

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1947-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description			
RE1/P2C ⁽¹⁾ /VLCD2	RE1	ST	CMOS	General purpose I/O.			
	P2C		CMOS	PWM output.			
	VLCD2	AN		LCD analog input.			
RE2/P2B ⁽¹⁾ /VLCD3	RE2	ST	CMOS	General purpose I/O.			
	P2B	_	CMOS	PWM output.			
	VLCD3	AN		LCD analog input.			
RE3/P3C ⁽¹⁾ /COM0	RE3	ST	CMOS	General purpose I/O.			
	P3C	_	CMOS	PWM output.			
	COM0	_	AN	LCD Analog output.			
RE4/P3B ⁽¹⁾ /COM1	RE4	ST	CMOS	General purpose I/O.			
	P3B	_	CMOS	PWM output.			
	COM1	_	AN	LCD Analog output.			
RE5/P1C ⁽¹⁾ /COM2	RE5	ST	CMOS	General purpose I/O.			
	P1C		CMOS	PWM output.			
	COM2	_	AN	LCD Analog output.			
RE6/P1B ⁽¹⁾ /COM3	RE6	ST	_	General purpose I/O.			
	P1B	_	CMOS	PWM output.			
	COM3	_	AN	LCD Analog output.			
RE7/CCP2 ⁽¹⁾ /P2A ⁽¹⁾ /SEG31	RE7	ST	CMOS	General purpose I/O.			
	CCP2	ST	CMOS	Capture/Compare/PWM.			
	P2A		CMOS	PWM output.			
	SEG31	_	AN	LCD analog output.			
RF0/AN16/CPS16/C1IN0-/C2IN0	RF0	ST	CMOS	General purpose I/O.			
/SEG41/VCAP	AN16	AN		A/D Channel input.			
	CPS16	AN		Capacitive sensing input.			
	C1IN0-	AN	—	Comparator negative input.			
	C2IN0-	AN	—	Comparator negative input.			
	SEG41	_	AN	LCD Analog output.			
	VCAP	Power	Power	Filter capacitor for Voltage Regulator.			
RF1/AN6/CPS6/C2OUT/SRNQ/	RF1	ST	CMOS	General purpose I/O.			
SEG19	AN6	AN		A/D Channel input.			
	CPS6	AN	—	Capacitive sensing input.			
	C2OUT	_	CMOS	Comparator output.			
	SRNQ	_	CMOS	SR Latch inverting output.			
	SEG19	_	AN	LCD Analog output.			
RF2/AN7/CPS7/C1OUT/SRQ/	RF2	ST	CMOS	General purpose I/O.			
SEG20	AN7	AN	_	A/D Channel input.			
	CPS7	AN		Capacitive sensing input.			
	C1OUT	_	CMOS	Comparator output.			
	SRQ		CMOS	SR Latch non-inverting output.			
	SEG20	—	AN	LCD Analog output.			
Legend: AN = Analog input or c	utput CMC)S= CM0	DS compa	atible input or output OD = Open-drain			

	DIC16/I)E10/6//7 DINOUT DESCRIPTION (CONTINUED)	١.
TABLE 1-2:	PICTO(L)F1940/47 PINOUT DESCRIPTION (CONTINUED))

HV = High Voltage **Note 1:** Pin function is selectable via the APFCON register.

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C HV = High Voltage XTAL = Crystal levels

3.1.1 READING PROGRAM MEMORY AS DATA

There are two methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSR to point to the program memory.

3.1.1.1 RETLW Instruction

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 3-1.

EXAMPLE 3-1: RETLW INSTRUCTION

constants	
BRW	;Add Index in W to
	;program counter to
	;select data
RETLW DATA0	;Index0 data
RETLW DATA1	;Index1 data
RETLW DATA2	
RETLW DATA3	
my_function	
; LOTS OF CODE	
MOVLW DATA_IN	DEX
CALL constants	
; THE CONSTANT IS	IN W

The BRW instruction makes this type of table very simple to implement. If your code must remain portable with previous generations of microcontrollers, then the BRW instruction is not available so the older table read method must be used.

5.2.2 INTERNAL CLOCK SOURCES

The device may be configured to use the internal oscillator block as the system clock by performing one of the following actions:

- Program the FOSC<2:0> bits in Configuration Words to select the INTOSC clock source, which will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to the internal oscillator during run-time. See **Section 5.3 "Clock Switching"**for more information.

In **INTOSC** mode, OSC1/CLKIN is available for general purpose I/O. OSC2/CLKOUT is available for general purpose I/O or CLKOUT.

The function of the OSC2/CLKOUT pin is determined by the CLKOUTEN bit in Configuration Words.

The internal oscillator block has two independent oscillators and a dedicated Phase-Lock Loop, HFPLL that can produce one of three internal system clock sources.

- 1. The **HFINTOSC** (High-Frequency Internal Oscillator) is factory calibrated and operates at 16 MHz. The HFINTOSC source is generated from the 500 kHz MFINTOSC source and the dedicated Phase-Lock Loop, HFPLL. The frequency of the HFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 5-3).
- The MFINTOSC (Medium-Frequency Internal Oscillator) is factory calibrated and operates at 500 kHz. The frequency of the MFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 5-3).
- 3. The **LFINTOSC** (Low-Frequency Internal Oscillator) is uncalibrated and operates at 31 kHz.

5.2.2.1 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a factory-calibrated 16 MHz internal clock source. The frequency of the HFINTOSC can be altered via software using the OSCTUNE register (Register 5-3).

The output of the HFINTOSC connects to a postscaler and multiplexer (see Figure 5-1). One of multiple frequencies derived from the HFINTOSC can be selected via software using the IRCF<3:0> bits of the OSCCON register. See **Section 5.2.2.7** "Internal **Oscillator Clock Switch Timing**" for more information.

The HFINTOSC is enabled by:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired HF frequency, and
- FOSC<2:0> = 100, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'.

A fast start-up oscillator allows internal circuits to power-up and stabilize before switching to HFINTOSC.

The High-Frequency Internal Oscillator Ready bit (HFIOFR) of the OSCSTAT register indicates when the HFINTOSC is running.

The High-Frequency Internal Oscillator Status Locked bit (HFIOFL) of the OSCSTAT register indicates when the HFINTOSC is running within 2% of its final value.

The High-Frequency Internal Oscillator Stable bit (HFIOFS) of the OSCSTAT register indicates when the HFINTOSC is running within 0.5% of its final value.

5.2.2.2 MFINTOSC

The Medium-Frequency Internal Oscillator (MFINTOSC) is a factory calibrated 500 kHz internal clock source. The frequency of the MFINTOSC can be altered via software using the OSCTUNE register (Register 5-3).

The output of the MFINTOSC connects to a postscaler and multiplexer (see Figure 5-1). One of nine frequencies derived from the MFINTOSC can be selected via software using the IRCF<3:0> bits of the OSCCON register. See **Section 5.2.2.7** "Internal Oscillator Clock Switch Timing" for more information.

The MFINTOSC is enabled by:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired HF frequency, and
- FOSC<2:0> = 100, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'

The Medium-Frequency Internal Oscillator Ready bit (MFIOFR) of the OSCSTAT register indicates when the MFINTOSC is running.

5.4.2 TWO-SPEED START-UP SEQUENCE

- 1. Wake-up from Power-on Reset or Sleep.
- 2. Instructions begin execution by the internal oscillator at the frequency set in the IRCF<3:0> bits of the OSCCON register.
- 3. OST enabled to count 1024 clock cycles.
- 4. OST timed out, wait for falling edge of the internal oscillator.
- 5. OSTS is set.
- 6. System clock held low until the next falling edge of new clock (LP, XT or HS mode).
- 7. System clock is switched to external clock source.

FIGURE 5-8: TWO-SPEED START-UP

5.4.3 CHECKING TWO-SPEED CLOCK STATUS

Checking the state of the OSTS bit of the OSCSTAT register will confirm if the microcontroller is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Words, or the internal oscillator.

8.0 LOW DROPOUT (LDO) VOLTAGE REGULATOR

The PIC16F1946/47 has an internal Low Dropout Regulator (LDO) which provides operation above 3.6V. The LDO regulates a voltage for the internal device logic while permitting the VDD and I/O pins to operate at a higher voltage. There is no user enable/disable control available for the LDO, it is always active. The PIC16LF1946/47 operates at a maximum VDD of 3.6V and does not incorporate an LDO.

A device I/O pin may be configured as the LDO voltage output, identified as the VCAP pin. Although not required, an external low-ESR capacitor may be connected to the VCAP pin for additional regulator stability.

The VCAPEN bit of Configuration Words enables or disables the VCAP pin. Refer to Table 8-1.

TABLE 8-1: VCAPEN SELECT BIT

VCAPEN	Pin
0	RF0
1	No VCAP

On power-up, the external capacitor will load the LDO voltage regulator. To prevent erroneous operation, the device is held in Reset while a constant current source charges the external capacitor. After the cap is fully charged, the device is released from Reset. For more information on the constant current rate, refer to the LDO Regulator Characteristics Table in **Section 30.0** "**Electrical Specifications**".

TABLE 8-2: SUMMARY OF CONFIGURATION WORD WITH LDO

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	—	LVP	DEBUG	_	BORV	STVREN	PLLEN	FC
CONFIGZ	7:0	-	—	_	VCAPEN	_	-	WRT1	WRT0	00

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by LDO.

W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0					
	EEPROM Control Register 2											
bit 7							bit 0					
Legend:												
R = Readable bit W = Writable bit U = Unim				U = Unimpler	mented bit, read	as '0'						
S = Bit can only	= Bit can only be set x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets								
'1' = Bit is set		'0' = Bit is clea	ared									

REGISTER 11-6: EECON2: EEPROM CONTROL 2 REGISTER

bit 7-0 Data EEPROM Unlock Pattern bits

To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the EECON1 register. The value written to this register is used to unlock the writes. There are specific timing requirements on these writes. Refer to **Section 11.2.2** "Writing to the Data EEPROM Memory" for more information.

TABLE 11-3: SUMMARY OF REGISTERS ASSOCIATED WITH DATA EEPROM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
EECON1	EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	119	
EECON2	EEPROM Control Register 2 (not a physical register)									
EEADRL	EEADRL<7:0>									
EEADRH	(1) EEADRH<6:0>								118	
EEDATL	EEDATL<7:0>									
EEDATH		— — EEDATH<5:0>								
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90	
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	C3IE	CCP2IE	92	
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	C3IF	CCP2IF	96	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by data EEPROM module.

* Page provides register information.

Note 1: Unimplemented, read as '1'.

12.1 Alternate Pin Function

The Alternate Pin Function Control (APFCON) register is used to steer specific peripheral input and output functions between different pins. The APFCON register is shown in Register 12-1. For this device family, the following functions can be moved between different pins.

- CCP3/P3C output
- CCP3/P3B output
- CCP2/P2D output
- CCP2/P2C output
- CCP2/P2B output
- CCP2/P2A output
- CCP1/P1C output
- CCP1/P1B output

These bits have no effect on the values of any TRIS register. PORT and TRIS overrides will be routed to the correct pin. The unselected pin will be unaffected.

12.4 Register Definitions: PORTA

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	
bit 7							bit 0	
Legend:								
R = Readable b	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
u = Bit is uncha	a = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					

REGISTER 12-2: PORTA: PORTA REGISTER

bit 7-0 RA<7:0>: PORTA I/O Value bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

REGISTER 12-3: TRISA: PORTA TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISA7 | TRISA6 | TRISA5 | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

TRISA<7:0>: PORTA Tri-State Control bit

1 = PORTA pin configured as an input (tri-stated)

0 = PORTA pin configured as an output

REGISTER 12-4: LATA: PORTA DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATA7 | LATA6 | LATA5 | LATA4 | LATA3 | LATA2 | LATA1 | LATA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATA<7:0>: PORTA Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	u = Bit is unchanged x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 12-9: WPUB: WEAK PULL-UP PORTB REGISTER

bit 7-0 WPUB<7:0>: Weak Pull-up Register bits

1 = Pull-up enabled

0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2 Bit 1		Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	148
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	148
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	148
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	128
LCDSE1	SE15	SE14	SE13	SE12	SE11	SE10	SE9	SE8	330
LCDSE3	SE31	SE30	SE29	SE28	SE27	SE26	SE25	SE24	330
LCDSE4	SE39	SE38	SE37	SE36	SE35	SE34	SE33	SE32	330
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS<2:0>		188	
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	128
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/DONE	T1GVAL T1GSS<1:0>		198	
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	128
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	129

 TABLE 12-6:
 SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTB.

16.0 ANALOG-TO-DIGITAL CONVERTER (ADC) MODULE

The Analog-to-Digital Converter (ADC) allows conversion of an analog input signal to a 10-bit binary representation of that signal. This device uses analog inputs, which are multiplexed into a single sample and hold circuit. The output of the sample and hold is connected to the input of the converter. The converter generates a 10-bit binary result via successive approximation and stores the conversion result into the ADC result registers (ADRESH:ADRESL register pair). Figure 16-1 shows the block diagram of the ADC.

The ADC voltage reference is software selectable to be either internally generated or externally supplied.

The ADC can generate an interrupt upon completion of a conversion. This interrupt can be used to wake up the device from Sleep.

19.4 Register Definitions: SR Latch Control

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/S-0/0	R/S-0/0
SRLEN		SRCLK<2:0>		SRQEN	SRNQEN	SRPS	SRPR
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable b	it	U = Unimplem	nented bit, read a	as 'O'	
u = Bit is uncha	anged	x = Bit is unkno	own	-n/n = Value a	t POR and BOR	/Value at all oth	er Resets
'1' = Bit is set		'0' = Bit is clear	red	S = Bit is set of	only		
bit 7	SRLEN: SR 1 = SR Latc 0 = SR Latc	Latch Enable bit h is enabled h is disabled					
bit 6-4	SRCLK<2:02 111 = Gener 110 = Gener 101 = Gener 010 = Gener 011 = Gener 010 = Gener 001 = Gener 000 = Gener	SR Latch Clock ates a 1 Fosc wid ates a 1 Fosc wid	C Divider bits de pulse every de pulse every	2 512th Fosc cyc 256th Fosc cyc 28th Fosc cyc 64th Fosc cycl 32nd Fosc cycl 16th Fosc cycle 8th Fosc cycle 4th Fosc cycle	cle clock cle clock e clock e clock le clock e clock clock clock		
bit 3	SRQEN: SR If SRLEN = 1 1 = Q is 0 = Ext If SRLEN = 0 SR Latch is c	Latch Q Output E s present on the S ernal Q output is <u>):</u> disabled	Enable bit SRQ pin disabled				
bit 2	SRNQEN: SI $\frac{\text{If SRLEN} = 1}{1 = \overline{Q} \text{ is}}$ $0 = \text{Ext}$	R Latch Q Output <u>::</u> s present on the S ernal Q output is	Enable bit SRnQ pin disabled				

REGISTER 19-2: SRCON0: SR LATCH CONTROL 0 REGISTER

Note 1: Set only, always reads back '0'.

FIGURE 21-4: TIMER1 GATE TOGGLE MODE

23.4.8 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register, APFCON. To determine which pins can be moved and what their default locations are upon a reset, see **Section 12.1 "Alternate Pin Function**" for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON	P3CSEL	P3BSEL	P2DSEL	P2CSEL	P2BSEL	CCP2SEL	P1CSEL	P1BSEL	123
CCPxCON	PxM<	1:0> (1)	DCxB	<1:0>		CCPx	Л<3:0>		227
CCPxAS	CCPxASE	(CCPxAS<2:0	>	PSSxA	.C<1:0>	PSSxB	D<1:0>	229
CCPTMRS0	C4TSE	L<1:0>	C3TSE	L<1:0>	C2TSE	L<1:0>	C1TSE	L<1:0>	228
CCPTMRS1	—	—	—	—	—	—	C5TSE	:L<1:0>	228
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	91
PIE2	OSFIE	C2IE	C1IE	EEIE	BCLIE	LCDIE	C3IE	CCP2IE	92
PIE3	—	CCP5IE	CCP4IE	CCP3IE	TMR6IE	—	TMR4IE	—	93
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	95
PIR2	OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	C3IF	CCP2IF	96
PIR3	—	CCP5IF	CCP4IF	CCP3IF	TMR6IF	—	TMR4IF	—	97
PR2	Timer2 Perio	od Register							200*
PR4	Timer4 Perio	od Register							200*
PR6	Timer6 Perio	od Register							200*
PSTRxCON	—	—	—	STRx- SYNC	STRxD	STRxC	STRxB	STRxA	231
PWMxCON	PxRSEN				PxDC<6:0>				230
T2CON	—		T2OUT	PS<3:0>		TMR2ON	T2CKP	'S<:0>1	202
T4CON	—		T4OUT	PS<3:0>		TMR4ON	T4CKP	'S<:0>1	202
T6CON	—		T6OUTI	PS<3:0>		TMR6ON	T6CKP	'S<:0>1	202
TMR2	Timer2 Mod	ule Register							200*
TMR4	Timer4 Mod	ule Register							200*
TMR6	Timer6 Mod	ule Register							200*
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	128
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	131
TRISD	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	134
TRISE	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	137
TRISG	TRISG7	TRISG6	TRISG5	TRISG4	TRISG3	TRISG2	TRISG1	TRISG0	143

TABLE 23-10: \$	SUMMARY OF REGISTERS ASSOCIATED WITH ENHANCED PWM
-----------------	---

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the PWM.

Note 1: Applies to ECCP modules only.

* Page provides register information.

ΜΟΥΨΙ	Move W to INDFn
Syntax:	[<i>label</i>] MOVWI ++FSRn [<i>label</i>] MOVWIFSRn [<i>label</i>] MOVWI FSRn++ [<i>label</i>] MOVWI FSRn [<i>label</i>] MOVWI k[FSRn]
Operands:	n ∈ [0,1] mm ∈ [00,01, 10, 11] -32 ≤ k ≤ 31
Operation:	$\label{eq:W} \begin{split} W &\to INDFn \\ \text{Effective address is determined by} \\ \bullet \ FSR + 1 \ (preincrement) \\ \bullet \ FSR - 1 \ (predecrement) \\ \bullet \ FSR + k \ (relative offset) \\ \text{After the Move, the FSR value will be} \\ \text{either:} \\ \bullet \ FSR + 1 \ (all increments) \\ \bullet \ FSR - 1 \ (all decrements) \\ \text{Unchanged} \end{split}$

Status Affected:

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

None

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap around.

The increment/decrement operation on FSRn WILL NOT affect any Status bits.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.
Words:	1
Cycles:	1
Example:	NOP

OPTION	Load OPTION_REG Register with W
Syntax:	[label] OPTION
Operands:	None
Operation:	$(W) \rightarrow OPTION_REG$
Status Affected:	None
Description:	Move data from W register to OPTION_REG register.
Words:	1
Cycles:	1
Example:	OPTION
	Before Instruction OPTION_REG = 0xFF W = 0x4F After Instruction OPTION_REG = 0x4F W = 0x4F

RESET	Software Reset
Syntax:	[label] RESET
Operands:	None
Operation:	Execute a device Reset. Resets the nRI flag of the PCON register.
Status Affected:	None
Description:	This instruction provides a way to execute a hardware Reset by soft- ware.

FIGURE 31-37: IPD, BROWN-OUT RESET (BOR), PIC16LF1946/47 ONLY

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body with 5.40 x 5.40 Exposed Pad [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimensio	MIN	NOM	MAX		
Number of Pins	N		64		
Pitch	е		0.50 BSC		
Overall Height	A	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3		0.20 REF		
Overall Width	E	9.00 BSC			
Exposed Pad Width	E2	5.30	5.40	5.50	
Overall Length	D	9.00 BSC			
Exposed Pad Length	D2	5.30	5.40	5.50	
Contact Width	b	0.20	0.25	0.30	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-154A Sheet 2 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length and 5.40x5.40mm Exposed Pad

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.50 BSC			
Optional Center Pad Width	W2			5.50	
Optional Center Pad Length	T2			5.50	
Contact Pad Spacing	C1		8.90		
Contact Pad Spacing	C2		8.90		
Contact Pad Width (X64)	X1			0.30	
Contact Pad Length (X64)	Y1			0.85	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2154A

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	s MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.50 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X28)	X1			0.30
Contact Pad Length (X28)	Y1			1.50
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2085B Sheet 1 of 1