
Atmel - AT32UC3A4128-C1UR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor AVR

Core Size 32-Bit Single-Core

Speed 66MHz

Connectivity EBI/EMI, I²C, IrDA, Memory Card, SPI, SSC, UART/USART, USB OTG

Peripherals Brown-out Detect/Reset, DMA, POR, WDT

Number of I/O 88

Program Memory Size 128KB (128K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 128K x 8

Voltage - Supply (Vcc/Vdd) 1.75V ~ 3.6V

Data Converters A/D 8x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 100-VFBGA

Supplier Device Package 100-VFBGA (7x7)

Purchase URL https://www.e-xfl.com/product-detail/atmel/at32uc3a4128-c1ur

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/at32uc3a4128-c1ur-4382987
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

5
32072SH–AVR32–10/2012

AT32UC3A3

2.2 Configuration Summary
The table below lists all AT32UC3A3/A4 memory and package configurations:

Table 2-1. Configuration Summary

Feature AT32UC3A3256/128/64 AT32UC3A4256/128/64

Flash 256/128/64 KB

SRAM 64 KB

HSB RAM 64 KB

EBI Full Nand flash only

GPIO 110 70

External Interrupts 8

TWI 2

USART 4

Peripheral DMA Channels 8

Generic DMA Channels 4

SPI 2

MCI slots 2 MMC/SD slots
1 MMC/SD slot

+ 1 SD slot

High Speed USB 1

AES (S option) 1

SSC 1

Audio Bitstream DAC 1

Timer/Counter Channels 6

Watchdog Timer 1

Real-Time Clock Timer 1

Power Manager 1

Oscillators

PLL 80-240 MHz (PLL0/PLL1)

Crystal Oscillators 0.4-20 MHz (OSC0/OSC1)

Crystal Oscillator 32 KHz (OSC32K)
RC Oscillator 115 kHz (RCSYS)

10-bit ADC
number of channels

1
8

JTAG 1

Max Frequency 84 MHz

Package LQFP144, TFBGA144 VFBGA100

7
32072SH–AVR32–10/2012

AT32UC3A3

Figure 3-2. LQFP144 Pinout

USB_VBUS
1

VDDIO
2

USB_VBIAS
3

GNDIO
4

DM
HS

5
DPHS

6
GNDIO

7
DM

FS
8

DPFS
9

VDDIO
10

PB08
11

PC05
12

PC04
13

PA30
14

PA02
15

PB10
16

PB09
17

PC02
18

PC03
19

GNDIO
20

VDDIO
21

PB04
22

PA29
23

PB03
24

PB02
25

PA27
26

PB01
27

PA28
28

PA31
29

PB00
30

PB11
31

PX16
32

PX13
33

PX12
34

PX19
35

PX40
36

PX1037
PX3538
PX4739
PX1540
PX4841
PX5342
PX4943
PX3644
PX3745
PX5446
GNDIO47
VDDIO48
PX0949
PX0850
PX3851
PX3952
PX0653
PX0754
PX0055
PX5956
PX5857
PX0558
PX0159
PX0460
PX3461
PX0262
PX0363
VDDIO64
GNDIO65
PX4466
PX1167
PX1468
PX4269
PX4570
PX4171
PX2272

TD
I

10
8

TC
K

10
7

RE
SE

T_
N

10
6

TD
O

10
5

TM
S

10
4

VD
DI

O
10

3
GN

DI
O

10
2

PA
15

10
1

PA
14

10
0

PC
01

99
PC

00
98

PX
31

97
PX

30
96

PX
33

95
PX

29
94

PX
32

93
PX

25
92

PX
28

91
PX

26
90

PX
27

89
PX

43
88

PX
52

87
PX

24
86

PX
23

85
PX

18
84

PX
17

83
GN

DI
O

82
VD

DI
O

81
PX

21
80

PX
55

79
PX

56
78

PX
51

77
PX

57
76

PX
50

75
PX

46
74

PX
20

73

PA21 109
PA22 110
PA23 111
PA24 112
PA20 113
PA19 114
PA18 115
PA17 116

GNDANA 117
VDDANA 118

PA25 119
PA26 120
PB05 121
PA00 122
PA01 123
PA05 124
PA03 125
PA04 126
PA06 127
PA16 128
PA13 129

VDDIO 130
GNDIO 131

PA12 132
PA07 133
PB06 134
PB07 135
PA11 136
PA08 137
PA10 138
PA09 139

GNDCORE 140
VDDCORE 141

VDDIN 142
VDDIN 143

GNDPLL 144

8
32072SH–AVR32–10/2012

AT32UC3A3

Figure 3-3. VFBGA100 Pinout (top view)

Note: 1. Those balls are physically connected to 2 GPIOs. Software must managed carrefully the GPIO
configuration to avoid electrical conflict

10987654321
A

B

C

D

E

F

G

H

J

K

PA28 PA27 PB04 PA30 PC02 PC03 PC05 DPHS DMHS USB_VBUS

GNDPLLDMFSDPFSPC04VDDIOVDDIOPA29PB02PB01PB00

PB11 PA31 GNDIO

PX10 PX13

PB03 PB09

PX16/
PX53(1) PB10

GNDIOUSB_VBIASPB08

PA09PB06PB07

PA10PA11

VDDINVDDIN

PA06/
PA13(1) VDDCOREPA04

PA08 GNDCOREPA03

PX09 VDDIO PA16GNDIO

PX07 GNDIO PA26/
PB05(1)VDDIO

PX12

GNDIO PX08PA02/
PX47(1)

VDDIO PX06PX19/
PX59(1)

PX00 PX30 PA12/
PA25(1)

PA23/
PX46(1)PX01 PX02PX05

PX25 PX31 TMSPA22/
PX20(1)PX21 GNDIOPX04

PX29 VDDIO PA15/
PX45(1)VDDANAPX24 PX26PX03

PX15/
PX32(1)

PC00/
PX14(1)

PA14/
PX11(1)PC01PX27 PX28PX23

PA00/
PA18(1)

PA01/
PA17(1)PA05

GNDANA PA07/
PA19(1)

PA20/
PX18(1)

TDO PA24/
PX17(1)RESET_N

TDI PA21/
PX22(1)TCK

12
32072SH–AVR32–10/2012

AT32UC3A3

Note: 1. Those balls are physically connected to 2 GPIOs. Software must managed carrefully the GPIO
configuration to avoid electrical conflict.

2. Refer to ”Electrical Characteristics” on page 40 for a description of the electrical properties of
the pad types used..

3.2.2 Peripheral Functions
Each GPIO line can be assigned to one of several peripheral functions. The following table
describes how the various peripheral functions are selected. The last listed function has priority
in case multiple functions are enabled on the same pin.

3.2.3 Oscillator Pinout
The oscillators are not mapped to the normal GPIO functions and their muxings are controlled
by registers in the Power Mananger (PM). Please refer to the PM chapter for more information
about this.

Note: 1. This ball is physically connected to 2 GPIOs. Software must managed carrefully the GPIO con-
figuration to avoid electrical conflict

J4 78 PX56 107 VDDIO x2 EBI - ADDR[21] EIC - SCAN[2] USART2 - TXD

H4 76 PX57 108 VDDIO x2 EBI - ADDR[20] EIC - SCAN[1] USART3 - RXD

H3 57 PX58 109 VDDIO x2 EBI - NCS[0] EIC - SCAN[0] USART3 - TXD

G3 56 F1(1) PX59 110 VDDIO x2 EBI - NANDWE MCI - CMD[1]

Table 3-1. GPIO Controller Function Multiplexing

BGA

144

QFP

144

BGA

100 PIN

G

P

I

O Supply

PIN

Type
(2)

GPIO function

A B C D

Table 3-2. Peripheral Functions

Function Description

GPIO Controller Function multiplexing GPIO and GPIO peripheral selection A to D

Nexus OCD AUX port connections OCD trace system

JTAG port connections JTAG debug port

Oscillators OSC0, OSC1, OSC32

Table 3-3.Oscillator Pinout

 TFBGA144 QFP144 VFBGA100 Pin name Oscillator pin

A7 18 A5 PC02 XIN0

B7 19 A6 PC03 XOUT0

A8 13 B7 PC04 XIN1

A9 12 A7 PC05 XOUT1

K5 98 K5(1) PC00 XIN32

H6 99 K6 PC01 XOUT32

15
32072SH–AVR32–10/2012

AT32UC3A3

RESET_N Reset Pin Input Low

DMA Controller - DMACA (optional)

DMAACK[1:0] DMA Acknowledge Output

DMARQ[1:0] DMA Requests Input

External Interrupt Controller - EIC

EXTINT[7:0] External Interrupt Pins Input

SCAN[7:0] Keypad Scan Pins Output

NMI Non-Maskable Interrupt Pin Input Low

General Purpose Input/Output pin - GPIOA, GPIOB, GPIOC, GPIOX

PA[31:0] Parallel I/O Controller GPIO port A I/O

PB[11:0] Parallel I/O Controller GPIO port B I/O

PC[5:0] Parallel I/O Controller GPIO port C I/O

PX[59:0] Parallel I/O Controller GPIO port X I/O

External Bus Interface - EBI

ADDR[23:0] Address Bus Output

CAS Column Signal Output Low

CFCE1 Compact Flash 1 Chip Enable Output Low

CFCE2 Compact Flash 2 Chip Enable Output Low

CFRNW Compact Flash Read Not Write Output

DATA[15:0] Data Bus I/O

NANDOE NAND Flash Output Enable Output Low

NANDWE NAND Flash Write Enable Output Low

NCS[5:0] Chip Select Output Low

NRD Read Signal Output Low

NWAIT External Wait Signal Input Low

NWE0 Write Enable 0 Output Low

NWE1 Write Enable 1 Output Low

RAS Row Signal Output Low

Table 3-6. Signal Description List

Signal Name Function Type
Active
Level Comments

29
32072SH–AVR32–10/2012

AT32UC3A3

26 104 JAVA_LV3 Unused in AVR32UC

27 108 JAVA_LV4 Unused in AVR32UC

28 112 JAVA_LV5 Unused in AVR32UC

29 116 JAVA_LV6 Unused in AVR32UC

30 120 JAVA_LV7 Unused in AVR32UC

31 124 JTBA Unused in AVR32UC

32 128 JBCR Unused in AVR32UC

33-63 132-252 Reserved Reserved for future use

64 256 CONFIG0 Configuration register 0

65 260 CONFIG1 Configuration register 1

66 264 COUNT Cycle Counter register

67 268 COMPARE Compare register

68 272 TLBEHI Unused in AVR32UC

69 276 TLBELO Unused in AVR32UC

70 280 PTBR Unused in AVR32UC

71 284 TLBEAR Unused in AVR32UC

72 288 MMUCR Unused in AVR32UC

73 292 TLBARLO Unused in AVR32UC

74 296 TLBARHI Unused in AVR32UC

75 300 PCCNT Unused in AVR32UC

76 304 PCNT0 Unused in AVR32UC

77 308 PCNT1 Unused in AVR32UC

78 312 PCCR Unused in AVR32UC

79 316 BEAR Bus Error Address Register

80 320 MPUAR0 MPU Address Register region 0

81 324 MPUAR1 MPU Address Register region 1

82 328 MPUAR2 MPU Address Register region 2

83 332 MPUAR3 MPU Address Register region 3

84 336 MPUAR4 MPU Address Register region 4

85 340 MPUAR5 MPU Address Register region 5

86 344 MPUAR6 MPU Address Register region 6

87 348 MPUAR7 MPU Address Register region 7

88 352 MPUPSR0 MPU Privilege Select Register region 0

89 356 MPUPSR1 MPU Privilege Select Register region 1

90 360 MPUPSR2 MPU Privilege Select Register region 2

91 364 MPUPSR3 MPU Privilege Select Register region 3

Table 4-3. System Registers (Continued)

Reg # Address Name Function

31
32072SH–AVR32–10/2012

AT32UC3A3

The user must also make sure that the system stack is large enough so that any event is able to
push the required registers to stack. If the system stack is full, and an event occurs, the system
will enter an UNDEFINED state.

4.5.2 Exceptions and Interrupt Requests
When an event other than scall or debug request is received by the core, the following actions
are performed atomically:

1. The pending event will not be accepted if it is masked. The I3M, I2M, I1M, I0M, EM, and
GM bits in the Status Register are used to mask different events. Not all events can be
masked. A few critical events (NMI, Unrecoverable Exception, TLB Multiple Hit, and
Bus Error) can not be masked. When an event is accepted, hardware automatically
sets the mask bits corresponding to all sources with equal or lower priority. This inhibits
acceptance of other events of the same or lower priority, except for the critical events
listed above. Software may choose to clear some or all of these bits after saving the
necessary state if other priority schemes are desired. It is the event source’s respons-
ability to ensure that their events are left pending until accepted by the CPU.

2. When a request is accepted, the Status Register and Program Counter of the current
context is stored to the system stack. If the event is an INT0, INT1, INT2, or INT3, reg-
isters R8-R12 and LR are also automatically stored to stack. Storing the Status
Register ensures that the core is returned to the previous execution mode when the
current event handling is completed. When exceptions occur, both the EM and GM bits
are set, and the application may manually enable nested exceptions if desired by clear-
ing the appropriate bit. Each exception handler has a dedicated handler address, and
this address uniquely identifies the exception source.

3. The Mode bits are set to reflect the priority of the accepted event, and the correct regis-
ter file bank is selected. The address of the event handler, as shown in Table 4-4, is
loaded into the Program Counter.

The execution of the event handler routine then continues from the effective address calculated.

The rete instruction signals the end of the event. When encountered, the Return Status Register
and Return Address Register are popped from the system stack and restored to the Status Reg-
ister and Program Counter. If the rete instruction returns from INT0, INT1, INT2, or INT3,
registers R8-R12 and LR are also popped from the system stack. The restored Status Register
contains information allowing the core to resume operation in the previous execution mode. This
concludes the event handling.

4.5.3 Supervisor Calls
The AVR32 instruction set provides a supervisor mode call instruction. The scall instruction is
designed so that privileged routines can be called from any context. This facilitates sharing of
code between different execution modes. The scall mechanism is designed so that a minimal
execution cycle overhead is experienced when performing supervisor routine calls from time-
critical event handlers.

The scall instruction behaves differently depending on which mode it is called from. The behav-
iour is detailed in the instruction set reference. In order to allow the scall routine to return to the
correct context, a return from supervisor call instruction, rets, is implemented. In the AVR32UC
CPU, scall and rets uses the system stack to store the return address and the status register.

4.5.4 Debug Requests
The AVR32 architecture defines a dedicated Debug mode. When a debug request is received by
the core, Debug mode is entered. Entry into Debug mode can be masked by the DM bit in the

32
32072SH–AVR32–10/2012

AT32UC3A3

status register. Upon entry into Debug mode, hardware sets the SR[D] bit and jumps to the
Debug Exception handler. By default, Debug mode executes in the exception context, but with
dedicated Return Address Register and Return Status Register. These dedicated registers
remove the need for storing this data to the system stack, thereby improving debuggability. The
mode bits in the status register can freely be manipulated in Debug mode, to observe registers
in all contexts, while retaining full privileges.

Debug mode is exited by executing the retd instruction. This returns to the previous context.

4.5.5 Entry Points for Events
Several different event handler entry points exists. In AVR32UC, the reset address is
0x8000_0000. This places the reset address in the boot flash memory area.

TLB miss exceptions and scall have a dedicated space relative to EVBA where their event han-
dler can be placed. This speeds up execution by removing the need for a jump instruction placed
at the program address jumped to by the event hardware. All other exceptions have a dedicated
event routine entry point located relative to EVBA. The handler routine address identifies the
exception source directly.

AVR32UC uses the ITLB and DTLB protection exceptions to signal a MPU protection violation.
ITLB and DTLB miss exceptions are used to signal that an access address did not map to any of
the entries in the MPU. TLB multiple hit exception indicates that an access address did map to
multiple TLB entries, signalling an error.

All external interrupt requests have entry points located at an offset relative to EVBA. This
autovector offset is specified by an external Interrupt Controller. The programmer must make
sure that none of the autovector offsets interfere with the placement of other code. The autovec-
tor offset has 14 address bits, giving an offset of maximum 16384 bytes.

Special considerations should be made when loading EVBA with a pointer. Due to security con-
siderations, the event handlers should be located in non-writeable flash memory, or optionally in
a privileged memory protection region if an MPU is present.

If several events occur on the same instruction, they are handled in a prioritized way. The priority
ordering is presented in Table 4-4. If events occur on several instructions at different locations in
the pipeline, the events on the oldest instruction are always handled before any events on any
younger instruction, even if the younger instruction has events of higher priority than the oldest
instruction. An instruction B is younger than an instruction A if it was sent down the pipeline later
than A.

The addresses and priority of simultaneous events are shown in Table 4-4. Some of the excep-
tions are unused in AVR32UC since it has no MMU, coprocessor interface, or floating-point unit.

33
32072SH–AVR32–10/2012

AT32UC3A3

Table 4-4. Priority and Handler Addresses for Events

Priority Handler Address Name Event source Stored Return Address

1 0x8000_0000 Reset External input Undefined

2 Provided by OCD system OCD Stop CPU OCD system First non-completed instruction

3 EVBA+0x00 Unrecoverable exception Internal PC of offending instruction

4 EVBA+0x04 TLB multiple hit MPU

5 EVBA+0x08 Bus error data fetch Data bus First non-completed instruction

6 EVBA+0x0C Bus error instruction fetch Data bus First non-completed instruction

7 EVBA+0x10 NMI External input First non-completed instruction

8 Autovectored Interrupt 3 request External input First non-completed instruction

9 Autovectored Interrupt 2 request External input First non-completed instruction

10 Autovectored Interrupt 1 request External input First non-completed instruction

11 Autovectored Interrupt 0 request External input First non-completed instruction

12 EVBA+0x14 Instruction Address CPU PC of offending instruction

13 EVBA+0x50 ITLB Miss MPU

14 EVBA+0x18 ITLB Protection MPU PC of offending instruction

15 EVBA+0x1C Breakpoint OCD system First non-completed instruction

16 EVBA+0x20 Illegal Opcode Instruction PC of offending instruction

17 EVBA+0x24 Unimplemented instruction Instruction PC of offending instruction

18 EVBA+0x28 Privilege violation Instruction PC of offending instruction

19 EVBA+0x2C Floating-point UNUSED

20 EVBA+0x30 Coprocessor absent Instruction PC of offending instruction

21 EVBA+0x100 Supervisor call Instruction PC(Supervisor Call) +2

22 EVBA+0x34 Data Address (Read) CPU PC of offending instruction

23 EVBA+0x38 Data Address (Write) CPU PC of offending instruction

24 EVBA+0x60 DTLB Miss (Read) MPU

25 EVBA+0x70 DTLB Miss (Write) MPU

26 EVBA+0x3C DTLB Protection (Read) MPU PC of offending instruction

27 EVBA+0x40 DTLB Protection (Write) MPU PC of offending instruction

28 EVBA+0x44 DTLB Modified UNUSED

36
32072SH–AVR32–10/2012

AT32UC3A3

0xFFFF0C00
PM Power Manager - PM

0xFFFF0D00
RTC Real Time Counter - RTC

0xFFFF0D30
WDT Watchdog Timer - WDT

0xFFFF0D80
EIC External Interrupt Controller - EIC

0xFFFF1000
GPIO General Purpose Input/Output Controller - GPIO

0xFFFF1400
USART0

Universal Synchronous/Asynchronous
Receiver/Transmitter - USART0

0xFFFF1800
USART1

Universal Synchronous/Asynchronous
Receiver/Transmitter - USART1

0xFFFF1C00
USART2

Universal Synchronous/Asynchronous
Receiver/Transmitter - USART2

0xFFFF2000
USART3

Universal Synchronous/Asynchronous
Receiver/Transmitter - USART3

0xFFFF2400
SPI0 Serial Peripheral Interface - SPI0

0xFFFF2800
SPI1 Serial Peripheral Interface - SPI1

0xFFFF2C00
TWIM0 Two-wire Master Interface - TWIM0

0xFFFF3000
TWIM1 Two-wire Master Interface - TWIM1

0xFFFF3400
SSC Synchronous Serial Controller - SSC

0xFFFF3800
TC0 Timer/Counter - TC0

0xFFFF3C00
ADC Analog to Digital Converter - ADC

0xFFFF4000
ABDAC Audio Bitstream DAC - ABDAC

0xFFFF4400
TC1 Timer/Counter - TC1

Table 5-2. Peripheral Address Mapping

39
32072SH–AVR32–10/2012

AT32UC3A3

6. Boot Sequence
This chapter summarizes the boot sequence of the AT32UC3A3/A4. The behavior after power-
up is controlled by the Power Manager. For specific details, refer to Section 7. ”Power Manager
(PM)” on page 86.

6.1 Starting of Clocks
After power-up, the device will be held in a reset state by the Power-On Reset circuitry, until the
power has stabilized throughout the device. Once the power has stabilized, the device will use
the internal RC Oscillator as clock source.

On system start-up, the PLLs are disabled. All clocks to all modules are running. No clocks have
a divided frequency, all parts of the system receives a clock with the same frequency as the
internal RC Oscillator.

6.2 Fetching of Initial Instructions
After reset has been released, the AVR32 UC CPU starts fetching instructions from the reset
address, which is 0x8000_0000. This address points to the first address in the internal Flash.

The internal Flash uses VDDIO voltage during read and write operations. BOD33 monitors this
voltage and maintains the device under reset until VDDIO reaches the minimum voltage, pre-
venting any spurious execution from flash.

The code read from the internal Flash is free to configure the system to use for example the
PLLs, to divide the frequency of the clock routed to some of the peripherals, and to gate the
clocks to unused peripherals.

When powering up the device, there may be a delay before the voltage has stabilized, depend-
ing on the rise time of the supply used. The CPU can start executing code as soon as the supply
is above the POR threshold, and before the supply is stable. Before switching to a high-speed
clock source, the user should use the BOD to make sure the VDDCORE is above the minimum-
level (1.62V).

50
32072SH–AVR32–10/2012

AT32UC3A3

Table 7-13. Typical Cuurent Consumption by Peripheral

Peripheral Typ. Unit

ADC 7

µA/MHz

AES 80

ABDAC 10

DMACA 70

EBI 23

EIC 0.5

GPIO 37

INTC 3

MCI 40

MSI 10

PDCA 20

SDRAM 5

SMC 9

SPI 6

SSC 10

RTC 5

TC 8

TWIM 2

TWIS 2

USART 10

USBB 90

WDT 2

59
32072SH–AVR32–10/2012

AT32UC3A3

Figure 7-7. SMC Signals for NCS Controlled Accesses.

SMC43 Data Out Valid before NWE Rising (nwe pulse length - 1) * tCPSMC - 1.2 ns

SMC44 Data Out Valid after NWE Rising 5 ns

SMC45 NWE Pulse Width nwe pulse length * tCPSMC - 0.9 ns

Table 7-34. SMC Write Signals with No Hold Settings (NWE Controlled only)

Symbol Parameter Min. Unit

NRD

NCS

D0 - D15

NWE

A2-A25

A0/A1/NBS[3:0]

SMC34 SMC35SMC10 SMC11

SMC16

SMC15

SMC22SMC21

SMC17

SMC18

SMC14
SMC13
SMC12

SMC18

SMC17

SMC16

SMC15
SMC14
SMC13
SMC12

SMC18

SMC36

SMC16

SMC15
SMC14
SMC13
SMC12

61
32072SH–AVR32–10/2012

AT32UC3A3

SDRAMC13 Bank Change before SDCK Rising Edge 6.3 ns

SDRAMC14 Bank Change after SDCK Rising Edge 2.4 ns

SDRAMC15 CAS Low before SDCK Rising Edge 7.4 ns

SDRAMC16 CAS High after SDCK Rising Edge 1.9 ns

SDRAMC17 DQM Change before SDCK Rising Edge 6.4 ns

SDRAMC18 DQM Change after SDCK Rising Edge 2.2 ns

SDRAMC19 D0-D15 in Setup before SDCK Rising Edge 9 ns

SDRAMC20 D0-D15 in Hold after SDCK Rising Edge 0 ns

SDRAMC23 SDWE Low before SDCK Rising Edge 7.6 ns

SDRAMC24 SDWE High after SDCK Rising Edge 1.8 ns

SDRAMC25 D0-D15 Out Valid before SDCK Rising Edge 7.1 ns

SDRAMC26 D0-D15 Out Valid after SDCK Rising Edge 1.5 ns

Table 7-36. SDRAM Clock Signal

Symbol Parameter Conditions Min. Max. Unit

71
32072SH–AVR32–10/2012

AT32UC3A3

Figure 8-3. VFBGA-100 package drawing

75
32072SH–AVR32–10/2012

AT32UC3A3

For higher polling time, the software must freeze the pipe for the desired period in order to
prevent any "extra" token.

10.1.5 ADC

Sleep Mode activation needs additional A to D conversion
If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode
before after the next AD conversion.
Fix/Workaround
Activate the sleep mode in the mode register and then perform an AD conversion.

10.1.6 USART

ISO7816 info register US_NER cannot be read
The NER register always returns zero.
Fix/Workaround
None.

The LIN ID is not transmitted in mode PDCM='0'
Fix/Workaround
Using USART in mode LIN master with the PDCM bit = '0', the LINID written at the first
address of the transmit buffer is not used. The LINID must be written in the LINIR register,
after the configuration and start of the PDCA transfer. Writing the LINID in the LINIR register
will start the transfer whenever the PDCA transfer is ready.

The LINID interrupt is only available for the header reception and not available for the
header transmission
Fix/Workaround
None.

USART LIN mode is not functional with the PDCA if PDCM bit in LINMR register is set
to 1
If a PDCA transfer is initiated in USART LIN mode with PDCM bit set to 1, the transfer never
starts.
Fix/Workaround
Only use PDCM=0 configuration with the PDCA transfer.

10.1.7 SPI

SPI disable does not work in SLAVE mode
SPI disable does not work in SLAVE mode.
Fix/Workaround
Read the last received data, then perform a software reset by writing a one to the Software
Reset bit in the Control Register (CR.SWRST).

SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and
NCPHA=0
When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one
(CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0,
then an additional pulse will be generated on SCK.
Fix/Workaround
When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1
if CSRn.CPOL=1 and CSRn.NCPHA=0.

78
32072SH–AVR32–10/2012

AT32UC3A3

TWIS stretch on Address match error
When the TWIS stretches TWCK due to a slave address match, it also holds TWD low for
the same duration if it is to be receiving data. When TWIS releases TWCK, it releases TWD
at the same time. This can cause a TWI timing violation.
Fix/Workaround
None.

10.1.14 SSC

Frame Synchro and Frame Synchro Data are delayed by one clock cycle
The frame synchro and the frame synchro data are delayed from 1 SSC_CLOCK when:
- Clock is CKDIV
- The START is selected on either a frame synchro edge or a level
- Frame synchro data is enabled
- Transmit clock is gated on output (through CKO field)
Fix/Workaround
Transmit or receive CLOCK must not be gated (by the mean of CKO field) when START
condition is performed on a generated frame synchro.

10.1.15 FLASHC

Corrupted read in flash may happen after fuses write or erase operations (FLASHC
LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands)
After a flash fuse write or erase operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB,
EAGPF commands), reading (data read or code fetch) in flash may fail. This may lead to an
exception or to other errors derived from this corrupted read access.
Fix/Workaround
Before the flash fuse write or erase operation, enable the flash high speed mode (FLASHC
HSEN command). The flash fuse write or erase operations (FLASHC LP, UP, WGPB,
EGPB, SSB, PGPFB, EAGPF commands) must be issued from RAM or through the EBI.
After these commands, read 3 times one flash page initialized to 00h. Disable the flash high
speed mode (FLASHC HSDIS command). It is then possible to safely read or code fetch the
flash.

10.2 Rev. E

10.2.1 General
Devices cannot operate with CPU frequency higher than 66MHz in 1WS and 36MHz in
0WS
Fix/Workaround
None

Increased Power Consumption in VDDIO in sleep modes
If the OSC0 is enabled in crystal mode when entering a sleep mode where the OSC0 is dis-
abled, this will lead to an increased power consumption in VDDIO.
Fix/Workaround
Disable the OSC0 through the System Control Interface (SCIF) before going to any sleep
mode where the OSC0 is disabled, or pull down or up XIN0 and XOUT0 with 1 Mohm
resistor.

Power consumption in static mode The power consumption in static mode can be up
to 330µA on some parts (typical at 25°C)

79
32072SH–AVR32–10/2012

AT32UC3A3

Fix/Workaround
Set to 1b bit CORRS4 of the ECCHRS mode register (MD). In C-code: *((volatile int*)
(0xFFFE2404))= 0x400.

DMACA data transfer fails when CTLx.SRC_TR_WIDTH is not equal to
CTLx.DST_TR_WIDTH
Fix/Workaround
For any DMACA transfer make sure CTLx.SRC_TR_WIDTH = CTLx.DST_TR_WIDTH.

3.3V supply monitor is not available
FGPFRLO[30:29] are reserved and should not be used by the application.
Fix/Workaround
None.

Service access bus (SAB) can not access DMACA registers
Fix/Workaround
None.

10.2.2 Processor and Architecture

LDM instruction with PC in the register list and without ++ increments Rp
For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie
the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the
increment of the pointer is done in parallel with the testing of R12.
Fix/Workaround
None.

Hardware breakpoints may corrupt MAC results
Hardware breakpoints on MAC instructions may corrupt the destination register of the MAC
instruction.
Fix/Workaround
Place breakpoints on earlier or later instructions.

When the main clock is RCSYS, TIMER_CLOCK5 is equal to PBA clock
When the main clock is generated from RCSYS, TIMER_CLOCK5 is equal to PBA Clock
and not PBA Clock / 128.
Fix/Workaround
None.

10.2.3 MPU

Privilege violation when using interrupts in application mode with protected system
stack
If the system stack is protected by the MPU and an interrupt occurs in application mode, an
MPU DTLB exception will occur.
Fix/Workaround
Make a DTLB Protection (Write) exception handler which permits the interrupt request to be
handled in privileged mode.

10.2.4 USB

 UPCFGn.INTFRQ is irrelevant for isochronous pipe
As a consequence, isochronous IN and OUT tokens are sent every 1ms (Full Speed), or
every 125uS (High Speed).

86
32072SH–AVR32–10/2012

AT32UC3A3

10.3.5 ADC

Sleep Mode activation needs additional A to D conversion
If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode
before after the next AD conversion.
Fix/Workaround
Activate the sleep mode in the mode register and then perform an AD conversion.

10.3.6 USART

ISO7816 info register US_NER cannot be read
The NER register always returns zero.
Fix/Workaround
None.

The LIN ID is not transmitted in mode PDCM='0'
Fix/Workaround
Using USART in mode LIN master with the PDCM bit = '0', the LINID written at the first
address of the transmit buffer is not used. The LINID must be written in the LINIR register,
after the configuration and start of the PDCA transfer. Writing the LINID in the LINIR register
will start the transfer whenever the PDCA transfer is ready.

The LINID interrupt is only available for the header reception and not available for the
header transmission
Fix/Workaround
None.

USART LIN mode is not functional with the PDCA if PDCM bit in LINMR register is set
to 1
If a PDCA transfer is initiated in USART LIN mode with PDCM bit set to 1, the transfer never
starts.
Fix/Workaround
Only use PDCM=0 configuration with the PDCA transfer.

The RTS output does not function correctly in hardware handshaking mode
The RTS signal is not generated properly when the USART receives data in hardware hand-
shaking mode. When the Peripheral DMA receive buffer becomes full, the RTS output
should go high, but it will stay low.
Fix/Workaround
Do not use the hardware handshaking mode of the USART. If it is necessary to drive the
RTS output high when the Peripheral DMA receive buffer becomes full, use the normal
mode of the USART. Configure the Peripheral DMA Controller to signal an interrupt when
the receive buffer is full. In the interrupt handler code, write a one to the RTSDIS bit in the
USART Control Register (CR). This will drive the RTS output high. After the next DMA trans-
fer is started and a receive buffer is available, write a one to the RTSEN bit in the USART
CR so that RTS will be driven low.

ISO7816 Mode T1: RX impossible after any TX
RX impossible after any TX.
Fix/Workaround
SOFT_RESET on RX+ Config US_MR + Config_US_CR.

91
32072SH–AVR32–10/2012

AT32UC3A3

11.7 Rev. B – 08/09

11.8 Rev. A – 03/09

1. Updated the datasheet with new device AT32UC3A4.

1. Initial revision.

