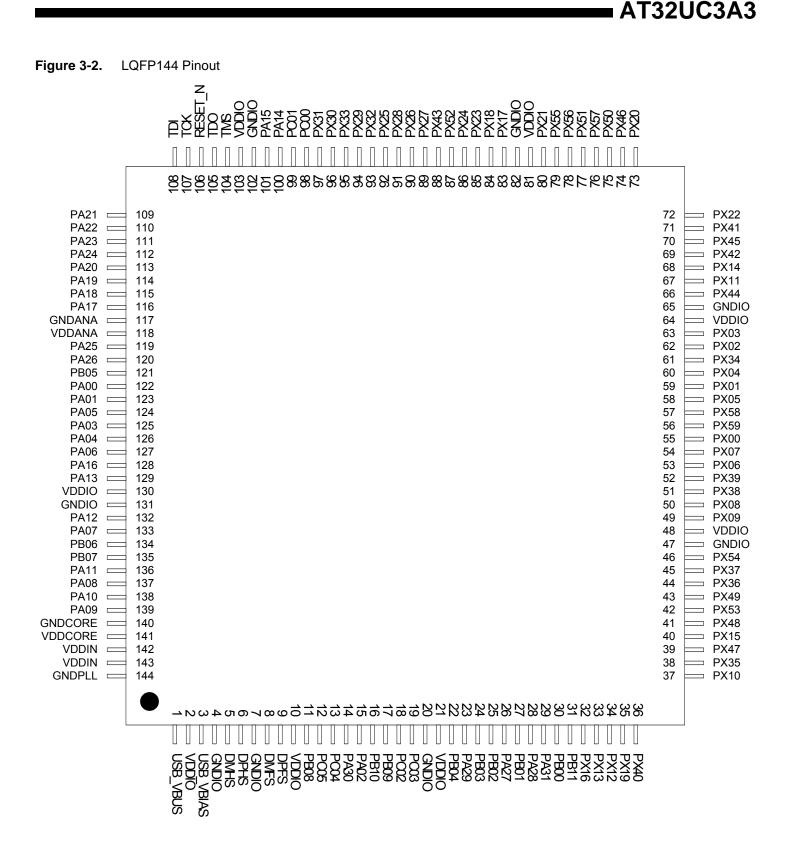


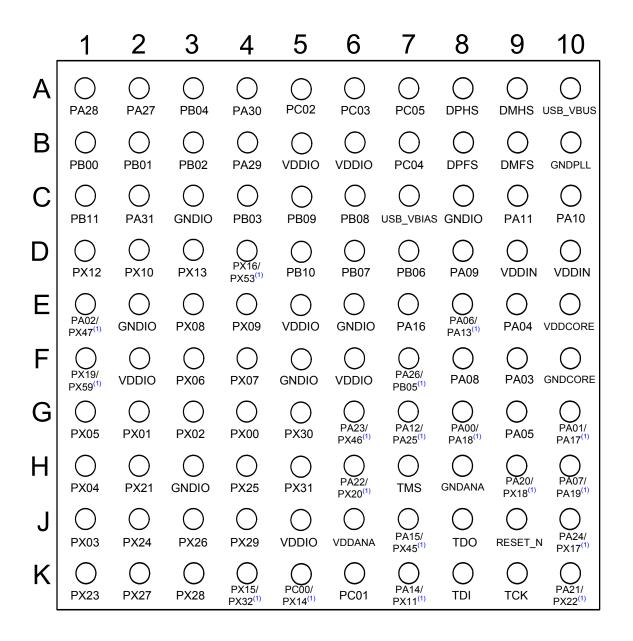
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Details	
Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	66MHz
Connectivity	EBI/EMI, I ² C, IrDA, Memory Card, SPI, SSC, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, WDT
Number of I/O	110
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.75V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-TFBGA
Supplier Device Package	144-FFBGA (11x11)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at32uc3a364-ctut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note: 1. Those balls are physically connected to 2 GPIOs. Software must managed carrefully the GPIO configuration to avoid electrical conflict

3.2 Peripheral Multiplexing on I/O lines

3.2.1 Multiplexed Signals

Each GPIO line can be assigned to one of the peripheral functions. The following table describes the peripheral signals multiplexed to the GPIO lines.

Note that GPIO 44 is physically implemented in silicon but it must be kept unused and configured in input mode.

				G				GPIO fur	oction	
				P		PIN				
BGA 144	QFP 144	BGA 100	PIN	 0	Supply	Type (2)	А	В	С	D
				-					-	0
G11	122	G8 ⁽¹⁾	PA00	0	VDDIO	x3	USART0 - RTS	TC0 - CLK1	SPI1 - NPCS[3]	
G12	123	G10 ⁽¹⁾	PA01	1	VDDIO	x1	USART0 - CTS	TC0 - A1	USART2 - RTS	
D8	15	E1 ⁽¹⁾	PA02	2	VDDIO	x1	USART0 - CLK	TC0 - B1	SPI0 - NPCS[0]	
G10	125	F9	PA03	3	VDDIO	x1	USART0 - RXD	EIC - EXTINT[4]	ABDAC - DATA[0]	
F9	126	E9	PA04	4	VDDIO	x1	USART0 - TXD	EIC - EXTINT[5]	ABDAC - DATAN[0]	
F10	124	G9	PA05	5	VDDIO	x1	USART1 - RXD	TC1 - CLK0	USB - ID	
F8	127	E8 ⁽¹⁾	PA06	6	VDDIO	x1	USART1 - TXD	TC1 - CLK1	USB - VBOF	
E10	133	H10 ⁽¹⁾	PA07	7	VDDIO	x1	SPI0 - NPCS[3]	ABDAC - DATAN[0]	USART1 - CLK	
C11	137	F8	PA08	8	VDDIO	x3	SPI0 - SPCK	ABDAC - DATA[0]	TC1 - B1	
B12	139	D8	PA09	9	VDDIO	x2	SPI0 - NPCS[0]	EIC - EXTINT[6]	TC1 - A1	
C12	138	C10	PA10	10	VDDIO	x2	SPI0 - MOSI	USB - VBOF	TC1 - B0	
D10	136	C9	PA11	11	VDDIO	x2	SPI0 - MISO	USB - ID	TC1 - A2	
E12	132	G7 ⁽¹⁾	PA12	12	VDDIO	x1	USART1 - CTS	SPIO - NPCS[2]	TC1 - A0	
F11	129	E8 ⁽¹⁾	PA13	13	VDDIO	x1	USART1 - RTS	SPIO - NPCS[1]	EIC - EXTINT[7]	
J6	100	K7 ⁽¹⁾	PA14	14	VDDIO	x1	SPI0 - NPCS[1]	TWIMS0 - TWALM	TWIMS1 - TWCK	
J7	101	J7 ⁽¹⁾	PA15	15	VDDIO	x1	MCI - CMD[1]	SPI1 - SPCK	TWIMS1 - TWD	
F12	128	E7	PA16	16	VDDIO	x1	MCI - DATA[11]	SPI1 - MOSI	TC1 - CLK2	
H7	116	G10 ⁽¹⁾	PA17	17	VDDANA	x1	MCI - DATA[10]	SPI1 - NPCS[1]	ADC - AD[7]	
K8	115	G8 ⁽¹⁾	PA18	18	VDDANA	x1	MCI - DATA[9]	SPI1 - NPCS[2]	ADC - AD[6]	
J8	114	H10 ⁽¹⁾	PA19	19	VDDANA	x1	MCI - DATA[8]	SPI1 - MISO	ADC - AD[5]	
J9	113	H9 ⁽¹⁾	PA20	20	VDDANA	x1	EIC - NMI	SSC - RX_FRAME_SYNC	ADC - AD[4]	
H9	109	K10 ⁽¹⁾	PA21	21	VDDANA	x1	ADC - AD[0]	EIC - EXTINT[0]	USB - ID	
H10	110	H6 ⁽¹⁾	PA22	22	VDDANA	x1	ADC - AD[1]	EIC - EXTINT[1]	USB - VBOF	
G8	111	G6 ⁽¹⁾	PA23	23	VDDANA	x1	ADC - AD[2]	EIC - EXTINT[2]	ABDAC - DATA[1]	
G9	112	J10 ⁽¹⁾	PA24	24	VDDANA	x1	ADC - AD[3]	EIC - EXTINT[3]	ABDAC - DATAN[1]	
E9	119	G7 ⁽¹⁾	PA25	25	VDDIO	x1	TWIMS0 - TWD	TWIMS1 - TWALM	USART1 - DCD	
D9	120	F7 ⁽¹⁾)	PA26	26	VDDIO	x1	TWIMS0 - TWCK	USART2 - CTS	USART1 - DSR	
A4	26	A2	PA27	27	VDDIO	x2	MCI - CLK	SSC - RX_DATA	USART3 - RTS	MSI - SCLK
A3	28	A1	PA28	28	VDDIO	x1	MCI - CMD[0]	SSC - RX_CLOCK	USART3 - CTS	MSI - BS
A6	23	B4	PA29	29	VDDIO	x1	MCI - DATA[0]	USART3 - TXD	TC0 - CLK0	MSI - DATA[0]

 Table 3-1.
 GPIO Controller Function Multiplexing

 Table 3-1.
 GPIO Controller Function Multiplexing

				G P		PIN	-	GPIO fur	nction	
BGA	QFP	BGA				Туре				
144	144	100	PIN	0	Supply	(2)	Α	В	С	D
L6	84	H9 ⁽¹⁾	PX18	69	VDDIO	x2	EBI - ADDR[16]	DMACA - DMAACK[1]	TC0 - A2	
D5	35	F1 ⁽¹⁾	PX19	70	VDDIO	x2	EBI - ADDR[15]	EIC - SCAN[0]	TC0 - B2	
L4	73	H6 ⁽¹⁾	PX20	71	VDDIO	x2	EBI - ADDR[14]	EIC - SCAN[1]	TC0 - CLK0	
М5	80	H2	PX21	72	VDDIO	x2	EBI - ADDR[13]	EIC - SCAN[2]	TC0 - CLK1	
M1	72	K10 ⁽¹⁾	PX22	73	VDDIO	x2	EBI - ADDR[12]	EIC - SCAN[3]	TC0 - CLK2	
M6	85	K1	PX23	74	VDDIO	x2	EBI - ADDR[11]	EIC - SCAN[4]	SSC - TX_CLOCK	
M7	86	J2	PX24	75	VDDIO	x2	EBI - ADDR[10]	EIC - SCAN[5]	SSC - TX_DATA	
M8	92	H4	PX25	76	VDDIO	x2	EBI - ADDR[9]	EIC - SCAN[6]	SSC - RX_DATA	
L9	90	J3	PX26	77	VDDIO	x2	EBI - ADDR[8]	EIC - SCAN[7]	SSC - RX_FRAME_SYNC	
К9	89	K2	PX27	78	VDDIO	x2	EBI - ADDR[7]	SPI0 - MISO	SSC - TX_FRAME_SYNC	
L10	91	K3	PX28	79	VDDIO	x2	EBI - ADDR[6]	SPIO - MOSI	SSC - RX_CLOCK	
K11	94	J4	PX29	80	VDDIO	x2	EBI - ADDR[5]	SPI0 - SPCK		
M11	96	G5	PX30	81	VDDIO	x2	EBI - ADDR[4]	SPI0 - NPCS[0]		
M10	97	H5	PX31	82	VDDIO	x2	EBI - ADDR[3]	SPI0 - NPCS[1]		
М9	93	K4 ⁽¹⁾	PX32	83	VDDIO	x2	EBI - ADDR[2]	SPI0 - NPCS[2]		
M12	95		PX33	84	VDDIO	x2	EBI - ADDR[1]	SPI0 - NPCS[3]		
J3	61		PX34	85	VDDIO	x2	EBI - ADDR[0]	SPI1 - MISO	PM - GCLK[0]	
C2	38		PX35	86	VDDIO	x2	EBI - DATA[15]	SPI1 - MOSI	PM - GCLK[1]	
D3	44		PX36	87	VDDIO	x2	EBI - DATA[14]	SPI1 - SPCK	PM - GCLK[2]	
D2	45		PX37	88	VDDIO	x2	EBI - DATA[13]	SPI1 - NPCS[0]	PM - GCLK[3]	
E1	51		PX38	89	VDDIO	x2	EBI - DATA[12]	SPI1 - NPCS[1]	USART1 - DCD	
F1	52		PX39	90	VDDIO	x2	EBI - DATA[11]	SPI1 - NPCS[2]	USART1 - DSR	
A1	36		PX40	91	VDDIO	x2		MCI - CLK		
M2	71		PX41	92	VDDIO	x2	EBI - CAS			
М3	69		PX42	93	VDDIO	x2	EBI - RAS			
L7	88		PX43	94	VDDIO	x2	EBI - SDA10	USART1 - RI		
К2	66		PX44	95	VDDIO	x2	EBI - SDWE	USART1 - DTR		
L3	70	J7 ⁽¹⁾	PX45	96	VDDIO	x3	EBI - SDCK			
K4	74	G6 ⁽¹⁾	PX46	97	VDDIO	x2	EBI - SDCKE			
D4	39	E1 ⁽¹⁾	PX47	98	VDDIO	x2	EBI - NANDOE	ADC - TRIGGER	MCI - DATA[11]	
F5	41		PX48	99	VDDIO	x2	EBI - ADDR[23]	USB - VBOF	MCI - DATA[10]	
F4	43		PX49	100	VDDIO	x2	EBI - CFRNW	USB - ID	MCI - DATA[9]	
G4	75		PX50	101	VDDIO	x2	EBI - CFCE2	TC1 - B2	MCI - DATA[8]	
G5	77		PX51	102	VDDIO	x2	EBI - CFCE1	DMACA - DMAACK[0]	MCI - DATA[15]	
K7	87		PX52	103	VDDIO	x2	EBI - NCS[3]	DMACA - DMARQ[0]	MCI - DATA[14]	
E4	42	D4 ⁽¹⁾	PX53	104	VDDIO	x2	EBI - NCS[2]		MCI - DATA[13]	
E3	46		PX54	105	VDDIO	x2	EBI - NWAIT	USART3 - TXD	MCI - DATA[12]	
J5	79		PX55	106	VDDIO	x2	EBI - ADDR[22]	EIC - SCAN[3]	USART2 - RXD	

Table 3-6.Signal Description List

Signal Name	Function	Туре	Active Level	Comments
DMHS	USB High Speed Data -	Analog		
DPHS	USB High Speed Data +	Analog		
USB_VBIAS	USB VBIAS reference	Analog		Connect to the ground through a 6810 ohms (+/- 1%) resistor in parallel with a 10pf capacitor. If USB hi-speed feature is not required, leave this pin unconnected to save power
USB_VBUS	USB VBUS signal	Output		
VBOF	USB VBUS on/off bus power control port	Output		
ID	ID Pin fo the USB bus	Input		

4. Processor and Architecture

Rev: 1.4.2.0

This chapter gives an overview of the AVR32UC CPU. AVR32UC is an implementation of the AVR32 architecture. A summary of the programming model, instruction set, and MPU is presented. For further details, see the AVR32 Architecture Manual and the AVR32UC Technical Reference Manual.

4.1 Features

- 32-bit load/store AVR32A RISC architecture
 - 15 general-purpose 32-bit registers
 - 32-bit Stack Pointer, Program Counter and Link Register reside in register file
 - Fully orthogonal instruction set
 - Privileged and unprivileged modes enabling efficient and secure Operating Systems
 - Innovative instruction set together with variable instruction length ensuring industry leading code density
 - DSP extention with saturating arithmetic, and a wide variety of multiply instructions
- 3-stage pipeline allows one instruction per clock cycle for most instructions
 - Byte, halfword, word and double word memory access
 - Multiple interrupt priority levels
- MPU allows for operating systems with memory protection

4.2 AVR32 Architecture

AVR32 is a high-performance 32-bit RISC microprocessor architecture, designed for cost-sensitive embedded applications, with particular emphasis on low power consumption and high code density. In addition, the instruction set architecture has been tuned to allow a variety of microarchitectures, enabling the AVR32 to be implemented as low-, mid-, or high-performance processors. AVR32 extends the AVR family into the world of 32- and 64-bit applications.

Through a quantitative approach, a large set of industry recognized benchmarks has been compiled and analyzed to achieve the best code density in its class. In addition to lowering the memory requirements, a compact code size also contributes to the core's low power characteristics. The processor supports byte and halfword data types without penalty in code size and performance.

Memory load and store operations are provided for byte, halfword, word, and double word data with automatic sign- or zero extension of halfword and byte data. The C-compiler is closely linked to the architecture and is able to exploit code optimization features, both for size and speed.

In order to reduce code size to a minimum, some instructions have multiple addressing modes. As an example, instructions with immediates often have a compact format with a smaller immediate, and an extended format with a larger immediate. In this way, the compiler is able to use the format giving the smallest code size.

Another feature of the instruction set is that frequently used instructions, like add, have a compact format with two operands as well as an extended format with three operands. The larger format increases performance, allowing an addition and a data move in the same instruction in a single cycle. Load and store instructions have several different formats in order to reduce code size and speed up execution.

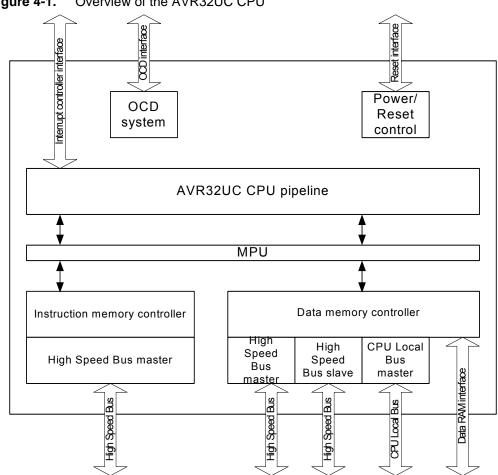


Figure 4-1. Overview of the AVR32UC CPU

4.3.1 Pipeline Overview

AVR32UC has three pipeline stages, Instruction Fetch (IF), Instruction Decode (ID), and Instruction Execute (EX). The EX stage is split into three parallel subsections, one arithmetic/logic (ALU) section, one multiply (MUL) section, and one load/store (LS) section.

Instructions are issued and complete in order. Certain operations require several clock cycles to complete, and in this case, the instruction resides in the ID and EX stages for the required number of clock cycles. Since there is only three pipeline stages, no internal data forwarding is required, and no data dependencies can arise in the pipeline.

Figure 4-2 on page 24 shows an overview of the AVR32UC pipeline stages.

Table 4-3.	System Re	egisters (Continu	ied)
Reg #	Address	Name	Function
26	104	JAVA_LV3	Unused in AVR32UC
27	108	JAVA_LV4	Unused in AVR32UC
28	112	JAVA_LV5	Unused in AVR32UC
29	116	JAVA_LV6	Unused in AVR32UC
30	120	JAVA_LV7	Unused in AVR32UC
31	124	JTBA	Unused in AVR32UC
32	128	JBCR	Unused in AVR32UC
33-63	132-252	Reserved	Reserved for future use
64	256	CONFIG0	Configuration register 0
65	260	CONFIG1	Configuration register 1
66	264	COUNT	Cycle Counter register
67	268	COMPARE	Compare register
68	272	TLBEHI	Unused in AVR32UC
69	276	TLBELO	Unused in AVR32UC
70	280	PTBR	Unused in AVR32UC
71	284	TLBEAR	Unused in AVR32UC
72	288	MMUCR	Unused in AVR32UC
73	292	TLBARLO	Unused in AVR32UC
74	296	TLBARHI	Unused in AVR32UC
75	300	PCCNT	Unused in AVR32UC
76	304	PCNT0	Unused in AVR32UC
77	308	PCNT1	Unused in AVR32UC
78	312	PCCR	Unused in AVR32UC
79	316	BEAR	Bus Error Address Register
80	320	MPUAR0	MPU Address Register region 0
81	324	MPUAR1	MPU Address Register region 1
82	328	MPUAR2	MPU Address Register region 2
83	332	MPUAR3	MPU Address Register region 3
84	336	MPUAR4	MPU Address Register region 4
85	340	MPUAR5	MPU Address Register region 5
86	344	MPUAR6	MPU Address Register region 6
87	348	MPUAR7	MPU Address Register region 7
88	352	MPUPSR0	MPU Privilege Select Register region 0
89	356	MPUPSR1	MPU Privilege Select Register region 1
90	360	MPUPSR2	MPU Privilege Select Register region 2
91	364	MPUPSR3	MPU Privilege Select Register region 3

 Table 4-3.
 System Registers (Continued)

AT32UC3A3

Priority	Handler Address	Name	Event source	Stored Return Address
1	0x8000_0000	Reset	External input	Undefined
2	Provided by OCD system	OCD Stop CPU	OCD system	First non-completed instruction
3	EVBA+0x00	Unrecoverable exception	Internal	PC of offending instruction
4	EVBA+0x04	TLB multiple hit	MPU	
5	EVBA+0x08	Bus error data fetch	Data bus	First non-completed instruction
6	EVBA+0x0C	Bus error instruction fetch	Data bus	First non-completed instruction
7	EVBA+0x10	NMI	External input	First non-completed instruction
8	Autovectored	Interrupt 3 request	External input	First non-completed instruction
9	Autovectored	Interrupt 2 request	External input	First non-completed instruction
10	Autovectored	Interrupt 1 request	External input	First non-completed instruction
11	Autovectored	Interrupt 0 request	External input	First non-completed instruction
12	EVBA+0x14	Instruction Address	CPU	PC of offending instruction
13	EVBA+0x50	ITLB Miss	MPU	
14	EVBA+0x18	ITLB Protection	MPU	PC of offending instruction
15	EVBA+0x1C	Breakpoint	OCD system	First non-completed instruction
16	EVBA+0x20	Illegal Opcode	Instruction	PC of offending instruction
17	EVBA+0x24	Unimplemented instruction	Instruction	PC of offending instruction
18	EVBA+0x28	Privilege violation	Instruction	PC of offending instruction
19	EVBA+0x2C	Floating-point	UNUSED	
20	EVBA+0x30	Coprocessor absent	Instruction	PC of offending instruction
21	EVBA+0x100	Supervisor call	Instruction	PC(Supervisor Call) +2
22	EVBA+0x34	Data Address (Read)	CPU	PC of offending instruction
23	EVBA+0x38	Data Address (Write)	CPU	PC of offending instruction
24	EVBA+0x60	DTLB Miss (Read)	MPU	
25	EVBA+0x70	DTLB Miss (Write)	MPU	
26	EVBA+0x3C	DTLB Protection (Read)	MPU	PC of offending instruction
27	EVBA+0x40	DTLB Protection (Write)	MPU	PC of offending instruction
28	EVBA+0x44	DTLB Modified	UNUSED	

Table 4-4. Priority and Handler Addresses for Events

Table 5-2.Peripheral Address Mapping

pheral Addres	s mapping	
0xFFFF0C00	РМ	Power Manager - PM
0xFFFF0D00	RTC	Real Time Counter - RTC
0xFFFF0D30	WDT	Watchdog Timer - WDT
0xFFFF0D80	EIC	External Interrupt Controller - EIC
0xFFFF1000	GPIO	General Purpose Input/Output Controller - GPIO
0xFFFF1400	USART0	Universal Synchronous/Asynchronous Receiver/Transmitter - USART0
0xFFFF1800	USART1	Universal Synchronous/Asynchronous Receiver/Transmitter - USART1
0xFFFF1C00	USART2	Universal Synchronous/Asynchronous Receiver/Transmitter - USART2
0xFFFF2000	USART3	Universal Synchronous/Asynchronous Receiver/Transmitter - USART3
0xFFFF2400	SPI0	Serial Peripheral Interface - SPI0
0xFFFF2800	SPI1	Serial Peripheral Interface - SPI1
0xFFFF2C00	TWIMO	Two-wire Master Interface - TWIM0
0xFFFF3000	TWIM1	Two-wire Master Interface - TWIM1
0xFFFF3400	SSC	Synchronous Serial Controller - SSC
0xFFFF3800	TC0	Timer/Counter - TC0
0xFFFF3C00	ADC	Analog to Digital Converter - ADC
0xFFFF4000	ABDAC	Audio Bitstream DAC - ABDAC
0xFFFF4400	TC1	Timer/Counter - TC1

Port	Register	Mode	Local Bus Address	Access
2	Output Driver Enable Register (ODER)	WRITE	0x40000240	Write-only
		SET	0x40000244	Write-only
		CLEAR	0x40000248	Write-only
		TOGGLE	0x4000024C	Write-only
	Output Value Register (OVR)	WRITE	0x40000250	Write-only
		SET	0x40000254	Write-only
		CLEAR	0x40000258	Write-only
		TOGGLE	0x4000025C	Write-only
	Pin Value Register (PVR)	-	0x40000260	Read-only
3	Output Driver Enable Register (ODER)	WRITE	0x40000340	Write-only
		SET	0x40000344	Write-only
		CLEAR	0x40000348	Write-only
		TOGGLE	0x4000034C	Write-only
	Output Value Register (OVR)	WRITE	0x40000350	Write-only
		SET	0x40000354	Write-only
		CLEAR	0x40000358	Write-only
		TOGGLE	0x4000035C	Write-only
	Pin Value Register (PVR)	-	0x40000360	Read-only

 Table 5-3.
 Local Bus Mapped GPIO Registers

7.7 System Clock Characteristics

These parameters are given in the following conditions:

• V_{DDCORE} = 1.8V

7.7.1 CPU/HSB Clock Characteristics

 Table 7-14.
 Core Clock Waveform Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
1/(t _{CPCPU})	CPU Clock Frequency	-40°C < Ambient Temperature < 70°C			84	MHz
1/(t _{CPCPU})	CPU Clock Frequency	-40°C < Ambient Temperature < 85°C			66	MHz

7.7.2 PBA Clock Characteristics

TADIE 1-13. FDA CIUCK WAVEIUIIII FAIAIIIEIEIS	Table 7-15.	PBA Clock Waveform Parameters
---	-------------	-------------------------------

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
1/(t _{CPPBA})	PBA Clock Frequency	-40°C < Ambient Temperature < 70°C			84	MHz
1/(t _{CPPBA})	PBA Clock Frequency	-40°C < Ambient Temperature < 85°C			66	MHz

7.7.3 PBB Clock Characteristics

Table 7-16. PBB Clock Waveform Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
1/(t _{CPPBB})	PBB Clock Frequency	-40°C < Ambient Temperature < 70°C			84	MHz
1/(t _{CPPBB})	PBB Clock Frequency	-40°C < Ambient Temperature < 85°C			66	MHz

7.8.3 Main Oscillators

Table 7-19. Main Oscillators	Characteristics
------------------------------	-----------------

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
		External clock on XIN			50	MHz
1/(t _{CPMAIN})	Oscillator Frequency	Crystal	0.4		20	MHz
C_{L1}, C_{L2}	Internal Load Capacitance ($C_{L1} = C_{L2}$)			7		pF
ESR	Crystal Equivalent Series Resistance				75	Ω
	Duty Cycle		40	50	60	%
t _{ST}	Startup Time	f = 400 KHz f = 8 MHz f = 16 MHz f = 20 MHz		25 4 1.4 1		ms
t _{CH}	XIN Clock High Half-period		0.4 t _{CP}		0.6 t _{CP}	
t _{CL}	XIN Clock Low Half-period		0.4 t _{CP}		0.6 t _{CP}	
C _{IN}	XIN Input Capacitance			7		pF
I _{osc}	Current Consumption	Active mode at 400 KHz. Gain = G0 Active mode at 8 MHz. Gain = G1 Active mode at 16 MHz. Gain = G2 Active mode at 20 MHz. Gain = G3		30 45 95 205		μA

7.8.4 Phase Lock Loop (PLL0, PLL1)

Table 7-20. PLL Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
F _{OUT}	VCO Output Frequency		80		240	MHz
F _{IN}	Input Frequency (after input divider)		4		16	MHz
I _{PLL} Cu	Current Consumption	Active mode (Fout=80 MHz)		250		μA
		Active mode (Fout=240 MHz)		600		μA

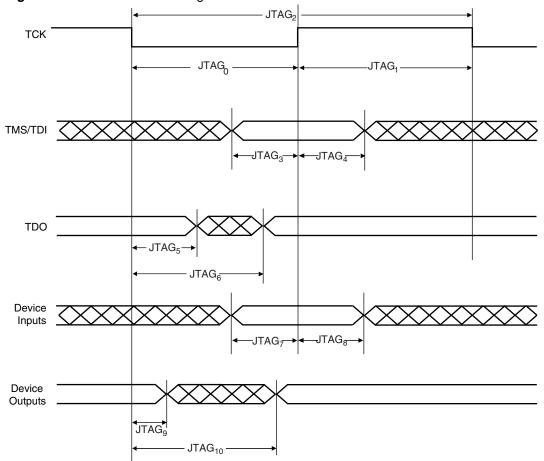
7.8.5 USB Hi-Speed Phase Lock Loop

Table 7-21. PLL Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
F _{OUT}	VCO Output Frequency			480		MHz
F _{IN}	Input Frequency			12		MHz
Delta F _{IN}	Input Frequency Accuracy (applicable to Clock signal on XIN or to Quartz tolerance)		-500		+500	ppm
I _{PLL}	Current Consumption	Active mode @480MHz @1.8V		2.5		mA

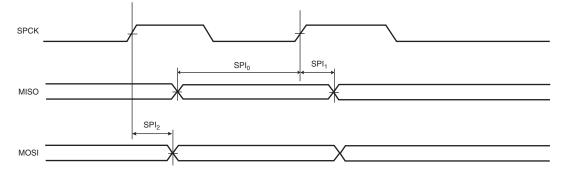
Table 7-29.Dynamic Power Consumption

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
	HS Transceiver current consumption	HS transmission		47	60	mA
	HS Transceiver current consumption	HS reception		18	27	mA
I _{vddutmi}	FS/HS Transceiver current consumption	FS transmission 0m cable ⁽¹⁾		4	6	mA
	FS/HS Transceiver current consumption	FS transmission 5m cable		26	30	mA
	FS/HS Transceiver current consumption	FS reception		3	4.5	mA


1. Including 1 mA due to Pull-up/Pull-down current consumption.

34.5.5 USB High Speed Design Guidelines

In order to facilitate hardware design, Atmel provides an application note on www.atmel.com.



7.13 SPI Characteristics

8.3 Soldering Profile

Table 8-5 gives the recommended soldering profile from J-STD-20.

Table 8-5.	Soldering Profile
------------	-------------------

Profile Feature	Green Package
Average Ramp-up Rate (217°C to Peak)	3°C/Second max
Preheat Temperature 175°C ±25°C	150-200°C
Time Maintained Above 217°C	60-150 seconds
Time within 5°C of Actual Peak Temperature	30 seconds
Peak Temperature Range	260 (+0/-5°C)
Ramp-down Rate	6°C/Second max.
Time 25°C to Peak Temperature	8 minutes max

Note: It is recommended to apply a soldering temperature higher than 250°C. A maximum of three reflow passes is allowed per component.

		Fix/Workaround Before going to sleep modes where the system RC oscillator is stopped, make sure that the factor between the CPU/HSB and PBx frequencies is less than or equal to 4.
10.2.9	PDCA	
		PCONTROL.CHxRES is non-functional PCONTROL.CHxRES is non-functional. Counters are reset at power-on, and cannot be reset by software. Fix/Workaround Software needs to keep history of performance counters.
		Transfer error will stall a transmit peripheral handshake interface If a transfer error is encountered on a channel transmitting to a peripheral, the peripheral handshake of the active channel will stall and the PDCA will not do any more transfers on the affected peripheral handshake interface. Fix/Workaround Disable and then enable the peripheral after the transfer error.
10.2.10	AES	
		URAD (Unspecified Register Access Detection Status) does not detect read accesses to the write-only KEYW[58]R registers Fix/Workaround None.
10.2.11	HMATRIX	
		In the PRAS and PRBS registers, the MxPR fields are only two bits In the PRAS and PRBS registers, the MxPR fields are only two bits wide, instead of four bits. The unused bits are undefined when reading the registers. Fix/Workaround Mask undefined bits when reading PRAS and PRBS.
10.2.12	тwiм	
		 TWIM SR.IDLE goes high immediately when NAK is received When a NAK is received and there is a non-zero number of bytes to be transmitted, SR.IDLE goes high immediately and does not wait for the STOP condition to be sent. This does not cause any problem just by itself, but can cause a problem if software waits for SR.IDLE to go high and then immediately disables the TWIM by writing a one to CR.MDIS. Disabling the TWIM causes the TWCK and TWD pins to go high immediately, so the STOP condition will not be transmitted correctly. Fix/Workaround If possible, do not disable the TWIM. If it is absolutely necessary to disable the TWIM, there must be a software delay of at least two TWCK periods between the detection of SR.IDLE==1 and the disabling of the TWIM.
		TWIM TWALM polarity is wrong The TWALM signal in the TWIM is active high instead of active low. Fix/Workaround Use an external inverter to invert the signal going into the TWIM. When using both TWIM and TWIS on the same pins, the TWALM cannot be used.

AT32UC3A3

		SMBALERT bit may be set after reset
		The SMBus Alert (SMBALERT) bit in the Status Register (SR) might be erroneously set after
		system reset. Fix/Workaround
		After system reset, clear the SR.SMBALERT bit before commencing any TWI transfer.
10.2.13	TWIS	
		Clearing the NAK bit before the BTF bit is set locks up the TWI bus When the TWIS is in transmit mode, clearing the NAK Received (NAK) bit of the Status Reg- ister (SR) before the end of the Acknowledge/Not Acknowledge cycle will cause the TWIS to attempt to continue transmitting data, thus locking up the bus. Fix/Workaround Clear SR.NAK only after the Byte Transfer Finished (BTF) bit of the same register has been set.
		TWIS stretch on Address match error When the TWIS stretches TWCK due to a slave address match, it also holds TWD low for the same duration if it is to be receiving data. When TWIS releases TWCK, it releases TWD at the same time. This can cause a TWI timing violation. Fix/Workaround None.
10.2.14	MCI	
		MCI_CLK features is not available on PX12, PX13 and PX40 Fix/Workaround MCI_CLK feature is available on PA27 only.
		The busy signal of the responses R1b is not taken in account for CMD12 STOP TRANSFER
		It is not possible to know the busy status of the card during the response (R1b) for the com- mands CMD12. Fix/Workaround
		The card busy line should be polled through the GPIO Input Value register (IVR) for com- mands CMD12.
10.2.15	SSC	
		 Frame Synchro and Frame Synchro Data are delayed by one clock cycle The frame synchro and the frame synchro data are delayed from 1 SSC_CLOCK when: Clock is CKDIV The START is selected on either a frame synchro edge or a level Frame synchro data is enabled Transmit clock is gated on output (through CKO field) Fix/Workaround Transmit or receive CLOCK must not be gated (by the mean of CKO field) when START condition is performed on a generated frame synchro.

10.3.5 ADC

Sleep Mode activation needs additional A to D conversion

If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode before after the next AD conversion.

Fix/Workaround

Activate the sleep mode in the mode register and then perform an AD conversion.

10.3.6 USART

ISO7816 info register US_NER cannot be read The NER register always returns zero.

Fix/Workaround None.

The LIN ID is not transmitted in mode PDCM='0' Fix/Workaround

Using USART in mode LIN master with the PDCM bit = '0', the LINID written at the first address of the transmit buffer is not used. The LINID must be written in the LINIR register, after the configuration and start of the PDCA transfer. Writing the LINID in the LINIR register will start the transfer whenever the PDCA transfer is ready.

The LINID interrupt is only available for the header reception and not available for the header transmission Fix/Workaround None.

USART LIN mode is not functional with the PDCA if PDCM bit in LINMR register is set to 1

If a PDCA transfer is initiated in USART LIN mode with PDCM bit set to 1, the transfer never starts.

Fix/Workaround

Only use PDCM=0 configuration with the PDCA transfer.

The RTS output does not function correctly in hardware handshaking mode

The RTS signal is not generated properly when the USART receives data in hardware handshaking mode. When the Peripheral DMA receive buffer becomes full, the RTS output should go high, but it will stay low.

Fix/Workaround

Do not use the hardware handshaking mode of the USART. If it is necessary to drive the RTS output high when the Peripheral DMA receive buffer becomes full, use the normal mode of the USART. Configure the Peripheral DMA Controller to signal an interrupt when the receive buffer is full. In the interrupt handler code, write a one to the RTSDIS bit in the USART Control Register (CR). This will drive the RTS output high. After the next DMA transfer is started and a receive buffer is available, write a one to the RTSEN bit in the USART CR so that RTS will be driven low.

ISO7816 Mode T1: RX impossible after any TX

RX impossible after any TX. **Fix/Workaround** SOFT_RESET on RX+ Config US_MR + Config_US_CR.

		Fix/Workaround None.
10.3.14	MCI	
		 The busy signal of the responses R1b is not taken in account for CMD12 STOP_TRANSFER It is not possible to know the busy status of the card during the response (R1b) for the commands CMD12. Fix/Workaround The card busy line should be polled through the GPIO Input Value register (IVR) for commands CMD12.
10.3.15	SSC	
		 Frame Synchro and Frame Synchro Data are delayed by one clock cycle The frame synchro and the frame synchro data are delayed from 1 SSC_CLOCK when: Clock is CKDIV The START is selected on either a frame synchro edge or a level Frame synchro data is enabled Transmit clock is gated on output (through CKO field) Fix/Workaround Transmit or receive CLOCK must not be gated (by the mean of CKO field) when START condition is performed on a generated frame synchro.
10.3.16	FLASHC	
		 Corrupted read in flash may happen after fuses write or erase operations (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands) After a flash fuse write or erase operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands), reading (data read or code fetch) in flash may fail. This may lead to an exception or to other errors derived from this corrupted read access. Fix/Workaround Before the flash fuse write or erase operation, enable the flash high speed mode (FLASHC HSEN command). The flash fuse write or erase operations (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands) must be issued from RAM or through the EBI. After these commands, read 3 times one flash page initialized to 00h. Disable the flash high

speed mode (FLASHC HSDIS command). It is then possible to safely read or code fetch the

flash.