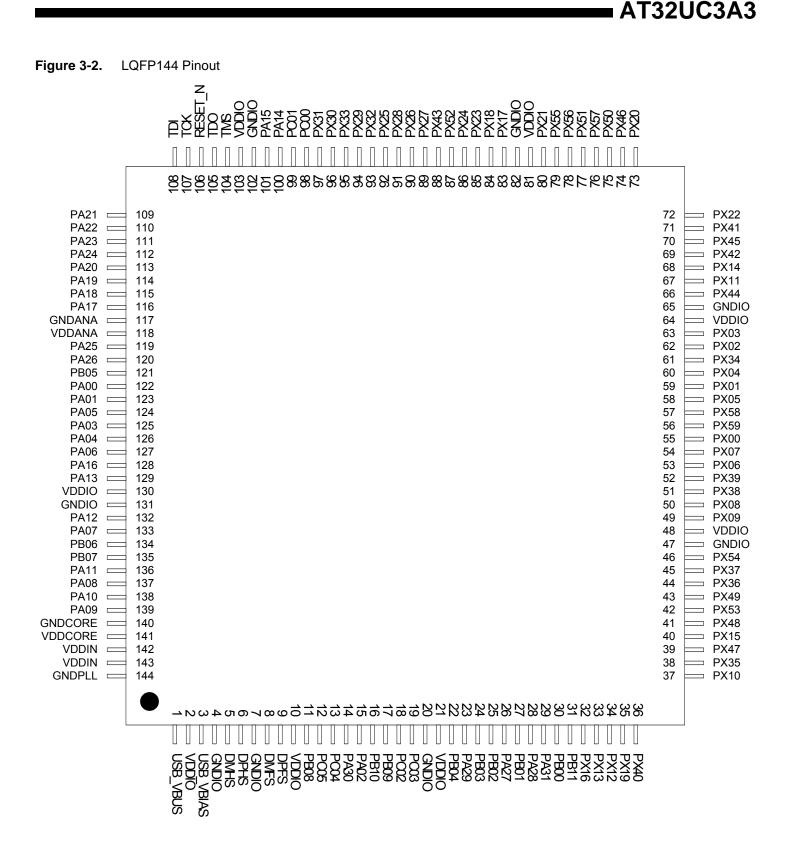


Welcome to E-XFL.COM

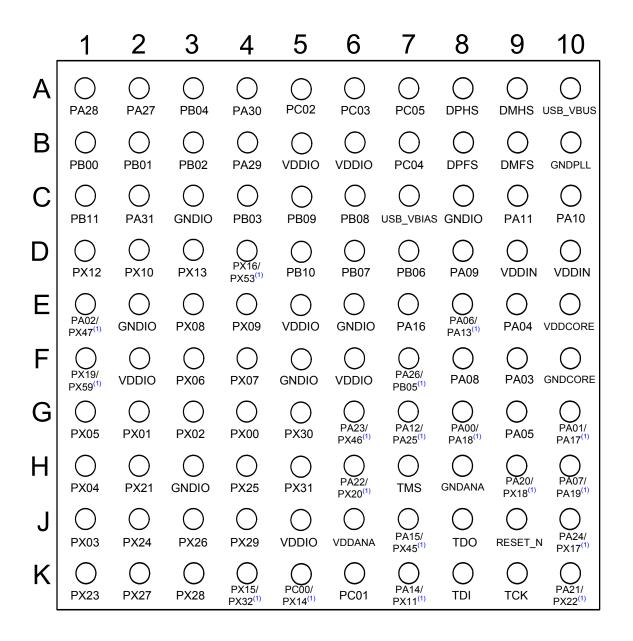
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

E·XFI


Details	
Product Status	Active
Core Processor	AVR
Core Size	32-Bit Single-Core
Speed	66MHz
Connectivity	EBI/EMI, I ² C, IrDA, Memory Card, SPI, SSC, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, POR, WDT
Number of I/O	88
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.75V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-VFBGA
Supplier Device Package	100-VFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at32uc3a4256-c1ut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

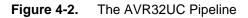
Note: 1. Those balls are physically connected to 2 GPIOs. Software must managed carrefully the GPIO configuration to avoid electrical conflict

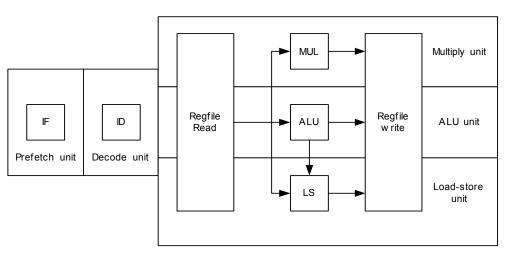
Table 3-6.Signal Description List

Signal Name	Function	Туре	Active Level	Comments
RESET_N	Reset Pin	Input	Low	
	DMA Controller - D	MACA (optional)	·
DMAACK[1:0]	DMA Acknowledge	Output		
DMARQ[1:0]	DMA Requests	Input		
	External Interrupt	Controller - EIC		
EXTINT[7:0]	External Interrupt Pins	Input		
SCAN[7:0]	Keypad Scan Pins	Output		
NMI	Non-Maskable Interrupt Pin	Input	Low	
	General Purpose Input/Output pin	- GPIOA, GPIOB	, GPIOC, G	PIOX
PA[31:0]	Parallel I/O Controller GPIO port A	I/O		
PB[11:0]	Parallel I/O Controller GPIO port B	I/O		
PC[5:0]	Parallel I/O Controller GPIO port C	I/O		
PX[59:0]	Parallel I/O Controller GPIO port X	I/O		
	External Bus Ir	nterface - EBI		1
ADDR[23:0]	Address Bus	Output		
CAS	Column Signal	Output	Low	
CFCE1	Compact Flash 1 Chip Enable	Output	Low	
CFCE2	Compact Flash 2 Chip Enable	Output	Low	
CFRNW	Compact Flash Read Not Write	Output		
DATA[15:0]	Data Bus	I/O		
NANDOE	NAND Flash Output Enable	Output	Low	
NANDWE	NAND Flash Write Enable	Output	Low	
NCS[5:0]	Chip Select	Output	Low	
NRD	Read Signal	Output	Low	
NWAIT	External Wait Signal	Input	Low	
NWE0	Write Enable 0	Output	Low	
NWE1	Write Enable 1	Output	Low	
RAS	Row Signal	Output	Low	

The register file is organized as sixteen 32-bit registers and includes the Program Counter, the Link Register, and the Stack Pointer. In addition, register R12 is designed to hold return values from function calls and is used implicitly by some instructions.

4.3 The AVR32UC CPU


The AVR32UC CPU targets low- and medium-performance applications, and provides an advanced OCD system, no caches, and a Memory Protection Unit (MPU). Java acceleration hardware is not implemented.


AVR32UC provides three memory interfaces, one High Speed Bus master for instruction fetch, one High Speed Bus master for data access, and one High Speed Bus slave interface allowing other bus masters to access data RAMs internal to the CPU. Keeping data RAMs internal to the CPU allows fast access to the RAMs, reduces latency, and guarantees deterministic timing. Also, power consumption is reduced by not needing a full High Speed Bus access for memory accesses. A dedicated data RAM interface is provided for communicating with the internal data RAMs.

A local bus interface is provided for connecting the CPU to device-specific high-speed systems, such as floating-point units and fast GPIO ports. This local bus has to be enabled by writing the LOCEN bit in the CPUCR system register. The local bus is able to transfer data between the CPU and the local bus slave in a single clock cycle. The local bus has a dedicated memory range allocated to it, and data transfers are performed using regular load and store instructions. Details on which devices that are mapped into the local bus space is given in the Memories chapter of this data sheet.

Figure 4-1 on page 23 displays the contents of AVR32UC.

4.3.2 AVR32A Microarchitecture Compliance

AVR32UC implements an AVR32A microarchitecture. The AVR32A microarchitecture is targeted at cost-sensitive, lower-end applications like smaller microcontrollers. This microarchitecture does not provide dedicated hardware registers for shadowing of register file registers in interrupt contexts. Additionally, it does not provide hardware registers for the return address registers and return status registers. Instead, all this information is stored on the system stack. This saves chip area at the expense of slower interrupt handling.

Upon interrupt initiation, registers R8-R12 are automatically pushed to the system stack. These registers are pushed regardless of the priority level of the pending interrupt. The return address and status register are also automatically pushed to stack. The interrupt handler can therefore use R8-R12 freely. Upon interrupt completion, the old R8-R12 registers and status register are restored, and execution continues at the return address stored popped from stack.

The stack is also used to store the status register and return address for exceptions and *scall*. Executing the *rete* or *rets* instruction at the completion of an exception or system call will pop this status register and continue execution at the popped return address.

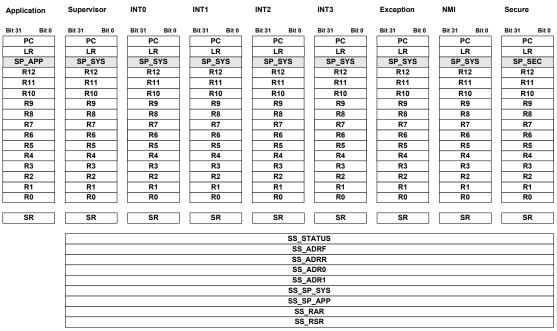
4.3.3 Java Support

AVR32UC does not provide Java hardware acceleration.

4.3.4 Memory Protection

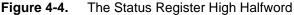
The MPU allows the user to check all memory accesses for privilege violations. If an access is attempted to an illegal memory address, the access is aborted and an exception is taken. The MPU in AVR32UC is specified in the AVR32UC Technical Reference manual.

4.3.5 Unaligned Reference Handling


AVR32UC does not support unaligned accesses, except for doubleword accesses. AVR32UC is able to perform word-aligned *st.d* and *ld.d*. Any other unaligned memory access will cause an address exception. Doubleword-sized accesses with word-aligned pointers will automatically be performed as two word-sized accesses.

4.4 Programming Model

4.4.1 Register File Configuration


The AVR32UC register file is shown below.

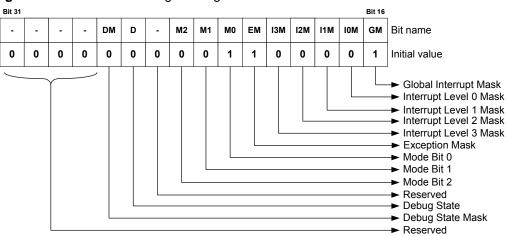


Figure 4-3. The AVR32UC Register File

4.4.2 Status Register Configuration

The Status Register (SR) is split into two halfwords, one upper and one lower, see Figure 4-4 on page 26 and Figure 4-5 on page 27. The lower word contains the C, Z, N, V, and Q condition code flags and the R, T, and L bits, while the upper halfword contains information about the mode and state the processor executes in. Refer to the *AVR32 Architecture Manual* for details.

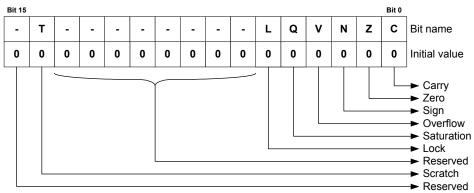


Figure 4-5. The Status Register Low Halfword

4.4.3 Processor States

4.4.3.1 Normal RISC State

The AVR32 processor supports several different execution contexts as shown in Table 4-2 on page 27.

able 4-2. Overview of Execution modes, their Findhites and Findhege Levels.					
Priority	Mode	Security	Description		
1	Non Maskable Interrupt	Privileged	Non Maskable high priority interrupt mode		
2	Exception	Privileged	Execute exceptions		
3	Interrupt 3	Privileged	General purpose interrupt mode		
4	Interrupt 2	Privileged	General purpose interrupt mode		
5	Interrupt 1	Privileged	General purpose interrupt mode		
6	Interrupt 0	Privileged	General purpose interrupt mode		
N/A	Supervisor	Privileged	Runs supervisor calls		
N/A	Application	Unprivileged	Normal program execution mode		

Table 4-2. Overview of Execution Modes, their Priorities and Privilege Levels.

Mode changes can be made under software control, or can be caused by external interrupts or exception processing. A mode can be interrupted by a higher priority mode, but never by one with lower priority. Nested exceptions can be supported with a minimal software overhead.

When running an operating system on the AVR32, user processes will typically execute in the application mode. The programs executed in this mode are restricted from executing certain instructions. Furthermore, most system registers together with the upper halfword of the status register cannot be accessed. Protected memory areas are also not available. All other operating modes are privileged and are collectively called System Modes. They have full access to all privileged and unprivileged resources. After a reset, the processor will be in supervisor mode.

4.4.3.2 Debug State

The AVR32 can be set in a debug state, which allows implementation of software monitor routines that can read out and alter system information for use during application development. This implies that all system and application registers, including the status registers and program counters, are accessible in debug state. The privileged instructions are also available.

Table 4-3.	System Re	egisters (Continu	ied)
Reg #	Address	Name	Function
26	104	JAVA_LV3	Unused in AVR32UC
27	108	JAVA_LV4	Unused in AVR32UC
28	112	JAVA_LV5	Unused in AVR32UC
29	116	JAVA_LV6	Unused in AVR32UC
30	120	JAVA_LV7	Unused in AVR32UC
31	124	JTBA	Unused in AVR32UC
32	128	JBCR	Unused in AVR32UC
33-63	132-252	Reserved	Reserved for future use
64	256	CONFIG0	Configuration register 0
65	260	CONFIG1	Configuration register 1
66	264	COUNT	Cycle Counter register
67	268	COMPARE	Compare register
68	272	TLBEHI	Unused in AVR32UC
69	276	TLBELO	Unused in AVR32UC
70	280	PTBR	Unused in AVR32UC
71	284	TLBEAR	Unused in AVR32UC
72	288	MMUCR	Unused in AVR32UC
73	292	TLBARLO	Unused in AVR32UC
74	296	TLBARHI	Unused in AVR32UC
75	300	PCCNT	Unused in AVR32UC
76	304	PCNT0	Unused in AVR32UC
77	308	PCNT1	Unused in AVR32UC
78	312	PCCR	Unused in AVR32UC
79	316	BEAR	Bus Error Address Register
80	320	MPUAR0	MPU Address Register region 0
81	324	MPUAR1	MPU Address Register region 1
82	328	MPUAR2	MPU Address Register region 2
83	332	MPUAR3	MPU Address Register region 3
84	336	MPUAR4	MPU Address Register region 4
85	340	MPUAR5	MPU Address Register region 5
86	344	MPUAR6	MPU Address Register region 6
87	348	MPUAR7	MPU Address Register region 7
88	352	MPUPSR0	MPU Privilege Select Register region 0
89	356	MPUPSR1	MPU Privilege Select Register region 1
90	360	MPUPSR2	MPU Privilege Select Register region 2
91	364	MPUPSR3	MPU Privilege Select Register region 3

 Table 4-3.
 System Registers (Continued)

7. Electrical Characteristics

7.1 Absolute Maximum Ratings*

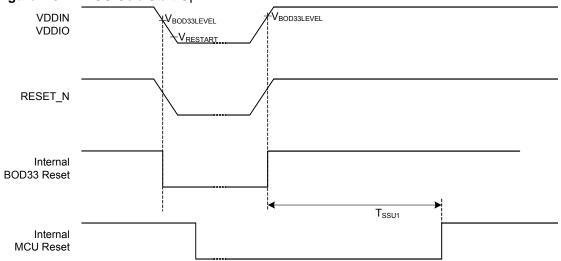
Operating Temperature40°C to +85°C
Storage Temperature60°C to +150°C
Voltage on Input Pin with respect to Ground0.3V to 3.6V
Maximum Operating Voltage (VDDCORE) 1.95V
Maximum Operating Voltage (VDDIO)
Total DC Output Current on all I/O Pin for TQFP144 package

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

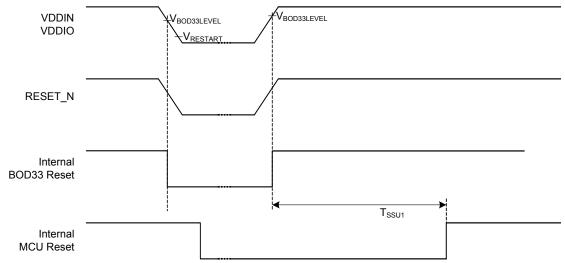
Table 7-9. BOD Timing

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
T _{BOD}	Minimum time with VDDCORE < VBOD to detect power failure	Falling VDDCORE from 1.8V to 1.1V		300	800	ns

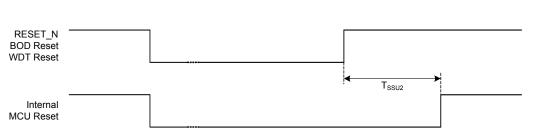
7.5.3 Reset Sequence


Table 7-10. Electrical Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{DDRR}	VDDIN/VDDIO rise rate to ensure power-on-reset		0.8			V/ms
V _{POR+}	Rising threshold voltage: voltage up to which device is kept under reset by POR on rising VDDIN	Rising VDDIN: V _{RESTART} -> V _{POR+}		2.7		V
V _{POR-}	Falling threshold voltage: voltage when POR resets device on falling VDDIN	Falling VDDIN: 3.3V -> V _{POR-}		2.7		V
V _{RESTART}	On falling VDDIN, voltage must go down to this value before supply can rise again to ensure reset signal is released at V _{POR+}	Falling VDDIN: 3.3V -> V _{RESTART}			0.2	V
T _{SSU1}	Time for Cold System Startup: Time for CPU to fetch its first instruction (RCosc not calibrated)		480		960	μs
T _{SSU2}	Time for Hot System Startup: Time for CPU to fetch its first instruction (RCosc calibrated)			420		μs



AT32UC3A3



VDDIN VDDIO

7.6.1 Power Consumtion for Different Sleep Modes

Table 7-12.	Power Consumption for Different Sleep Modes
-------------	---

Mode	Conditions ⁽¹⁾		Тур.	Unit
Active	 CPU running a recursive Fibonacci Algorithm from flash ar at f MHz. Flash High Speed mode disable (f < 66 MHz) Voltage regulator is on. XIN0: external clock. Xin1 Stopped. XIN32 stopped. All peripheral clocks activated with a division by 8. GPIOs are inactive with internal pull-up, JTAG unconnected pullup and Input pins are connected to GND 		0.626xf(MHz)+2.257	mA/MHz
	Same conditions with Flash High Speed mode enable (66<	f < 84 MHz)	0.670xf(MHz)+2.257	mA/MHz
	Same conditions with Flash High Speed mode disable at 60) MHz	40	mA
Idle	See Active mode conditions		0.349xf(MHz)+0.968	mA/MHz
	Same conditions at 60 MHz			mA
Frozen	See Active mode conditions	e Active mode conditions		mA/MHz
	Same conditions at 60 MHz	nditions at 60 MHz		mA
Standby	See Active mode conditions		0.066xf(MHz)+1.010	mA/MHz
	Same conditions at 60 MHz		4.6	mA
Stop	 CPU running in sleep mode XIN0, Xin1 and XIN32 are stopped. All peripheral clocks are desactived. GPIOs are inactive with internal pull-up, JTAG unconnected with external pullup and Input pins are connected to GND. 		96	μA
Deepstop	See Stop mode conditions		54	μA
Static	$ \begin{array}{l} T_A = 25 \ ^\circ C \\ CPU \ \text{is in static mode} \\ GPIOs \ \text{on internal pull-up} \\ All \ \text{peripheral clocks de-activated} \\ DM \ \text{and DP pins connected to ground} \\ XIN0, \ Xin1 \ \text{and XIN32 are stopped} \end{array} $	Amp0	31	μΑ

Notes: 1. Core frequency is generated from XIN0 using the PLL.

7.8 Oscillator Characteristics

The following characteristics are applicable to the operating temperature range: $T_A = -40^{\circ}C$ to 85°C and worst case of power supply, unless otherwise specified.

7.8.1 Slow Clock RC Oscillator

Table 7-17.	RC Oscillator Frequency
-------------	-------------------------

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
F _{RC}	RC Oscillator Frequency	Calibration point: $T_A = 85^{\circ}C$		115.2	116	KHz
		$T_A = 25^{\circ}C$		112		KHz
		$T_A = -40^{\circ}C$	105	108		KHz

7.8.2 32 KHz Oscillator

Table 7-18.	32 KHz Oscillator Characteristic	s
		-

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
4 //+	Ossillator Fraguency	External clock on XIN32			30	MHz
1/(t _{CP32KHz})	Oscillator Frequency	Crystal		32 768		Hz
CL	Equivalent Load Capacitance		6		12.5	pF
ESR	Crystal Equivalent Series Resistance				100	KΩ
t _{ST}	Startup Time	$C_L = 6pF^{(1)}$ $C_L = 12.5pF^{(1)}$			600 1200	ms
t _{CH}	XIN32 Clock High Half-period		0.4 t _{CP}		0.6 t _{CP}	
t _{CL}	XIN32 Clock Low Half-period		0.4 t _{CP}		0.6 t _{CP}	
C _{IN}	XIN32 Input Capacitance				5	pF
	Current Concurrentian	Active mode			1.8	μA
I _{OSC}	Current Consumption	Standby mode			0.1	μA

Note: 1. C_L is the equivalent load capacitance.

Parameter	Conditions	Min.	Тур.	Max.	Unit
Resolution			10		Bit
Absolute Accuracy	ADC Clock = 5 MHz			3	LSB
Integral Non-linearity	ADC Clock = 5 MHz		1.5	2	LSB
	ADC Clock = 5 MHz		1	2	LSB
Differential Non-linearity	ADC Clock = 2.5 MHz		0.6	1	LSB
Offset Error	ADC Clock = 5 MHz	-2		2	LSB
Gain Error	ADC Clock = 5 MHz	-2		2	LSB

Table 7-26.Transfer Characteristics in 10-bit mode

7.10 USB Transceiver Characteristics

7.10.1 Electrical Characteristics

Table 7-27. Electrical Parameters

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
R _{EXT}	Recommended External USB Series Resistor	In series with each USB pin with ±5%		39		Ω
R _{BIAS}	VBIAS External Resistor ⁽¹⁾	±1%		6810		Ω
C _{BIAS}	VBIAS External Capcitor			10		pF

1. The USB on-chip buffers comply with the Universal Serial Bus (USB) v2.0 standard. All AC parameters related to these buffers can be found within the USB 2.0 electrical specifications.

7.10.2 Static Power Consumption

Table 7-28. Static Power Consumption

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _{BIAS}	Bias current consumption on VBG				1	μA
	HS Transceiver and I/O current consumption				8	μA
I _{VDDUTMI}	FS/HS Transceiver and I/O current consumption	If cable is connected, add 200µA (typical) due to Pull-up/Pull-down current consumption			3	μA

7.10.3 Dynamic Power Consumption

Table 7-29.Dynamic Power Consumption

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
I _{BIAS}	Bias current consumption on VBG			0.7	0.8	mA

7.11 EBI Timings

7.11.1 SMC Signals

These timings are given for worst case process, T = $85 \cdot C$, VDDIO = 3V and 40 pF load capacitance.

Table 7-30. SMC Clock Signal

Symbol	Parameter	Max. ⁽¹⁾	Unit
1/(t _{CPSMC})	SMC Controller Clock Frequency	1/(t _{cpcpu})	MHz

Note: 1. The maximum frequency of the SMC interface is the same as the max frequency for the HSB.

Table 7-31. SMC Read Signals with Hold Settings

Symbol	Parameter	Min.	
	NRD Control	led (READ_MODE = 1)	
SMC ₁	Data Setup before NRD High	12	ns
SMC ₂	Data Hold after NRD High	0	ns
SMC ₃	NRD High to NBS0/A0 Change ⁽¹⁾	nrd hold length * t _{CPSMC} - 1.3	ns
SMC ₄	NRD High to NBS1 Change ⁽¹⁾	nrd hold length * t _{CPSMC} - 1.3	ns
SMC ₅	NRD High to NBS2/A1 Change ⁽¹⁾	nrd hold length * t _{CPSMC} - 1.3	ns
SMC ₇	NRD High to A2 - A23 Change ⁽¹⁾	nrd hold length * t _{CPSMC} - 1.3	ns
SMC ₈	NRD High to NCS Inactive ⁽¹⁾	(nrd hold length - ncs rd hold length) * t _{CPSMC} - 2.3	ns
SMC ₉	NRD Pulse Width	nrd pulse length * t _{CPSMC} - 1.4	ns
	NRD Control	led (READ_MODE = 0)	
SMC ₁₀	Data Setup before NCS High	11.5	ns
SMC ₁₁	Data Hold after NCS High	0	ns
SMC ₁₂	NCS High to NBS0/A0 Change ⁽¹⁾	ncs rd hold length * t _{CPSMC} - 2.3	ns
SMC ₁₃	NCS High to NBS0/A0 Change ⁽¹⁾	ncs rd hold length * t _{CPSMC} - 2.3	ns
SMC ₁₄	NCS High to NBS2/A1 Change ⁽¹⁾	ncs rd hold length * t _{CPSMC} - 2.3	ns
SMC ₁₆	NCS High to A2 - A23 Change ⁽¹⁾	ncs rd hold length * t _{CPSMC} - 4	ns
SMC ₁₇	NCS High to NRD Inactive ⁽¹⁾	ncs rd hold length - nrd hold length)* t _{CPSMC} - 1.3	ns
SMC ₁₈	NCS Pulse Width	ncs rd pulse length * t _{CPSMC} - 3.6	ns

Note: 1. hold length = total cycle duration - setup duration - pulse duration. "hold length" is for "ncs rd hold length" or "nrd hold length".

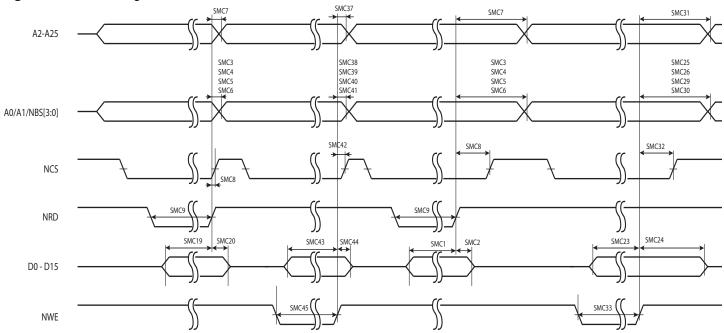


Figure 7-8. SMC Signals for NRD and NRW Controlled Accesses.

7.11.2 SDRAM Signals

Table 7-35. SDRAM Clock Signal.

Symbol	Parameter	Conditions	Min.	Max. ⁽¹⁾	Unit
1/(t _{CPSDCK})	SDRAM Controller Clock Frequency			1/(t _{cpcpu})	MHz

Note: 1. The maximum frequency of the SDRAMC interface is the same as the max frequency for the HSB.

Table 7-36.	SDRAM Clock Signal
-------------	--------------------

Symbol	Parameter	Conditions	Min.	Max.	Unit
SDRAMC ₁	SDCKE High before SDCK Rising Edge		7.4		ns
SDRAMC ₂	SDCKE Low after SDCK Rising Edge		3.2		ns
SDRAMC ₃	SDCKE Low before SDCK Rising Edge		7		ns
SDRAMC ₄	SDCKE High after SDCK Rising Edge		2.9		ns
SDRAMC ₅	SDCS Low before SDCK Rising Edge		7.5		ns
SDRAMC ₆	SDCS High after SDCK Rising Edge		1.6		ns
SDRAMC ₇	RAS Low before SDCK Rising Edge		7.2		ns
SDRAMC ₈	RAS High after SDCK Rising Edge		2.3		ns
SDRAMC ₉	SDA10 Change before SDCK Rising Edge		7.6		ns
SDRAMC ₁₀	SDA10 Change after SDCK Rising Edge		1.9		ns
SDRAMC ₁₁	Address Change before SDCK Rising Edge		6.2		ns
SDRAMC ₁₂	Address Change after SDCK Rising Edge		2.2		ns

These timings are given for 10 pF load on SDCK and 40 pF on other signals.

8.3 Soldering Profile

Table 8-5 gives the recommended soldering profile from J-STD-20.

Table 8-5.	Soldering Profile
------------	-------------------

Profile Feature	Green Package
Average Ramp-up Rate (217°C to Peak)	3°C/Second max
Preheat Temperature 175°C ±25°C	150-200°C
Time Maintained Above 217°C	60-150 seconds
Time within 5°C of Actual Peak Temperature	30 seconds
Peak Temperature Range	260 (+0/-5°C)
Ramp-down Rate	6°C/Second max.
Time 25°C to Peak Temperature	8 minutes max

Note: It is recommended to apply a soldering temperature higher than 250°C. A maximum of three reflow passes is allowed per component.

		For higher polling time, the software must freeze the pipe for the desired period in order to prevent any "extra" token.
10.1.5	ADC	
		 Sleep Mode activation needs additional A to D conversion If the ADC sleep mode is activated when the ADC is idle the ADC will not enter sleep mode before after the next AD conversion. Fix/Workaround Activate the sleep mode in the mode register and then perform an AD conversion.
10.1.6	USART	
		ISO7816 info register US_NER cannot be read The NER register always returns zero. Fix/Workaround None.
		The LIN ID is not transmitted in mode PDCM='0'
		Fix/Workaround Using USART in mode LIN master with the PDCM bit = '0', the LINID written at the first address of the transmit buffer is not used. The LINID must be written in the LINIR register, after the configuration and start of the PDCA transfer. Writing the LINID in the LINIR register will start the transfer whenever the PDCA transfer is ready.
		The LINID interrupt is only available for the header reception and not available for the header transmission Fix/Workaround None.
		USART LIN mode is not functional with the PDCA if PDCM bit in LINMR register is set
		to 1 If a PDCA transfer is initiated in USART LIN mode with PDCM bit set to 1, the transfer never starts. Fix/Workaround
		Only use PDCM=0 configuration with the PDCA transfer.
10.1.7	SPI	
		 SPI disable does not work in SLAVE mode SPI disable does not work in SLAVE mode. Fix/Workaround Read the last received data, then perform a software reset by writing a one to the Software Reset bit in the Control Register (CR.SWRST).
		SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and NCPHA=0 When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one (CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0, then an additional pulse will be generated on SCK. Fix/Workaround When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1

if CSRn.CPOL=1 and CSRn.NCPHA=0.

		TWIS stretch on Address match error When the TWIS stretches TWCK due to a slave address match, it also holds TWD low for the same duration if it is to be receiving data. When TWIS releases TWCK, it releases TWD at the same time. This can cause a TWI timing violation. Fix/Workaround None.
10.1.14	SSC	
		 Frame Synchro and Frame Synchro Data are delayed by one clock cycle The frame synchro and the frame synchro data are delayed from 1 SSC_CLOCK when: Clock is CKDIV The START is selected on either a frame synchro edge or a level Frame synchro data is enabled Transmit clock is gated on output (through CKO field) Fix/Workaround Transmit or receive CLOCK must not be gated (by the mean of CKO field) when START condition is performed on a generated frame synchro.
10.1.15	FLASHC	
		Corrupted read in flash may happen after fuses write or erase operations (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands). After a flash fuse write or erase operation (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands), reading (data read or code fetch) in flash may fail. This may lead to an exception or to other errors derived from this corrupted read access. Fix/Workaround Before the flash fuse write or erase operation, enable the flash high speed mode (FLASHC HSEN command). The flash fuse write or erase operations (FLASHC LP, UP, WGPB, EGPB, SSB, PGPFB, EAGPF commands) must be issued from RAM or through the EBI. After these commands, read 3 times one flash page initialized to 00h. Disable the flash high speed mode (FLASHC HSDIS command). It is then possible to safely read or code fetch the flash.
10.2 R	lev. E	
10.2.1	General	Devices cannot operate with CPU frequency higher than 66MHz in 1WS and 36MHz in 0WS Fix/Workaround None
		 Increased Power Consumption in VDDIO in sleep modes If the OSC0 is enabled in crystal mode when entering a sleep mode where the OSC0 is disabled, this will lead to an increased power consumption in VDDIO. Fix/Workaround Disable the OSC0 through the System Control Interface (SCIF) before going to any sleep mode where the OSC0 is disabled, or pull down or up XIN0 and XOUT0 with 1 Mohm resistor.

Power consumption in static mode The power consumption in static mode can be up to $330\mu A$ on some parts (typical at $25^{\circ}C$)

Fix/Workaround

Set to 1b bit CORRS4 of the ECCHRS mode register (MD). In C-code: *((volatile int*) (0xFFFE2404))= 0x400.

DMACA data transfer fails when CTLx.SRC_TR_WIDTH is not equal to CTLx.DST_TR_WIDTH Fix/Workaround For any DMACA transfer make sure CTLx.SRC_TR_WIDTH = CTLx.DST_TR_WIDTH.

3.3V supply monitor is not available

FGPFRLO[30:29] are reserved and should not be used by the application. **Fix/Workaround** None.

Service access bus (SAB) can not access DMACA registers Fix/Workaround None.

10.2.2 Processor and Architecture

LDM instruction with PC in the register list and without ++ increments Rp

For LDM with PC in the register list: the instruction behaves as if the ++ field is always set, ie the pointer is always updated. This happens even if the ++ field is cleared. Specifically, the increment of the pointer is done in parallel with the testing of R12. **Fix/Workaround**

None.

Hardware breakpoints may corrupt MAC results

Hardware breakpoints on MAC instructions may corrupt the destination register of the MAC instruction.

Fix/Workaround

Place breakpoints on earlier or later instructions.

When the main clock is RCSYS, TIMER_CLOCK5 is equal to PBA clock

When the main clock is generated from RCSYS, TIMER_CLOCK5 is equal to PBA Clock and not PBA Clock / 128.

Fix/Workaround None.

10.2.3 MPU

Privilege violation when using interrupts in application mode with protected system stack

If the system stack is protected by the MPU and an interrupt occurs in application mode, an MPU DTLB exception will occur.

Fix/Workaround

Make a DTLB Protection (Write) exception handler which permits the interrupt request to be handled in privileged mode.

10.2.4 USB

UPCFGn.INTFRQ is irrelevant for isochronous pipe

As a consequence, isochronous IN and OUT tokens are sent every 1ms (Full Speed), or every 125uS (High Speed).

