

Welcome to **E-XFL.COM**

Understanding <u>Embedded - FPGAs (Field</u> Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details	
Product Status	Active
Number of LABs/CLBs	156
Number of Logic Elements/Cells	1248
Total RAM Bits	57344
Number of I/O	26
Number of Gates	-
Voltage - Supply	1.14V ~ 1.26V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	36-VFBGA
Supplier Device Package	36-UCBGA (2.5x2.5)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/ice40ul1k-cm36aitr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

■ Flexible Device Configuration

- SRAM is configured through:
 - Standard SPI Interface
 - Internal Nonvolatile Configuration Memory (NVCM)

Ultra-Small Form Factor

As small as 1.409 mm x 1.409 mm

Applications

- Smartphones
- Tablets and Consumer Handheld Devices
- Handheld Industrial Devices
- Multi Sensor Management Applications
- IR remote, Barcode emulator
- · RGB light control

Table 1-1. iCE40 UltraLite Family Selection Guide

Part Number	iCE40UL-640	iCE40UL-1K
Logic Cells (LUT + Flip-Flop)	640	1248
EBR Memory Blocks	14	14
EBR Memory Bits	56 k	56 k
PLL Block ¹	1	1
Hardened I2C	2	2
Hardened IR TX/RX	1	1
Hardened RGB PWM IP	1	1
HF Oscillator (48 MHz)	1	1
LF Oscillator (10 kHz)	1	1
24 mA LED Sink	3	3
100 mA LED Sink	1	1
400 mA LED Sink	1	1
Packages, ball pitch, dimension	Programmal	ole I/O Count
16-ball WLCSP, 0.35 mm, 1.409 mm x 1.409 mm	10	10
36-ball ucBGA, 0.40 mm, 2.5 mm x 2.5 mm	26	26

^{1.} Only in 36-ball ucBGA package.

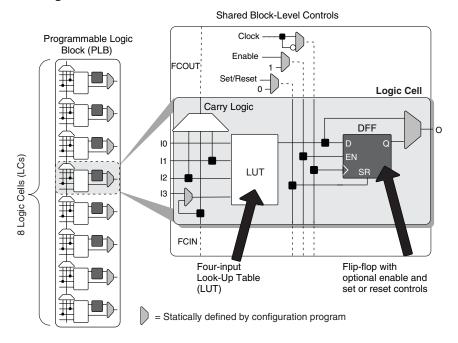
Introduction

The iCE40 UltraLite devices are fabricated on a 40 nm CMOS low power process. The device architecture has several features such as user configurable RGB LED and IR LED Controllers, and two Oscillators.

The iCE40 UltraLite FPGAs are available in very small form factor packages, as small as 1.409 mm x 1.409 mm. The small form factor allows the device to easily fit into a lot of mobile applications. Table 1-1 shows the LUT densities, package and I/O pin count.

The iCE40 UltraLite devices offer I/O features such as programmable multiple value pull-up resistors. Pull-up features are controllable on a "per-pin" basis.

The iCE40 UltraLite devices also provide flexible, reliable and secure configuration from on-chip NVCM. These devices can also configure themselves from external SPI Flash, or be configured by an external master such as a CPU.


Lattice provides a variety of design tools that allow complex designs to be efficiently implemented using the iCE40 UltraLite family of devices. Popular logic synthesis tools provide synthesis library support for iCE40 UltraLite. Lattice design tools use the synthesis tool output along with the user-specified preferences and constraints to place and route the design in the iCE40 UltraLite device. These tools extract the timing from the routing and back-annotate it into the design for timing verification.

PLB Blocks

The core of the iCE40 UltraLite device consists of Programmable Logic Blocks (PLB) which can be programmed to perform logic and arithmetic functions. Each PLB consists of eight interconnected Logic Cells (LC) as shown in Figure 2-2. Each LC contains one LUT and one register.

Figure 2-2. PLB Block Diagram

Logic Cells

Each Logic Cell includes three primary logic elements shown in Figure 2-2.

- A four-input Look-Up Table (LUT) builds any combinational logic function, of any complexity, requiring up to four inputs. Similarly, the LUT element behaves as a 16x1 Read-Only Memory (ROM). Combine and cascade multiple LUTs to create wider logic functions.
- A 'D'-style Flip-Flop (DFF), with an optional clock-enable and reset control input, builds sequential logic functions. Each DFF also connects to a global reset signal that is automatically asserted immediately following device configuration.
- Carry Logic boosts the logic efficiency and performance of arithmetic functions, including adders, subtracters, comparators, binary counters and some wide, cascaded logic functions.

Table 2-1. Logic Cell Signal Descriptions

Function	Туре	Signal Names	Description
Input	Data signal	10, 11, 12, 13	Inputs to LUT
Input	Control signal	Enable	Clock enable shared by all LCs in the PLB
Input	Control signal	Set/Reset ¹	Asynchronous or synchronous local set/reset shared by all LCs in the PLB.
Input	Control signal	Clock	Clock one of the eight Global Buffers, or from the general-purpose interconnects fabric shared by all LCs in the PLB
Input	Inter-PLB signal	FCIN	Fast carry in
Output	Data signals	0	LUT or registered output
Output	Inter-PFU signal	FCOUT	Fast carry out

^{1.} If Set/Reset is not used, then the flip-flop is never set/reset, except when cleared immediately after configuration.

Routing

There are many resources provided in the iCE40 UltraLite devices to route signals individually with related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) segments.

The inter-PLB connections are made with three different types of routing resources: Adjacent (spans two PLBs), x4 (spans five PLBs) and x12 (spans thirteen PLBs). The Adjacent, x4 and x12 connections provide fast and efficient connections in the diagonal, horizontal and vertical directions.

The design tool takes the output of the synthesis tool and places and routes the design.

Clock/Control Distribution Network

Each iCE40 UltraLite device has six global inputs, two pins on the top bank and four pins on the bottom bank

These global inputs can be used as high fanout nets, clock, reset or enable signals. The dedicated global pins are identified as Gxx and each drives one of the eight global buffers. The global buffers are identified as GBUF[7:0]. These six inputs may be used as general purpose I/O if they are not used to drive the clock nets.

Table 2-2 lists the connections between a specific global buffer and the inputs on a PLB. All global buffers optionally connect to the PLB CLK input. Any four of the eight global buffers can drive logic inputs to a PLB. Even-numbered global buffers optionally drive the Set/Reset input to a PLB. Similarly, odd-numbered buffers optionally drive the PLB clock-enable input. GBUF[7:6, 3:0] can connect directly to G[7:6, 3:0] pins respectively. GBUF4 and GBUF5 can connect to the two on-chip Oscillator Generators (GBUF4 connects to LFOSC, GBUF5 connects to HFOSC).

Table 2-2. Global Buffer (GBUF) Connections to Programmable Logic Blocks

Global Buffer	LUT Inputs	Clock	Reset	Clock Enable
GBUF0		Yes	Yes	
GBUF1	1	Yes		Yes
GBUF2	1	Yes	Yes	
GBUF3	Yes, any 4 of 8	Yes		Yes
GBUF4	GBUF Inputs	Yes	Yes	
GBUF5	1	Yes		Yes
GBUF6		Yes	Yes	
GBUF7	1	Yes		Yes

The maximum frequency for the global buffers are shown in the iCE40 UltraLite External Switching Characteristics tables later in this document.

Global Hi-Z Control

The global high-impedance control signal, GHIZ, connects to all I/O pins on the iCE40 UltraLite device. This GHIZ signal is automatically asserted throughout the configuration process, forcing all user I/O pins into their high-impedance state.

Global Reset Control

The global reset control signal connects to all PLB and PIO flip-flops on the iCE40 UltraLite device. The global reset signal is automatically asserted throughout the configuration process, forcing all flip-flops to their defined wake-up state. For PLB flip-flops, the wake-up state is always reset, regardless of the PLB flip-flop primitive used in the application.

sysCLOCK Phase Locked Loops (PLLs) (sysCLOCK PLL is only supported in 36-ball ucBGA package)

The sysCLOCK PLLs provide the ability to synthesize clock frequencies. The iCE40 UltraLite devices have one sysCLOCK PLL. REFERENCECLK is the reference frequency input to the PLL and its source can come from an external I/O pin, the internal Oscillator Generators from internal routing. EXTFEEDBACK is the feedback signal to the PLL which can come from internal routing or an external I/O pin. The feedback divider is used to multiply the reference frequency and thus synthesize a higher frequency clock output.

The PLLOUT output has an output divider, thus allowing the PLL to generate different frequencies for each output. The output divider can have a value from 1 to 64 (in increments of 2X). The PLLOUT outputs can all be used to drive the iCE40 UltraLite global clock network directly or general purpose routing resources can be used.

The LOCK signal is asserted when the PLL determines it has achieved lock and de-asserted if a loss of lock is detected. A block diagram of the PLL is shown in Figure 2-3.

The timing of the device registers can be optimized by programming a phase shift into the PLLOUT output clock which will advance or delay the output clock with reference to the REFERENCECLK clock. This phase shift can be either programmed during configuration or can be adjusted dynamically. In dynamic mode, the PLL may lose lock after a phase adjustment on the output used as the feedback source and not relock until the tLOCK parameter has been satisfied.

There is an additional feature in the iCE40 UltraLite PLL. There are 2 FPGA controlled inputs, SCLK and SDI, that allows the user logic to serially shift in data thru SDI, clocked by SCLK clock. The data shifted in would change the configuration settings of the PLL. This feature allows the PLL to be time multiplexed for different functions, with different clock rates. After the data is shifted in, user would simply pulse the RESET input of the PLL block, and the PLL will re-lock with the new settings. For more details, please refer to TN1251, iCE40 sysCLOCK PLL Design and Usage Guide.

Figure 2-3. PLL Diagram

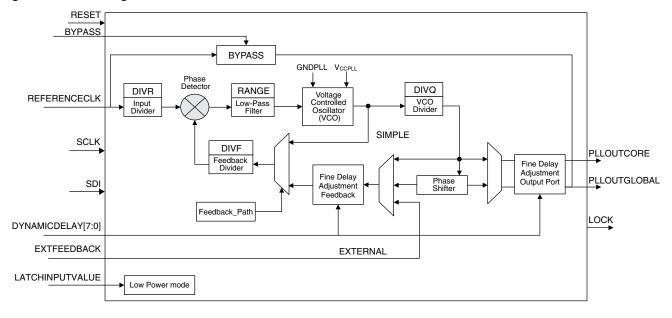


Table 2-3 provides signal descriptions of the PLL block.

Table 2-3. PLL Signal Descriptions

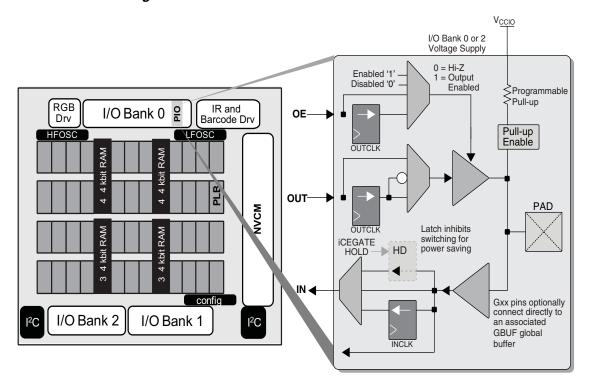
Signal Name	Direction	Description
REFERENCECLK	Input	Input reference clock
BYPASS	Input	The BYPASS control selects which clock signal connects to the PLL-OUT output. 0 = PLL generated signal 1 = REFERENCECLK
EXTFEEDBACK	Input	External feedback input to PLL. Enabled when the FEEDBACK_PATH attribute is set to EXTERNAL.
DYNAMICDELAY[7:0]	Input	Fine delay adjustment control inputs. Enabled when DELAY_ADJUSTMENT_MODE is set to DYNAMIC.
LATCHINPUTVALUE	Input	When enabled, puts the PLL into low-power mode; PLL output is held static at the last input clock value. Set ENABLE ICEGATE_PORTA and PORTB to '1' to enable.
PLLOUTGLOBAL	Output	Output from the Phase-Locked Loop (PLL). Drives a global clock network on the FPGA. The port has optimal connections to global clock buffers GBUF4 and GBUF5.
PLLOUTCORE	Output	Output clock generated by the PLL, drives regular FPGA routing. The frequency generated on this output is the same as the frequency of the clock signal generated on the PLLOUTLGOBAL port.
LOCK	Output	When High, indicates that the PLL output is phase aligned or locked to the input reference clock.
RESET	Input	Active low reset.
SCLK	Input	Input, Serial Clock used for re-programming PLL settings.
SDI	Input	Input, Serial Data used for re-programming PLL settings.

sysMEM Embedded Block RAM Memory

Larger iCE40 UltraLite device includes multiple high-speed synchronous sysMEM Embedded Block RAMs (EBRs), each 4 kbit in size. This memory can be used for a wide variety of purposes including data buffering, and FIFO.

sysMEM Memory Block

The sysMEM block can implement single port, pseudo dual port, or FIFO memories with programmable logic resources. Each block can be used in a variety of depths and widths as shown in Table 2-4.


sysIO Buffer Banks

iCE40 UltraLite devices have up to three I/O banks with independent V_{CCIO} rails. The configuration SPI interface signals are powered by SPI_{CCIO1} . On the 16 WLCSP package, V_{CCIO1} and $V_{PP_{2V5}}$ are connected to the same pin on the package, and must meet the voltage requirement of both supplies. Please refer to the Pin Information Summary table.

Programmable I/O (PIO)

The programmable logic associated with an I/O is called a PIO. The individual PIOs are connected to their respective sysIO buffers and pads. The PIOs are placed on the top and bottom of the devices.

Figure 2-5. I/O Bank and Programmable I/O Cell

The PIO contains three blocks: an input register block, output register block iCEGate™ and tri-state register block. To save power, the optional iCEGate latch can selectively freeze the state of individual, non-registered inputs within an I/O bank. Note that the freeze signal is common to the bank. These blocks can operate in a variety of modes along with the necessary clock and selection logic.

Input Register Block

The input register blocks for the PIOs on all edges contain registers that can be used to condition high-speed interface signals before they are passed to the device core.

Output Register Block

The output register block can optionally register signals from the core of the device before they are passed to the sysIO buffers.

Figure 2-6 shows the input/output register block for the PIOs.

Figure 2-6. iCE I/O Register Block Diagram



Table 2-6. PIO Signal List

Pin Name	I/O Type	Description
OUTPUT_CLK	Input	Output register clock
CLOCK_ENABLE	Input	Clock enable
INPUT_CLK	Input	Input register clock
OUTPUT_ENABLE	Input	Output enable
D_OUT_0/1	Input	Data from the core
D_IN_0/1	Output	Data to the core
LATCH_INPUT_VALUE	Input	Latches/holds the Input Value

sysIO Buffer

Each I/O is associated with a flexible buffer referred to as a sysIO buffer. These buffers are arranged around the periphery of the device in groups referred to as banks. The sysIO buffers allow users to implement a wide variety of standards that are found in today's systems with LVCMOS interfaces.

Typical I/O Behavior During Power-up

The internal power-on-reset (POR) signal is deactivated when V_{CC} , SPI_V_{CCIO} , and V_{PP_2V5} reach the level defined in the Power-On-Reset Voltage table in the DC and Switching Characteristics chapter of this data sheet. After the POR signal is deactivated, the FPGA core logic becomes active. You must ensure that all V_{CCIO} banks are active with valid input logic levels to properly control the output logic states of all the I/O banks that are critical to the application. The default configuration of the I/O pins in a device prior to configuration is tri-stated with a weak pull-up to V_{CCIO} . The I/O pins maintain the pre-configuration state until V_{CC} , SPI_V_{CCIO} , and V_{PP_2V5} reach the defined levels. The I/Os take on the software user-configured settings only after POR signal is deactivated and the device performs a proper download/configuration. Unused I/Os are automatically blocked and the pull-up termination is disabled.

Supported Standards

The iCE40 UltraLite sysIO buffer supports both single-ended input/output standards, and used as differential comparators. The buffer supports the LVCMOS 1.8, 2.5, and 3.3 V standards. The buffer has individually configurable options for bus maintenance (weak pull-up or none).

Table 2-7 and Table 2-8 show the I/O standards (together with their supply and reference voltages) supported by the iCE40 UltraLite devices.

Programmable Pull Up Resistors

The iCE40 UltraLite sysIO buffer can be configured with programmable pull up resistors on every I/O. The options are 3.3 kOhms, 6.8 kOhms, 10 kOhms or 100 kOhms (default). This feature is useful in supporting the I²C interface. The user can also use it for other purposes.

Differential Comparators

The iCE40 UltraLite devices provide differential comparator on pairs of I/O pins. These comparators are useful in some mobile applications. Please refer to the Pin Information Summary section to locate the corresponding paired I/Os with differential comparators.

Table 2-7. Supported Input Standards

Input Standard	V _{CCIO} (Typical)				
input Standard	3.3 V	2.5 V	1.8 V		
Single-Ended Interfaces					
LVCMOS33	Yes				
LVCMOS25		Yes			
LVCMOS18 ¹			Yes		

^{1.} Not supported in bank 0 for 16-WLCP package.

Table 2-8. Supported Output Standards

Output Standard	V _{CCIO} (Typical)
Single-Ended Interfaces	
LVCMOS33	3.3 V
LVCMOS25	2.5 V
LVCMOS18 ¹	1.8 V

^{1.} Not supported in bank 0 for 16-WLCP package.

On-Chip Oscillator

The iCE40 UltraLite devices feature two different frequency Oscillator. One is tailored for low-power operation that runs at low frequency (LFOSC). Both Oscillators are controlled with internally generated current.

The LFOSC runs at nominal frequency of 10 kHz. The high frequency oscillator (HFOSC) runs at a nominal frequency of 48 MHz, divisible to 24 MHz, 12 MHz, or 6 MHz, by user option. The LFOSC can be used to perform all always-on functions, with the lowest power possible. The HFOSC can be enabled when the always-on functions detect a condition that would need to wake up the system to perform higher frequency functions.

User I²C IP

The iCE40 UltraLite devices have two I²C IP cores. Either of the two cores can be configured either as an I²C master or as an I²C slave. The pins for the I²C interface are not pre-assigned. User can use any General Purpose I/O pins.

In each of the two cores, there are options to delay the either the input or the output, or both, by 50 ns nominal, using dedicated on-chip delay elements. This provides an easier interface with any external I²C components.

In optional FIFO mode, FIFOs are used for storing multiple bytes of data for transmit and / or receive in order to efficiently support the I²C sensor applications

When the IP core is configured as master, it will be able to control other devices on the I²C bus through the preassigned pin interface. When the core is configured as the slave, the device will be able to provide I/O expansion to an I²C Master. The I²C cores support the following functionality:

- Master and Slave operation
- · 7-bit and 10-bit addressing
- Multi-master arbitration support
- Clock stretching
- Up to 1 MHz data transfer speed
- · General Call support
- · Optionally delaying input or output data, or both
- · Optional FIFO mode
- Transmit FIFO size is 10 bits x 16 bytes, receive FIFO size is 10 bits x 32 bytes

For further information on the User I²C, please refer to TN1274, iCE40 SPI/I2C Hardened IP Usage Guide.

High Current LED Drive I/O Pins

The iCE40 UltraLite family devices offer multiple high current LED drive outputs in each device in the family to allow the iCE40 UltraLite product to drive LED signals directly on mobile applications.

There are three outputs on each device that can sink up to 24 mA current. These outputs are open-drain outputs, and provides sinking current to an LED connecting to the positive supply. These three outputs are designed to drive the RBG LEDs, such as the service LED found in a lot of mobile devices. An embedded RGB PWM IP is also offered in the family. This RGB drive current is user programmable from 4 mA to 24 mA, in increments of 4 mA in full current mode or from 2 mA to 12 mA, in increments of 2 mA in half current mode. This output functions as General Purpose I/O with open-drain when the high current drive is not needed.

There is one output on each device that can sink up to 100 mA current. This output is open-drain, and provides sinking current to drive an external Barcode LED connecting to the positive supply. This Barcode drive current is user programmable from 16.6 mA to 100 mA in increments of 16.6 mA in full current mode or 8.3 mA to 50 mA in

iCE40 UltraLite Programming and Configuration

This section describes the programming and configuration of the iCE40 UltraLite family.

Device Programming

The NVCM memory can be programmed through the SPI port. The SPI port is located in Bank 1, using SPI_V_{CCIO01} power supply.

Device Configuration

There are various ways to configure the Configuration RAM (CRAM), using SPI port, including:

- From a SPI Flash (Master SPI mode)
- System microprocessor to drive a Serial Slave SPI port (SSPI mode)

For more details on configuring the iCE40 UltraLite, please see TN1248, iCE40 Programming and Configuration.

Power Saving Options

The iCE40 UltraLite devices feature iCEGate and PLL low power mode to allow users to meet the static and dynamic power requirements of their applications. Table 2-10 describes the function of these features.

Table 2-10. iCE40 UltraLite Power Saving Features Description

Device Subsystem	Feature Description	
IPLI	When LATCHINPUTVALUE is enabled, puts the PLL into low-power mode; PLL output held static at last input clock value.	
iCEGate	To save power, the optional iCEGate latch can selectively freeze the state of individual, non-registered inputs within an I/O bank. Registered inputs are effectively frozen by their associated clock or clock-enable control.	

Recommended Operating Conditions¹

Symbol	Parameter		Min.	Max.	Units
VCC ¹	Core Supply	Core Supply Voltage		1.26	V
V _{PP_2V5}		Slave SPI Configuration	1.714	3.46	V
	VPP_2V5 NVCM Programming and	Master SPI Configuration	2.30	3.46	V
	Operating Supply Voltage	Configuration from NVCM	2.30	3.46	V
		NVCM Programming	2.30	3.00	V
V _{CCIO} ^{1, 2, 3}	I/O Driver Supply Voltage	V _{CCIO_0} , SPI_V _{CCIO1} , V _{CCIO_2}	1.71	3.46	V
V _{CCPLL}	PLL Supply Voltage		1.14	1.26	V
t _{JCOM}	Junction Temperature Commercial Operation		0	85	°C
t _{JIND}	Junction Temperature Industrial Operation		-40	100	°C
t _{PROG}	Junction Temperature N	VCM Programming	10	30	°C

Like power supplies must be tied together if they are at the same supply voltage and they meet the power up sequence requirement. Please refer to Power-Up Supply Sequencing section. V_{CC} and V_{CCPLL} are recommended to tie to same supply with an RC-based noise filter between them. Please refer to TN1252, iCE40 Hardware Checklist.

- 2. See recommended voltages by I/O standard in subsequent table.
- 3. V_{CCIO} pins of unused I/O banks should be connected to the V_{CC} power supply on boards.
- 4. V_{PP_2V5} can, optionally, be connected to a 1.8 V (+/-5%) power supply in Slave SPI Configuration mode subject to the condition that none of the HFOSC/LFOSC and RGB LED / IR / Barcode LED driver features are used. Otherwise, V_{PP_2V5} must be connected to a power supply with a minimum 2.30 V level.

Power Supply Ramp Rates^{1, 2}

Symbol	Parameter	Min.	Max.	Units
t _{RAMP}	Power supply ramp rates for all power supplies.	0.6	10	V/ms

- 1. Assumes monotonic ramp rates.
- 2. Power-up sequence must be followed. Please refer to Power-Up Supply Sequencing section.

Power-On Reset

All iCE40 UltraLite devices have on-chip Power-On-Reset (POR) circuitry to ensure proper initialization of the device. Only three supply rails are monitored by the POR circuitry as follows: (1) V_{CC} , (2) SPI_{CCIO1} and (3) $V_{PP_{2V5}}$. All other supply pins have no effect on the power-on reset feature of the device. Note that all supply voltage pins must be connected to power supplies for normal operation (including device configuration).

Power-Up Supply Sequencing

It is recommended to bring up the power supplies in the following order. Note that there is no specified timing delay between the power supplies, however, there is a requirement for each supply to reach a level of 0.5V, or higher, before any subsequent power supplies in the sequence are applied.

- V_{CC} and V_{CCPLL} should be the first two supplies to be applied. Note that these two supplies can be tied together subject to the recommendation to include a RC-based noise filter on the V_{CCPLL} (Please refer to TN1252, iCE40 Hardware Checklist.)
- SPI_V_{CCIO1} should be the next supply, and can be applied any time after the previous supplies (V_{CC} and V_{CCPLI}) have reached as level of 0.5 V or higher.
- 3. V_{PP_2V5} should be the next supply, and can be applied any time after previous supplies (V_{CC}, V_{CCPLL} and SPI_V_{CCIO1}) have reached a level of 0.5 V or higher.
- 4. Other Supplies (V_{CCIO0} and V_{CCIO2}) do not affect device power-up functionality, and they can be applied any time after the initial power supplies (V_{CC} and V_{CCPLL}) have reached a level of 0.5 V or greater. *On the 16*

Maximum sysIO Buffer Performance¹

I/O Standard	Max. Speed	Units			
Inputs					
LVCMOS33	250	MHz			
LVCMOS25	250	MHz			
LVCMOS18	250	MHz			
LED I/O used as GPIO open drain	50	MHz			
Outp	outs				
LVCMOS33	250	MHz			
LVCMOS25	250	MHz			
LVCMOS18	155	MHz			
LED I/O used as GPIO open drain	50 ²	MHz			

^{1.} Measured with a toggling pattern.

iCE40 UltraLite External Switching Characteristics

Over Recommended Operating Conditions

Parameter	Description	Device	Min	Max	Units				
Global Clocks									
f _{MAX_GBUF}	Frequency for Global Buffer Clock network	All devices		185	MHz				
t _{W_GBUF}	Clock Pulse Width for Global Buffer	All devices	2	_	ns				
t _{SKEW_GBUF}	Global Buffer Clock Skew Within a Device	All devices		500	ps				
Pin-LUT-Pin Propaga	ation Delay								
t _{PD}	Best case propagation delay through one LUT logic	All devices	_	9.0	ns				
General I/O Pin Para	meters (Using Global Buffer Clock withou	t PLL) ¹							
t _{SKEW_IO}	Data bus skew across a bank of IOs	All devices		410	ps				
t _{CO}	Clock to Output - PIO Output Register	All devices		9.0	ns				
t _{SU}	Clock to Data Setup - PIO Input Register	All devices	-0.5	_	ns				
t _H	Clock to Data Hold - PIO Input Register	All devices	5.55	_	ns				
General I/O Pin Para	General I/O Pin Parameters (Using Global Buffer Clock with PLL)								
t _{COPLL}	Clock to Output - PIO Output Register	All Devices	_	2.9	ns				
t _{SUPLL}	Clock to Data Setup - PIO Input Register	All Devices	7.9	_	ns				
t _{HPLL}	Clock to Data Hold - PIO Input Register	All Devices	-0.6	_	ns				

^{1.} All the data is from the worst case condition.

^{2.} With external resistor from 180 Ohm to 250 Ohm and capacity of no more than 15 pF.

sysCONFIG Port Timing Specifications

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
All Configuration	on Modes				•	
t _{CRESET_B}	Minimum CRESET_B LOW pulse width required to restart configuration, from falling edge to rising edge		200	_	_	ns
t _{DONE_IO}	Number of configuration clock cycles after CDONE goes HIGH before the PIO pins are activated		49	_	_	Clock Cycles
Slave SPI						
t _{CR_SCK}	Minimum time from a rising edge on CRESET_B until the first SPI WRITE operation, first SPI_XCK clock. During this time, the iCE40 UltraLite device is clearing its internal configuration memory		1200	_	_	μѕ
f	CCLK alook froguency	Write	1	_	25	MHz
f _{MAX}	CCLK clock frequency	Read ¹	_	15	_	MHz
t _{CCLKH}	CCLK clock pulsewidth HIGH		20	_	_	ns
t _{CCLKL}	CCLK clock pulsewidth LOW		20	_	_	ns
t _{STSU}	CCLK setup time		12	_	_	ns
t _{STH}	CCLK hold time		12	_	_	ns
t _{STCO}	CCLK falling edge to valid output		13	_	_	ns
Master SPI ³						
		Low Frequency (Default)	7.0	12.0	17.0	MHz
f _{MCLK}	MCLK clock frequency	Medium Frequency ²	21.0	33.0	45.0	MHz
		High Frequency ²	33.0	53.0	71.0	MHz
t _{MCLK}	CRESET_B HIGH to first MCLK edge		1200	_	_	μs
t _{MTSU}	MCLK setup time ⁴		9.9	_	_	ns
t _{MTH}	MCLK hold time		1	_	_	ns

^{1.} Supported with 1.2 V Vcc and at 25 C.

^{2.} Extended range fMAX Write operations support up to 53 MHz with 1.2 V VCC and at 25 C.

^{3.} tSU and tHD timing must be met for all MCLK frequency choices

^{4.} For considerations of SPI Master Configuration Mode, please refer to TN1248, iCE40 Programming and Configuration.

High Current LED, IR LED and Barcode LED Drives¹

Symbol	Parameter	VCCIO = 3.3 V			VCCIO = 2.5 V		
		Min.	Max.	Units	Min.	Max.	Units
I _{RGB_ACCURACY_FULL}	-12	+12	%	not allowed	not allowed	%	
I _{RGB_ACCURACY_HALF}	RGB LED0, LED1, LED2 Sink Current Accuracy to selected current @ VPAD = 0.35 ~ 2.5 V	-14	+14	%	-14	+14	%
I _{RGB_MATCH}	RGB LED0, LED1, LED2 Sink Current Matching among the 3 outputs @ VPAD = 0.35 ~ 2.5 V	- 5	+5	%	- 5	+5	%
I _{IR_} ACCURACY_FULL	IR LED Sink Current Accuracy to selected current @ V _{PAD} = 0.8 V ~ 2 V	-12	+12	%	not allowed	not allowed	%
I _{IR_} ACCURACY_HALF	IR LED Sink Current Accuracy to selected current @ V _{PAD} = 0.55 V ~ 2 V	-12	+12	%	-12	+12	%
IBARCODE_ACCURACY_FULL	BARCODE LED Sink Current Accuracy to selected current @ V _{PAD} = 0.8 V ~ 2 V	-12	+12	%	not allowed	not allowed	%
IBARCODE_ACCURACY_HALF	BARCODE LED Sink Current Accuracy to selected current @ V _{PAD} = 0.55 V ~ 2 V	-12	+12	%	not allowed	not allowed	%

^{1.} Refer to Table 2-9 for valid current settings.

RGB LED Timing Specification

SN	Symbol	Parameter		TYP	Max	Units
1	F _{PWM_OUT_X} FR ₂₅₀ = 0	Frequency of the PWM output for color LED; When FR ₂₅₀ = 0		125		Hz
2	F _{PWM_OUT_X} FR ₂₅₀ = 1	Frequency of the PWM output for color LED; When FR ₂₅₀ = 1		250		Hz
3	T _{HIGH_X}	PWM High percentage for color LED.	0		99	%
4	T _{HIGH_STEP_X}	PWM High percentage incremental step.		1/256		%

IR Transceiver IP Timing Specification

SN	Symbol	Parameter		TYP	Max	Units
1	F _{IR_OUT}	Frequency of the IR output	25		120	kHz
2	F _{IR_IN}	Frequency of the IR input	25		120	kHz
3	T _{HIGH} (DUTY1/3 = 0)	Duty Cycle when DUTY1/3 = 0.		50		%
4	T _{HIGH} (DUTY1/3 = 1)	Duty Cycle when DUTY1/3 = 1.		33.33		%

Switching Test Conditions

Figure 3-3 shows the output test load used for AC testing. The specific values for resistance, capacitance, voltage, and other test conditions are shown in Table 3-1.

Figure 3-3. Output Test Load, LVCMOS Standards

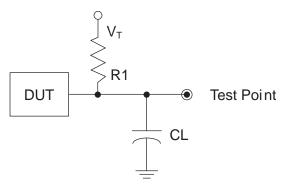


Table 3-1. Test Fixture Required Components, Non-Terminated Interfaces

Test Condition	R ₁	CL	Timing Reference	V _T
			LVCMOS 3.3 = 1.5 V	_
LVCMOS settings (L -> H, H -> L)	∞	0 pF	LVCMOS 2.5 = V _{CCIO} /2	_
			LVCMOS 1.8 = V _{CCIO} /2	_
LVCMOS 3.3 (Z -> H)			1.5 V	V _{OL}
LVCMOS 3.3 (Z -> L)			1.5 V	V _{OH}
Other LVCMOS (Z -> H)	188	0 pF	V _{CCIO} /2	V _{OL}
Other LVCMOS (Z -> L) LVCMOS (H -> Z)	100		V _{CCIO} /2	V _{OH}
	1		V _{OH} - 0.15 V	V _{OL}
LVCMOS (L -> Z)			V _{OL} - 0.15 V	V _{OH}

Note: Output test conditions for all other interfaces are determined by the respective standards.

iCE40 UltraLite Family Data Sheet Pinout Information

April 2016 Data Sheet DS1050

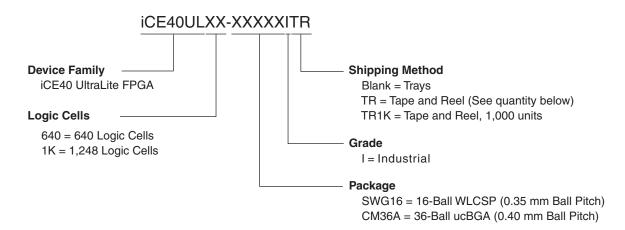
Signal Descriptions

Signal Name		Function	I/O	Description
Power Supplies	s	<u> </u>		
V _{CC}		Power	_	Core Power Supply
V _{CCIO_0} , SPI_V _{CCIO1} , V _{CCIO_2}		Power	_	Power for I/Os in Bank 0, 1, and 2. V_{CCIO0} is tied with V_{PP_2V5} and V_{CCIO2} is tied with SPI_V_{CCIO1} in 16 WLCS package.
V _{PP_2V5}		Power	_	Power for NVCM programming and operations
V _{CCPLL}		Power	_	Power for PLL
GND		GROUND	_	Ground
GND_LED		GROUND	_	Ground for LED drivers. Should connect to GND on board
Configuration				
Primary	Secondary			
CRESETB	_	Configuration	I	Configuration Reset, active LOW. Include a weak internal pull-up resistor to V _{CCIO_2} . Or actively driven externally or connect an 10K-Ohm pull-up to V _{CCIO_2} .
PIOB_8a CDONE		Configuration	I/O	Configuration Done. Includes a weak pull-up resistor to V _{CCIO_2} . In 16 WLCS CDONE shared with PIOB_8a.
		General I/O	I/O	In user mode, after configuration, this pin can be programmed as general I/O in user function.
PIOB_11b	CDONE	Configuration	I/O	Configuration Done. Includes a weak pull-up resistor to V _{CCIO_2} . In 36-ball ucBGA package CDONE shared with PIOB_11b.
		General I/O	I/O	In user mode, after configuration, this pin can be programmed as general I/O in user function.
Config SPI				
Primary	Secondary			
PIOB_16a	SPI_SCK	Configuration	I/O	This pin is shared with device configuration. During configuration: In Master SPI mode, this pin outputs the clock to external SPI memory. In Slave SPI mode, this pin inputs the clock from external processor.
		General I/O	I/O	In user mode, after configuration, this pin can be programmed as general I/O in user function.
PIOB_14a	SPI_SO	Configuration	Output	This pin is shared with device configuration. During configuration: In Master SPI mode, this pin outputs the command data to external SPI memory. In Slave SPI mode, this pin connects to the MISO pin of the external processor.
		General I/O	I/O	In user mode, after configuration, this pin can be programmed as general I/O in user function.

Pinout Information iCE40 UltraLite Family Data Sheet

PIOB_15b	SPI_SI	Configuration	Input	This pin is shared with device configuration. During configuration: In Master SPI mode, this pin receives data from external SPI memory. In Slave SPI mode, this pin connects to the MOSI pin of the external processor.
		General I/O	I/O	In user mode, after configuration, this pin can be programmed as general I/O in user function
PIOB_17b	SPI_SS_B	Configuration	I/O	This pin is shared with device configuration. During configuration: In Master SPI mode, this pin outputs to the external SPI memory. In Slave SPI mode, this pin inputs from the external processor.
		General I/O	I/O	In user mode, after configuration, this pin can be programmed as general I/O in user function.
Global Signals				
Primary	Secondary			
PIOT_22b	G0	General I/O	I/O	In user mode, after configuration, this pin can be programmed as general I/O in user function.
		Global	Input	Global input used for high fanout, or clock/reset net. The G0 pin drives the GBUF0 global buffer.
PIOT_21a	G1	General I/O	I/O	In user mode, after configuration, this pin can be programmed as general I/O in user function.
		Global	Input	Global input used for high fanout, or clock/reset net. The G1 pin drives the GBUF1 global buffer.
PIOB_13b	G3	General I/O	I/O	In user mode, after configuration, this pin can be programmed as general I/O in user function.
		Global	Input	Global input used for high fanout, or clock/reset net. The G3 pin drives the GBUF3 global buffer.
PIOB_8a	G4	General I/O	I/O	In user mode, after configuration, this pin can be programmed as general I/O in user function.
		Global	Input	Global input used for high fanout, or clock/reset net. The G4 pin drives the GBUF4 global buffer.
PIOB_7b	G5	General I/O	I/O	In user mode, after configuration, this pin can be programmed as general I/O in user function.
		Global	Input	Global input used for high fanout, or clock/reset net. The G5 pin drives the GBUF5 global buffer.
PIOB_3b	G6	General I/O	I/O	In user mode, after configuration, this pin can be programmed as general I/O in user function.
		Global	Input	Global input used for high fanout, or clock/reset net. The G6 pin drives the GBUF6 global buffer.
LED Signals				
RGB0		General I/O	Open-Drain I/O	In user mode, with user's choice, this pin can be programmed as open drain I/O in user function.
		LED	Open-Drain Output	In user mode, with user's choice, this pin can be programmed as open drain 24mA output to drive external LED.
RGB1		General I/O	Open-Drain I/O	In user mode, with user's choice, this pin can be programmed as open drain I/O in user function.
		LED	Open-Drain Output	In user mode, with user's choice, this pin can be programmed as open drain 24mA output to drive external LED.

Pinout Information iCE40 UltraLite Family Data Sheet


-	T	T.	
RGB2	General I/O	Open-Drain I/O	In user mode, with user's choice, this pin can be programmed as open drain I/O in user function.
	LED	Open-Drain Output	In user mode, with user's choice, this pin can be programmed as open drain 24mA output to drive external LED.
IRLED	General I/O	Open-Drain I/O	In user mode, with user's choice, this pin can be programmed as open drain I/O in user function.
	LED	Open-Drain Output	In user mode, with user's choice, this pin can be programmed as open drain 400 mA output to drive external LED.
BARCODE	General I/O	Open-Drain I/O	In user mode, with user's choice, this pin can be programmed as open drain I/O in user function.
	LED	Open-Drain Output	In user mode, with user's choice, this pin can be programmed as open drain 100 mA output to drive external LED.
PIOT_xx	General I/O	I/O	In user mode, with user's choice, this pin can be programmed as I/O in user function in the top ($xx = I/O$ location).
PIOB_xx	General I/O	I/O	In user mode, with user's choice, this pin can be programmed as I/O in user function in the bottom (xx = I/O location).

iCE40 UltraLite Family Data Sheet Ordering Information

April 2016 Data Sheet DS1050

iCE40 UltraLite Part Number Description

Tape and Reel Quantity

Package	TR Quantity
CM36A	4,000
SWG16	5,000

Ordering Part Numbers

Industrial

Part Number	LUTs	Supply Voltage	Package	Pins	Temp.
ICE40UL1K-SWG16ITR	1248	1.2	Halogen-Free WLCSP	16	IND
ICE40UL1K-CM36AITR	1248	1.2	36-Ball ucBGA	36	IND
ICE40UL1K-CM36AITR1K	1248	1.2	36-Ball ucBGA	36	IND
ICE40UL640-SWG16ITR	640	1.2	Halogen-Free WLCSP	16	IND
ICE40UL640-CM36AITR	640	1.2	36-Ball ucBGA	36	IND
ICE40UL640-CM36AITR1K	640	1.2	36-Ball ucBGA	36	IND

iCE40 UltraLite Family Data Sheet Supplemental Information

July 2016 Data Sheet DS1050

For Further Information

A variety of technical notes for the iCE40 UltraLite family are available on the Lattice web site.

- TN1248, iCE40 Programming and Configuration
- TN1274, iCE40 I2C and SPI Hardened IP Usage Guide
- TN1276, Advanced iCE40 I2C and SPI Hardened IP Usage Guide
- TN1250, Memory Usage Guide for iCE40 Devices
- TN1251, iCE40 sysCLOCK PLL Design and Usage Guide
- TN1252, iCE40 Hardware Checklist
- TN1288, iCE40 LED Driver Usage Guide
- iCE40 UltraLite Pinout Files
- iCE40 UltraLite Pin Migration Files
- Thermal Management document
- · Lattice design tools
- Schematic Symbols