

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1946t-i-mr

Email: info@E-XFL.COM

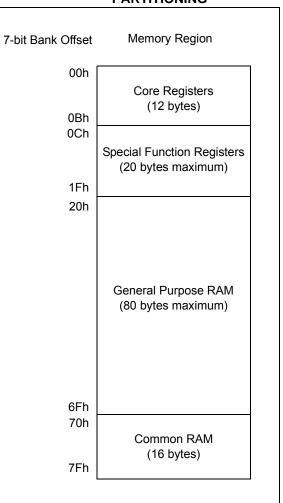
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3.1 SPECIAL FUNCTION REGISTER

The Special Function Registers are registers used by the application to control the desired operation of peripheral functions in the device. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh). The registers associated with the operation of the peripherals are described in the appropriate peripheral chapter of this data sheet.

3.3.2 GENERAL PURPOSE RAM

There are up to 80 bytes of GPR in each data memory bank. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh).


3.3.2.1 Linear Access to GPR

The general purpose RAM can be accessed in a non-banked method via the FSRs. This can simplify access to large memory structures. See **Section 3.6.2** "**Linear Data Memory**" for more information.

3.3.3 COMMON RAM

There are 16 bytes of common RAM accessible from all banks.

FIGURE 3-3: BANKED MEMORY PARTITIONING

3.3.4 DEVICE MEMORY MAPS

The memory maps for the device family are as shown in Table 3-3.

TABLE 3-3:MEMORY MAP TABLES

Device	Banks	Table No.
PIC16(L)F1946/47	0-7	Table 3-4
	8-15	Table 3-5, Table 3-8
	16-23	Table 3-6
	23-31	Table 3-7, Table 3-9

REGISTER 4-2: CONFIG2: CONFIGURATION WORD 2 (CONTINUED)

- bit 1-0 WRT<1:0>: Flash Memory Self-Write Protection bits
 - 8 kW Flash memory (PIC16(L)F1946):
 - 11 = Write protection off
 - 10 = 000h to 1FFh write-protected, 200h to 1FFFh may be modified by EECON control
 - 01 = 000h to FFFh write-protected, 1000h to 1FFFh may be modified by EECON control
 - 00 = 000h to 1FFFh write-protected, no addresses may be modified by EECON control
 - 16 kW Flash memory (PIC16(L)F1947):
 - 11 = Write protection off
 - 10 = 000h to 1FFh write-protected, 200h to 3FFFh may be modified by EECON control
 - 01 = 000h to 1FFFh write-protected, 2000h to 3FFFh may be modified by EECON control
 - 00 = 000h to 3FFFh write-protected, no addresses may be modified by EECON control
- Note 1: The LVP bit cannot be programmed to '0' when Programming mode is entered via LVP.
 - 2: The DEBUG bit in Configuration Words is managed automatically by device development tools including debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.
 - **3:** See Vbor parameter for specific trip point voltages.

5.4 Two-Speed Clock Start-up Mode

Two-Speed Start-up mode provides additional power savings by minimizing the latency between external oscillator start-up and code execution. In applications that make heavy use of the Sleep mode, Two-Speed Start-up will remove the external oscillator start-up time from the time spent awake and can reduce the overall power consumption of the device. This mode allows the application to wake-up from Sleep, perform a few instructions using the INTOSC internal oscillator block as the clock source and go back to Sleep without waiting for the external oscillator to become stable.

Two-Speed Start-up provides benefits when the oscillator module is configured for LP, XT, or HS modes. The Oscillator Start-up Timer (OST) is enabled for these modes and must count 1024 oscillations before the oscillator can be used as the system clock source.

If the oscillator module is configured for any mode other than LP, XT or HS mode, then Two-Speed Start-up is disabled. This is because the external clock oscillator does not require any stabilization time after POR or an exit from Sleep.

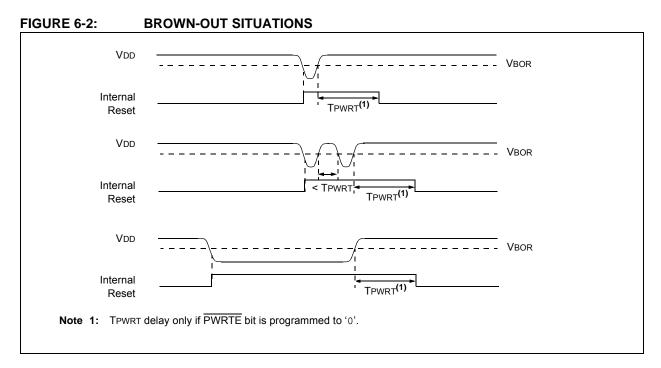
If the OST count reaches 1024 before the device enters Sleep mode, the OSTS bit of the OSCSTAT register is set and program execution switches to the external oscillator. However, the system may never operate from the external oscillator if the time spent awake is very short.

Note:	Executing a SLEEP instruction will abort
	the oscillator start-up time and will cause
	the OSTS bit of the OSCSTAT register to
	remain clear.

TABLE 5-1: OSCILLATOR SWITCHING DELAYS

Switch To Switch From Frequency **Oscillator Delay** LFINTOSC⁽¹⁾ 31 kHz MFINTOSC⁽¹⁾ Sleep 31.25 kHz-500 kHz 2 cycles HFINTOSC⁽¹⁾ 31.25 kHz-16 MHz EC, RC⁽¹⁾ Sleep/POR DC - 32 MHz 2 cycles EC. RC⁽¹⁾ **LFINTOSC** DC - 32 MHz 1 cycle of each Timer1 Oscillator Sleep/POR 32 kHz-20 MHz 1024 Clock Cycles (OST) LP, XT, HS⁽¹⁾ MFINTOSC⁽¹⁾ 31.25 kHz-500 kHz Any clock source 2 µs (approx.) HFINTOSC⁽¹⁾ 31.25 kHz-16 MHz LFINTOSC⁽¹⁾ 31 kHz Any clock source 1 cvcle of each Timer1 Oscillator 32 kHz Any clock source 1024 Clock Cycles (OST) PLL inactive 16-32 MHz PLL active 2 ms (approx.)

Note 1: PLL inactive.


5.4.1 TWO-SPEED START-UP MODE CONFIGURATION

Two-Speed Start-up mode is configured by the following settings:

- IESO (of the Configuration Words) = 1; Internal/External Switchover bit (Two-Speed Start-up mode enabled).
- SCS (of the OSCCON register) = 00.
- FOSC<2:0> bits in the Configuration Words configured for LP, XT or HS mode.

Two-Speed Start-up mode is entered after:

- Power-on Reset (POR) and, if enabled, after Power-up Timer (PWRT) has expired, or
- · Wake-up from Sleep.

6.3 Register Definitions: BOR Control

REGISTER 6-1: BORCON: BROWN-OUT RESET CONTROL REGISTER

R/W-1/u	U-0	U-0	U-0	U-0	U-0	U-0	R-q/u
SBOREN	—	—	—	—	—	—	BORRDY
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	SBOREN: Software Brown-out Reset Enable bit
	If BOREN <1:0> in Configuration Words ≠ 01:
	SBOREN is read/write, but has no effect on the BOR.
	If BOREN <1:0> in Configuration Words = 01:
	1 = BOR Enabled
	0 = BOR Disabled
bit 6-1	Unimplemented: Read as '0'
bit 0	BORRDY: Brown-out Reset Circuit Ready Status bit
	1 = The Brown-out Reset circuit is active
	0 = The Brown-out Reset circuit is inactive

EXAMPLE 11-2: DATA EEPROM WRITE

	BANKSEL MOVLW MOVWF MOVLW BCF BCF BSF	DATA_EE_ADDR EEADRL DATA_EE_DATA EEDATL EECON1, CFGS EECON1, EEPGD	
Required Sequence	BCF MOVLW MOVWF BSF BSF BCF BTFSC GOTO	55h EECON2 OAAh EECON2 EECON1, WR INTCON, GIE EECON1, WREN	;Disable INTs. ; ;Write 55h ; ;Write AAh ;Set WR bit to begin write ;Enable Interrupts ;Disable writes ;Wait for write to complete ;Done

Q1 Q2 Q3 Q4
PC PC + 1 XEEADRH,EEADRL PC + 3 X PC + 4 X PC + 5
INSTR (PC) INSTR (PC + 1) EEDATH,EEDATL INSTR (PC + 3) INSTR (PC + 4)
INSTR(PC - 1) BSF EECON1,RD INSTR(PC + 1) Forced NOP INSTR(PC + 3) INSTR(PC + 4) executed here executed here executed here executed here executed here

REGISTER 11-3: EEADRL: EEPROM ADDRESS LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
10/070/0	1010 0/0	10,00 0,0			1000 0/0	10,00,0	10,00 0,0
			EEAD	R<7:0>			
bit 7							bit 0
<u> </u>							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 EEADR<7:0>: Specifies the Least Significant bits for program memory address or EEPROM address

REGISTER 11-4: EEADRH: EEPROM ADDRESS HIGH BYTE REGISTER

U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
(1)				EEADR<14:8	>		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 Unimplemented: Read as '1'

bit 6-0 EEADR<14:8>: Specifies the Most Significant bits for program memory address or EEPROM address

Note 1: Unimplemented, read as '1'.

12.15 PORTG Registers

PORTG is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISG (Register 12-25). Setting a TRISG bit (= 1) will make the corresponding PORTG pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISG bit (= 0) will make the corresponding PORTG pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). The exception is RG5, which is input only and its TRIS bit will always read as '1'. Example 12-1 shows how to initialize an I/O port.

Reading the PORTG register (Register 12-24) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATG). RG5 reads '0' when MCLRE = 1.

The TRISG register (Register 12-25) controls the PORTG pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISG register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

12.15.1 ANSELG REGISTER

The ANSELG register (Register 12-27) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELG bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELG bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELG register must be initialized
	to configure an analog channel as a digital
	input. Pins configured as analog inputs
	will read '0'.

PORTG FUNCTIONS AND OUTPUT 12.15.2 PRIORITIES

Each PORTG pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-16.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input and some digital input functions are not included in the list below. These input functions can remain active when the pin is configured as an output. Certain digital input functions override other port functions and are included in the priority list.

Pin Name	Function Priority ⁽¹⁾
RG0	CCP3 (CCP) P3A (CCP) SEG42 (LCD) RG0
RG1	TX2 (EUSART) CK2 (EUSART) C3OUT (Comparator) SEG43 (LCD) RG1
RG2	DT2 SEG44 (LCD) RG2
RG3	CCP4 (CCP) P3D (CCP) SEG45 (LCD) RG3
RG4	CCP5 (CCP) P1D (CCP) SEG26 (LCD) RG4
RG5	Input-only pin

TABLE 12-16: PORTG OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		U-0	R/W-0/0	R/W-0/0				
CxINTP		1	H<1:0>				H<1:0>				
bit 7							bit (
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'					
u = Bit is und	hanged	x = Bit is unk	nown	-n/n = Value	at POR and BO	R/Value at all o	other Resets				
'1' = Bit is se	t	'0' = Bit is cle	ared								
bit 7	CxINTP: Cor	nparator Interru	upt on Positive	Going Edge E	nable bits						
		1 0		1 0	ing edge of the						
	0 = No interr	upt flag will be	set on a positi	ve going edge	of the CxOUT b	bit					
bit 6		nparator Interr	0	0 0							
					oing edge of the of the CxOUT						
bit 5-4	CxPCH<1:0>: Comparator Positive Input Channel Select bits										
	11 = CxVP connects to Vss										
		10 = CxVP connects to FVR Voltage Reference									
		onnects to DA	0	rence							
bit 3-2		onnects to CxI									
	•	ted: Read as '		Channel Cala	at laite						
bit 1-0		Comparator	0 1	Channel Sele	UT DITS						
		onnects to CxI onnects to CxI	•								
		onnects to CxI									
	00 = CxVN c	00 = CxVN connects to CxINO- pin									

REGISTER 18-2: CMxCON1: COMPARATOR Cx CONTROL REGISTER 1

REGISTER 18-3: CMOUT: COMPARATOR OUTPUT REGISTER

U-0	U-0	U-0	U-0	U-0	R-0/0	R-0/0	R-0/0
	—	_	_	_	— MC3OUT		MC1OUT
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

- bit 7-3 Unimplemented: Read as '0'
- bit 2 MC3OUT: Mirror Copy of C3OUT bit
- bit 1 MC2OUT: Mirror Copy of C2OUT bit
- bit 0 MC10UT: Mirror Copy of C10UT bit

23.1 Capture Mode

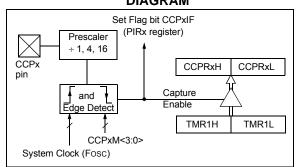
The Capture mode function described in this section is available and identical for CCP modules ECCP1, ECCP2, ECCP3, CCP4 and CCP5.

Capture mode makes use of the 16-bit Timer1 resource. When an event occurs on the CCPx pin, the 16-bit CCPRxH:CCPRxL register pair captures and stores the 16-bit value of the TMR1H:TMR1L register pair, respectively. An event is defined as one of the following and is configured by the CCPxM<3:0> bits of the CCPxCON register:

- · Every falling edge
- · Every rising edge
- Every 4th rising edge
- · Every 16th rising edge

When a capture is made, the Interrupt Request Flag bit CCPxIF of the PIRx register is set. The interrupt flag must be cleared in software. If another capture occurs before the value in the CCPRxH, CCPRxL register pair is read, and the old captured value is overwritten by the new captured value.

Figure 23-1 shows a simplified diagram of the Capture operation.


23.1.1 CCP PIN CONFIGURATION

In Capture mode, the CCPx pin should be configured as an input by setting the associated TRIS control bit.

Also, the CCPx pin function can be moved to alternative pins using the APFCON register. Refer to **Section 12.1 "Alternate Pin Function"** for more details.

Note: If the CCPx pin is configured as an output, a write to the port can cause a capture condition.

FIGURE 23-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

23.1.2 TIMER1 MODE RESOURCE

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

See Section 21.0 "Timer1 Module with Gate Control" for more information on configuring Timer1.

23.1.3 SOFTWARE INTERRUPT MODE

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit of the PIEx register clear to avoid false interrupts. Additionally, the user should clear the CCPxIF interrupt flag bit of the PIRx register following any change in Operating mode.

Note:	Clocking Timer1 from the system clock
	(Fosc) should not be used in Capture
	mode. In order for the Capture mode to
	recognize the trigger event on the CCPx
	pin, Timer1 must be clocked from the
	instruction clock (Fosc/4) or from an
	external clock source.

23.1.4 CCP PRESCALER

There are four prescaler settings specified by the CCPxM<3:0> bits of the CCPxCON register. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another does not clear the prescaler and may generate a false interrupt. To avoid this unexpected operation, turn the module off by clearing the CCPxCON register before changing the prescaler. Example 23-1 demonstrates the code to perform this function.

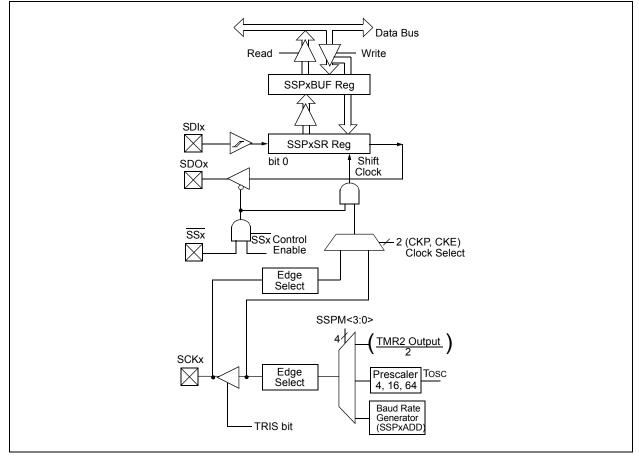
EXAMPLE 23-1: CHANGING BETWEEN CAPTURE PRESCALERS

BANKSEL CCPxCON	;Set Bank bits to point
	;to CCPxCON
CLRF CCPxCON	;Turn CCP module off
MOVLW NEW_CAPT_	PS;Load the W reg with
	;the new prescaler
	;move value and CCP ON
MOVWF CCPxCON	;Load CCPxCON with this
	;value

24.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP1 AND MSSP2) MODULE

24.1 Master SSPx (MSSPx) Module Overview

The Master Synchronous Serial Port (MSSPx) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The MSSPx module can operate in one of two modes:


- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)

The SPI interface supports the following modes and features:

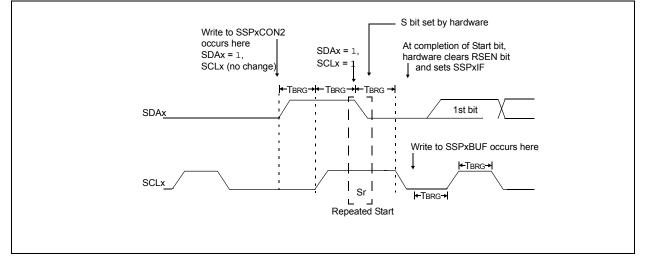
- Master mode
- Slave mode
- Clock Parity
- Slave Select Synchronization (Slave mode only)
- · Daisy-chain connection of slave devices

Figure 24-1 is a block diagram of the SPI interface module.

24.4.4 SDAx HOLD TIME

The hold time of the SDAx pin is selected by the SDAHT bit of the SSPxCON3 register. Hold time is the time SDAx is held valid after the falling edge of SCLx. Setting the SDAHT bit selects a longer 300 ns minimum hold time and may help on buses with large capacitance.

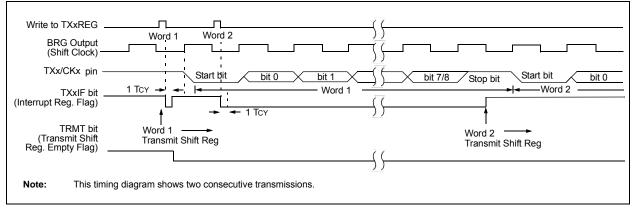
TABLE 24-2:I²C BUS TERMS


TERM	Description
Transmitter	The device which shifts data out onto the bus.
Receiver	The device which shifts data in from the bus.
Master	The device that initiates a transfer, generates clock signals and termi- nates a transfer.
Slave	The device addressed by the master.
Multi-master	A bus with more than one device that can initiate data transfers.
Arbitration	Procedure to ensure that only one master at a time controls the bus. Winning arbitration ensures that the message is not corrupted.
Synchronization	Procedure to synchronize the clocks of two or more devices on the bus.
Idle	No master is controlling the bus, and both SDAx and SCLx lines are high.
Active	Any time one or more master devices are controlling the bus.
Addressed Slave	Slave device that has received a matching address and is actively being clocked by a master.
Matching Address	Address byte that is clocked into a slave that matches the value stored in SSPxADD.
Write Request	Slave receives a matching address with R/W bit clear, and is ready to clock in data.
Read Request	Master sends an address byte with the R/\overline{W} bit set, indicating that it wishes to clock data out of the Slave. This data is the next and all following bytes until a Restart or Stop.
Clock Stretching	When a device on the bus hold SCLx low to stall communication.
Bus Collision	Any time the SDAx line is sampled low by the module while it is out- putting and expected high state.

24.6.5 I²C MASTER MODE REPEATED START CONDITION TIMING

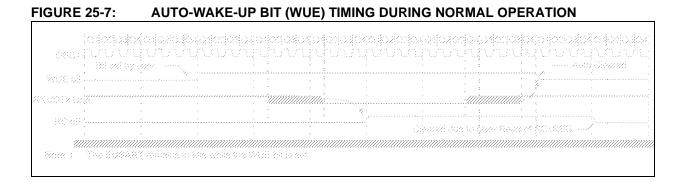
A Repeated Start condition occurs when the RSEN bit of the SSPxCON2 register is programmed high and the Master state machine is no longer active. When the RSEN bit is set, the SCLx pin is asserted low. When the SCLx pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDAx pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDAx is sampled high, the SCLx pin will be deasserted (brought high). When SCLx is sampled high, the Baud Rate Generator is reloaded and begins counting. SDAx and SCLx must be sampled high for one TBRG. This action is then followed by assertion of the SDAx pin (SDAx = 0) for one TBRG while SCLx is high. SCLx is asserted low. Following this, the RSEN bit of the SSPxCON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDAx pin held low. As soon as a Start condition is detected on the SDAx and SCLx pins, the S bit of the SSPxSTAT register will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.


- **Note 1:** If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDAx is sampled low when SCLx goes from low-to-high.
 - SCLx goes low before SDAx is asserted low. This may indicate that another master is attempting to transmit a data '1'.


FIGURE 24-27: REPEAT START CONDITION WAVEFORM

R/C/HS-0/0	R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
WCOL	SSPOV	SSPEN	CKP		SSPN	VI<3:0>		
bit 7							bit (
Legend:								
R = Readable b	vit	W = Writable b	it	U = Unimpleme	ented bit, read as	s 'O'		
u = Bit is uncha	nged	x = Bit is unkno	own	-n/n = Value at	POR and BOR/	/alue at all other I	Resets	
'1' = Bit is set		'0' = Bit is clea	red	HS = Bit is set	by hardware	C = User cleare	ed	
bit 7	Master mode: 1 = A write to be started 0 = No collision Slave mode:	l on BUF register is wi	egister was atte			ere not valid for a ust be cleared in se		
bit 6	$\frac{\text{In SPI mode:}}{1 = A \text{ new byte}}$ if only trantion (and the transmit of transmit of transmit of the transmit of tr	R is lost. Overflow smitting data, to a ransmission) is in ow received while th mode (must be c	e the SSPxBUF can only occur avoid setting ove itiated by writing ne SSPxBUF re	in Slave mode. In S rflow. In Master mo to the SSPxBUF egister is still hold	Slave mode, the u ode, the overflow register (must be	data. In case of or ser must read the bit is not set since cleared in softwar byte. SSPOV is	SSPxBUF, ever each new recep re).	
bit 5	 0 = No overflow SSPEN: Synchronous Serial Port Enable bit In both modes, when enabled, these pins must be properly configured as input or output In SPI mode: 1 = Enables serial port and configures SCKx, SDOx, SDIx and SSx as the source of the serial port pins⁽²⁾ 0 = Disables serial port and configures these pins as I/O port pins In I²C mode: 1 = Enables the serial port and configures the SDAx and SCLx pins as the source of the serial port pins⁽³⁾ 0 = Disables serial port and configures these pins as I/O port pins 							
bit 4	In <u>SPI mode:</u> 1 = Idle state for 0 = Idle state for <u>In I²C Slave model</u> SCLx release of 1 = Enable close	control ck < low (clock stret <u>node:</u>	level	nsure data setup	time.)			

REGISTER 24-2: SSPxCON1: SSPx CONTROL REGISTER 1


TABLE 25-1: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
BAUD1CON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	299
BAUD2CON	ABDOVF	RCIDL	_	SCKP	BRG16	—	WUE	ABDEN	299
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90
PIE1	_	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	91
PIE4	_	_	RC2IE	TX2IE	_	—	BCL2IE	SSP2IE	94
PIR1	_	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	95
PIR4	_	_	RC2IF	TX2IF	_	—	BCL2IF	SSP2IF	98
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	298
RC2STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	298
SP1BRGL			EUSART	Baud Rate	Generator, I	_ow Byte			300*
SP1BRGH			EUSART1	Baud Rate	Generator, H	High Byte			300*
SP2BRGL			EUSART2	2 Baud Rate	Generator, I	_ow Byte			300*
SP2BRGH			EUSART2	Baud Rate	Generator, H	High Byte			300*
TX1REG			EL	JSART1 Trar	nsmit Registe	er			292*
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	297
TX2REG			EU	JSART2 Trar	nsmit Registe	er			292*
TX2STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	297

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for asynchronous transmission.

* Page provides register information.

PIC16(L)F1946/47

FIGURE 25-8: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

	04030304	4040260303	0.99030393	ų a	25	ХX	3030X03	020090	40966903		estozice).	28,03900	10.30%
1	. М.Л.Ч.М.Г 1945 545 55	fununun. Ssan	fununu.	3 5 3				naun.	.n.n.n.		NINITUS Viene da		· · · · · · · · · · · · · · · · · · ·
VABE BRI		: ~~ / :	2 1 1	· ·			· · · · · · · · · · · · · · · · · · ·	· · · · ·				: ;	* *
sou xH062738 Pavosa	×	- - -		, , ,		is Yaaaaaaaa	· · · · · · · · · · · · · · · · · · ·			e de la construcción de la constru Construcción de la construcción de l			2 2 2
	8 9	isee Courran	d Sixocoted	ž.	execp Brods		Classe	9 699 KC	: User Ree	a otik	ROXREC -	?.	······
		gi event regut nie elegoence						i ina Wil	VE DE COM A	5,00,8	i walio tin	acyosa	signed is
2:	The SHEAR	8 coccaine le :	de wole the	9498 b8 w s	92.								

25.5 EUSART Synchronous Mode

Synchronous serial communications are typically used in systems with a single master and one or more slaves. The master device contains the necessary circuitry for baud rate generation and supplies the clock for all devices in the system. Slave devices can take advantage of the master clock by eliminating the internal clock generation circuitry.

There are two signal lines in Synchronous mode: a bidirectional data line and a clock line. Slaves use the external clock supplied by the master to shift the serial data into and out of their respective receive and transmit shift registers. Since the data line is bidirectional, synchronous operation is half-duplex only. Half-duplex refers to the fact that master and slave devices can receive and transmit data but not both simultaneously. The EUSART can operate as either a master or slave device.

Start and Stop bits are not used in synchronous transmissions.

25.5.1 SYNCHRONOUS MASTER MODE

The following bits are used to configure the EUSART for Synchronous Master operation:

- SYNC = 1
- CSRC = 1
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXxSTA register configures the device for synchronous operation. Setting the CSRC bit of the TXxSTA register configures the device as a master. Clearing the SREN and CREN bits of the RCxSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCxSTA register enables the EUSART. If the RXx/DTx or TXx/CKx pins are shared with an analog peripheral the analog I/O functions must be disabled by clearing the corresponding ANSEL bits.

The TRIS bits corresponding to the RXx/DTx and TXx/CKx pins should be set.

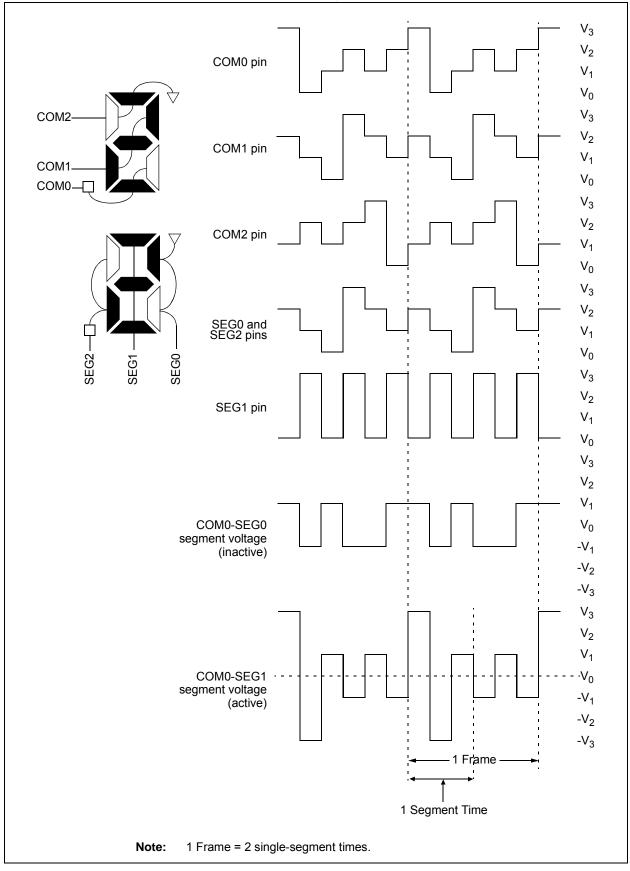
25.5.1.1 Master Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a master transmits the clock on the TXx/CKx line. The TXx/CKx pin output driver is automatically enabled when the EUSART is configured for synchronous transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One clock cycle is generated for each data bit. Only as many clock cycles are generated as there are data bits.

25.5.1.2 Clock Polarity

A clock polarity option is provided for Microwire compatibility. Clock polarity is selected with the SCKP bit of the BAUDxCON register. Setting the SCKP bit sets the clock Idle state as high. When the SCKP bit is set, the data changes on the falling edge of each clock and is sampled on the rising edge of each clock. Clearing the SCKP bit sets the Idle state as low. When the SCKP bit is cleared, the data changes on the rising edge of each clock and is sampled on the falling edge of each clock.

25.5.1.3 Synchronous Master Transmission


Data is transferred out of the device on the RXx/DTx pin. The RXx/DTx and TXx/CKx pin output drivers are automatically enabled when the EUSART is configured for synchronous master transmit operation.

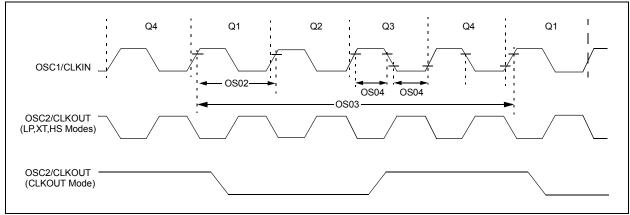
A transmission is initiated by writing a character to the TXxREG register. If the TSR still contains all or part of a previous character the new character data is held in the TXxREG until the last bit of the previous character has been transmitted. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXxREG is immediately transferred to the TSR. The transmission of the character commences immediately following the transfer of the data to the TSR from the TXxREG.

Each data bit changes on the leading edge of the master clock and remains valid until the subsequent leading clock edge.

Note: The TSR register is not mapped in data memory, so it is not available to the user.

PIC16(L)F1946/47

FIGURE 27-15: TYPE-A WAVEFORMS IN 1/3 MUX, 1/3 BIAS DRIVE


PIC16(L)F1946/47

								,	
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
LCDDATA22	SEG39 COM3	SEG38 COM3	SEG37 COM3	SEG36 COM3	SEG35 COM3	SEG34 COM3	SEG33 COM3	SEG32 COM3	330
LCDDATA23	—	—	SEG45 COM3	SEG44 COM3	SEG43 COM3	SEG42 COM3	SEG41 COM3	SEG40 COM3	330
LCDPS	WFT	BIASMD	LCDA	WA		LP<	<3:0>		327
LCDREF	LCDIRE	LCDIRS	LCDIRI	—	VLCD3PE	VLCD2PE	VLCD1PE	_	328
LCDRL	LRLAF	P<1:0>	LRLBF	P<1:0>	—		LRLAT<2:0>		337
LCDSE0				SE	<7:0>				330
LCDSE1				SE	<15:8>				330
LCDSE2				SE<	<23:16>				330
LCDSE3				SE<	<31:24>				330
LCDSE4				SE<	<39:32>				330
LCDSE5	_	_			SE<	45:40>			330
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	C3IE	CCP2IE	92
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	C3IF	CCP2IF	96
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC	—	TMR10N	197

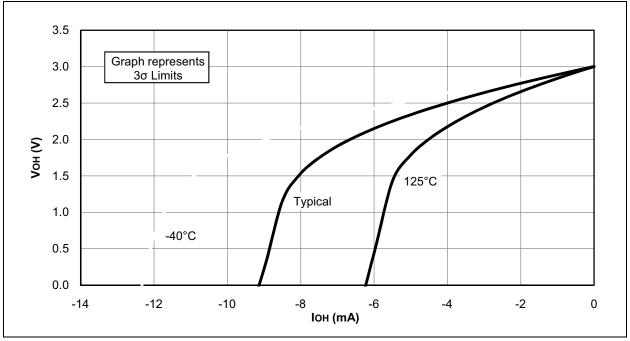
TABLE 27-9: SUMMARY OF REGISTERS ASSOCIATED WITH LCD OPERATION (CONTINUED)

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the LCD module.

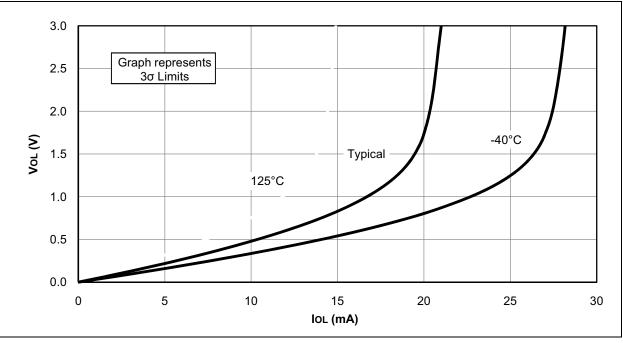
30.9 AC Characteristics: PIC16(L)F1946/47-I/E

FIGURE 30-6: CLOCK TIMING

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	0.5	MHz	EC Oscillator mode (low)
			DC	—	4	MHz	EC Oscillator mode (medium)
			DC	_	20	MHz	EC Oscillator mode (high)
		Oscillator Frequency ⁽¹⁾	_	32.768	_	kHz	LP Oscillator mode
			0.1	—	4	MHz	XT Oscillator mode
			1	—	4	MHz	HS Oscillator mode
			1	—	20	MHz	HS Oscillator mode, VDD > 2.7V
			DC	—	4	MHz	RC Oscillator mode, VDD > 2.0V
OS02	Tosc	External CLKIN Period ⁽¹⁾	27	—	×	μS	LP Oscillator mode
			250	—	∞	ns	XT Oscillator mode
			50	—	∞	ns	HS Oscillator mode
			50	—	×	ns	EC Oscillator mode
		Oscillator Period ⁽¹⁾	—	30.5	_	μS	LP Oscillator mode
			250	—	10,000	ns	XT Oscillator mode
			50	—	1,000	ns	HS Oscillator mode
			250	—	—	ns	RC Oscillator mode
OS03	Тсү	Instruction Cycle Time ⁽¹⁾	200	Тсү	DC	ns	Tcy = 4/Fosc
OS04*	TosH, TosL	External CLKIN High, External CLKIN Low	2	_	_	μS	LP oscillator
			100	—	—	ns	XT oscillator
			20	—	—	ns	HS oscillator


* These parameters are characterized but not tested.

† Data in ⁱ Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

PIC16(L)F1946/47

