR	0x40000158	Write-only
		TOGGLE	0x4000015C	Write-only
	Pin Value Register (PVR)	-	0x40000160	Read-only

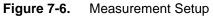
Table 7-9. BOD Timing

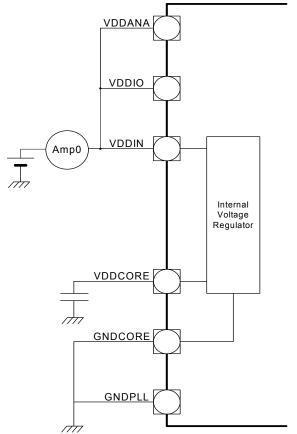
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
T _{BOD}	Minimum time with VDDCORE < VBOD to detect power failure	Falling VDDCORE from 1.8V to 1.1V		300	800	ns

7.5.3 Reset Sequence

Table 7-10. Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{DDRR}	VDDIN/VDDIO rise rate to ensure power-on-reset		0.8			V/ms
V _{POR+}	Rising threshold voltage: voltage up to which device is kept under reset by POR on rising VDDIN	Rising VDDIN: V _{RESTART} -> V _{POR+}		2.7		V
V _{POR-}	Falling threshold voltage: voltage when POR resets device on falling VDDIN	Falling VDDIN: 3.3V -> V _{POR-}		2.7		V
V _{RESTART}	On falling VDDIN, voltage must go down to this value before supply can rise again to ensure reset signal is released at V _{POR+}	Falling VDDIN: 3.3V -> V _{RESTART}			0.2	V
T _{SSU1}	Time for Cold System Startup: Time for CPU to fetch its first instruction (RCosc not calibrated)		480		960	μs
T _{SSU2}	Time for Hot System Startup: Time for CPU to fetch its first instruction (RCosc calibrated)			420		μs


7.6 Power Consumption


The values in Table 7-12 and Table 7-13 on page 50 are measured values of power consumption with operating conditions as follows:

 $\bullet V_{DDIO} = 3.3V$

•TA = $25^{\circ}C$

•I/Os are configured in input, pull-up enabled.

These figures represent the power consumption measured on the power supplies

7.8.3 Main Oscillators

Table 7-19. Main Oscillators Characteristic	cs
---	----

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
		External clock on XIN			50	MHz
1/(t _{CPMAIN})	Oscillator Frequency	Crystal	0.4		20	MHz
C_{L1}, C_{L2}	Internal Load Capacitance ($C_{L1} = C_{L2}$)			7		pF
ESR	Crystal Equivalent Series Resistance				75	Ω
	Duty Cycle		40	50	60	%
t _{ST}	Startup Time	f = 400 KHz f = 8 MHz f = 16 MHz f = 20 MHz		25 4 1.4 1		ms
t _{CH}	XIN Clock High Half-period		0.4 t _{CP}		0.6 t _{CP}	
t _{CL}	XIN Clock Low Half-period		0.4 t _{CP}		0.6 t _{CP}	
C _{IN}	XIN Input Capacitance			7		pF
I _{osc}	Current Consumption	Active mode at 400 KHz. Gain = G0 Active mode at 8 MHz. Gain = G1 Active mode at 16 MHz. Gain = G2 Active mode at 20 MHz. Gain = G3		30 45 95 205		μA

7.8.4 Phase Lock Loop (PLL0, PLL1)

Table 7-20. PLL Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
F _{OUT}	VCO Output Frequency		80		240	MHz
F _{IN}	Input Frequency (after input divider)		4		16	MHz
	Current Consumption	Active mode (Fout=80 MHz)		250		μA
IPLL	Current Consumption	Active mode (Fout=240 MHz)		600		μA

7.8.5 USB Hi-Speed Phase Lock Loop

Table 7-21. PLL Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
F _{OUT}	VCO Output Frequency			480		MHz
F _{IN}	Input Frequency			12		MHz
Delta F _{IN}	Input Frequency Accuracy (applicable to Clock signal on XIN or to Quartz tolerance)		-500		+500	ppm
I _{PLL}	Current Consumption	Active mode @480MHz @1.8V		2.5		mA

Parameter	Conditions	Min.	Тур.	Max.	Unit
Resolution			10		Bit
Absolute Accuracy	ADC Clock = 5 MHz			3	LSB
Integral Non-linearity	ADC Clock = 5 MHz		1.5	2	LSB
	ADC Clock = 5 MHz		1	2	LSB
Differential Non-linearity	ADC Clock = 2.5 MHz		0.6	1	LSB
Offset Error	ADC Clock = 5 MHz	-2		2	LSB
Gain Error	ADC Clock = 5 MHz	-2		2	LSB

Table 7-26.Transfer Characteristics in 10-bit mode

7.10 USB Transceiver Characteristics

7.10.1 Electrical Characteristics

Table 7-27. Electrical Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
R _{EXT}	Recommended External USB Series Resistor	In series with each USB pin with ±5%		39		Ω
R _{BIAS}	VBIAS External Resistor ⁽¹⁾	±1%		6810		Ω
C _{BIAS}	VBIAS External Capcitor			10		pF

1. The USB on-chip buffers comply with the Universal Serial Bus (USB) v2.0 standard. All AC parameters related to these buffers can be found within the USB 2.0 electrical specifications.

7.10.2 Static Power Consumption

Table 7-28. Static Power Consumption

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _{BIAS}	Bias current consumption on VBG				1	μA
	HS Transceiver and I/O current consumption				8	μA
I _{VDDUTMI}	FS/HS Transceiver and I/O current consumption	If cable is connected, add 200µA (typical) due to Pull-up/Pull-down current consumption			3	μA

7.10.3 Dynamic Power Consumption

Table 7-29.Dynamic Power Consumption

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _{BIAS}	Bias current consumption on VBG			0.7	0.8	mA

Table 7-29.Dynamic Power Consumption

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
	HS Transceiver current consumption	HS transmission		47	60	mA
	HS Transceiver current consumption	HS reception		18	27	mA
Luppurtu	FS/HS Transceiver current consumption	FS transmission 0m cable ⁽¹⁾		4	6	mA
IVDDUTMI	FS/HS Transceiver current consumption	FS transmission 5m cable		26	30	mA
	FS/HS Transceiver current consumption	FS reception		3	4.5	mA

1. Including 1 mA due to Pull-up/Pull-down current consumption.

34.5.5 USB High Speed Design Guidelines

In order to facilitate hardware design, Atmel provides an application note on www.atmel.com.

7.11 EBI Timings

7.11.1 SMC Signals

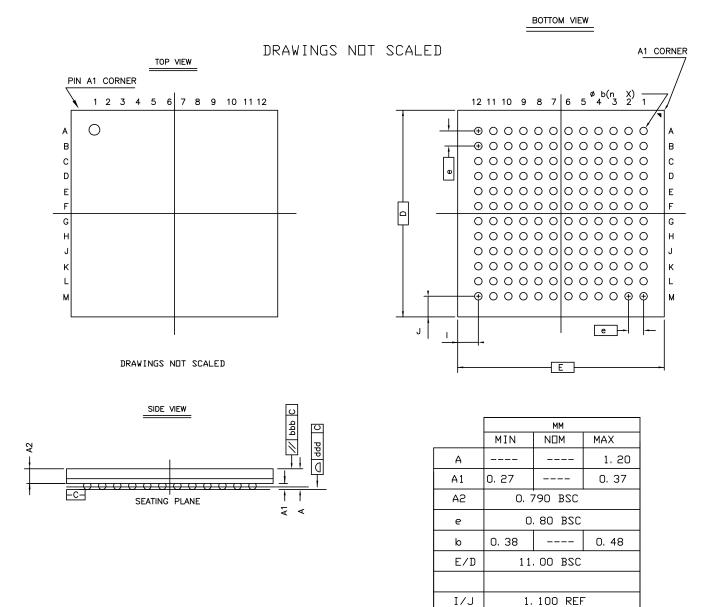
These timings are given for worst case process, T = $85 \cdot C$, VDDIO = 3V and 40 pF load capacitance.

Table 7-30. SMC Clock Signal

Symbol	Parameter	Max. ⁽¹⁾	Unit
1/(t _{CPSMC})	SMC Controller Clock Frequency	1/(t _{cpcpu})	MHz

Note: 1. The maximum frequency of the SMC interface is the same as the max frequency for the HSB.

Table 7-31. SMC Read Signals with Hold Settings


Symbol	Parameter	Min.	Unit
	NRD Control	led (READ_MODE = 1)	
SMC ₁	Data Setup before NRD High	12	ns
SMC ₂	Data Hold after NRD High	0	ns
SMC ₃	NRD High to NBS0/A0 Change ⁽¹⁾	nrd hold length * t _{CPSMC} - 1.3	ns
SMC ₄	NRD High to NBS1 Change ⁽¹⁾	nrd hold length * t _{CPSMC} - 1.3	ns
SMC ₅	NRD High to NBS2/A1 Change ⁽¹⁾	nrd hold length * t _{CPSMC} - 1.3	ns
SMC ₇	NRD High to A2 - A23 Change ⁽¹⁾	nrd hold length * t _{CPSMC} - 1.3	ns
SMC ₈	NRD High to NCS Inactive ⁽¹⁾	(nrd hold length - ncs rd hold length) * t _{CPSMC} - 2.3	ns
SMC ₉	NRD Pulse Width	nrd pulse length * t _{CPSMC} - 1.4	ns
	NRD Control	led (READ_MODE = 0)	
SMC ₁₀	Data Setup before NCS High	11.5	ns
SMC ₁₁	Data Hold after NCS High	0	ns
SMC ₁₂	NCS High to NBS0/A0 Change ⁽¹⁾	ncs rd hold length * t _{CPSMC} - 2.3	ns
SMC ₁₃	NCS High to NBS0/A0 Change ⁽¹⁾	ncs rd hold length * t _{CPSMC} - 2.3	ns
SMC ₁₄	NCS High to NBS2/A1 Change ⁽¹⁾	ncs rd hold length * t _{CPSMC} - 2.3	ns
SMC ₁₆	NCS High to A2 - A23 Change ⁽¹⁾	ncs rd hold length * t _{CPSMC} - 4	ns
SMC ₁₇	NCS High to NRD Inactive ⁽¹⁾	ncs rd hold length - nrd hold length)* t _{CPSMC} - 1.3	ns
SMC ₁₈	NCS Pulse Width	ncs rd pulse length * t _{CPSMC} - 3.6	ns

Note: 1. hold length = total cycle duration - setup duration - pulse duration. "hold length" is for "ncs rd hold length" or "nrd hold length".

8.2 Package Drawings

ddd

bbb

copla: 0.120

copla: 0.200

		Fix/Workaround None.
10.3.14	MCI	
		 The busy signal of the responses R1b is not taken in account for CMD12 STOP_TRANSFER It is not possible to know the busy status of the card during the response (R1b) for the commands CMD12. Fix/Workaround The card busy line should be polled through the GPIO Input Value register (IVR) for commands CMD12.
10.3.15	SSC	
		 Frame Synchro and Frame Synchro Data are delayed by one clock cycle The frame synchro and the frame synchro data are delayed from 1 SSC_CLOCK when: Clock is CKDIV The START is selected on either a frame synchro edge or a level Frame synchro data is enabled Transmit clock is gated on output (through CKO field) Fix/Workaround Transmit or receive CLOCK must not be gated (by the mean of CKO field) when START condition is performed on a generated frame synchro.
10.3.16	FLASHC	
		 Corrupted read in flash may happen after fuses write or erase operations (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands) After a flash fuse write or erase operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands), reading (data read or code fetch) in flash may fail. This may lead to an exception or to other errors derived from this corrupted read access. Fix/Workaround Before the flash fuse write or erase operation, enable the flash high speed mode (FLASHC HSEN command). The flash fuse write or erase operations (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands) must be issued from RAM or through the EBI. After these commands, read 3 times one flash page initialized to 00h. Disable the flash high

speed mode (FLASHC HSDIS command). It is then possible to safely read or code fetch the

flash.

11.7 Rev. B - 08/09

1. Updated the datasheet with new device AT32UC3A4.

11.8 Rev. A - 03/09

1. Initial revision.

1	Descr	iption	3
2	Overv	<i>r</i> iew	4
	2.1	Block Diagram	4
	2.2	Configuration Summary	5
3	Packa	nge and Pinout	6
	3.1	Package	6
	3.2	Peripheral Multiplexing on I/O lines	9
	3.3	Signal Descriptions	14
	3.4	I/O Line Considerations	19
	3.5	Power Considerations	20
4	Proce	essor and Architecture	21
	4.1	Features	21
	4.2	AVR32 Architecture	21
	4.3	The AVR32UC CPU	22
	4.4	Programming Model	26
	4.5	Exceptions and Interrupts	
5	Мето	ories	34
	5.1	Embedded Memories	34
	5.2	Physical Memory Map	34
	5.3	Peripheral Address Map	35
	5.4	CPU Local Bus Mapping	37
6	Boot S	Sequence	39
	6.1	Starting of Clocks	
	6.2	Fetching of Initial Instructions	
7	Electr	ical Characteristics	40
	7.1	Absolute Maximum Ratings*	40
	7.2	DC Characteristics	41
	7.3	I/O pin Characteristics	42
	7.4	Regulator characteristics	43
	7.5	Analog characteristics	44
	7.6	Power Consumption	48
	7.7	System Clock Characteristics	51
	7.8	Oscillator Characteristics	52
	7.9	ADC Characteristics	54

	7.10	USB Transceiver Characteristics	55
	7.11	EBI Timings	57
	7.12	JTAG Characteristics	63
	7.13	SPI Characteristics	64
	7.14	MCI	66
	7.15	Flash Memory Characteristics	67
8	Mecha	nical Characteristics	68
	8.1	Thermal Considerations	68
	8.2	Package Drawings	69
	8.3	Soldering Profile	72
9	Orderii	ng Information	73
10	Errata		74
	10.1	Rev. H	74
	10.2	Rev. E	78
	10.3	Rev. D	84
11	Datash	neet Revision History	90
	11.1	Rev. H– 10/12	90
	11.2	Rev. G– 11/11	90
	11.3	Rev. F – 08/11	90
	11.4	Rev. E – 06/11	90
	11.5	Rev. D – 04/11	90
	11.6	Rev. C – 03/10	90
	11.7	Rev. B – 08/09	91
	11.8	Rev. A – 03/09	91

