



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                     |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                        |
| Core Size                  | 8-Bit                                                                      |
| Speed                      | 32MHz                                                                      |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                  |
| Peripherals                | Brown-out Detect/Reset, LCD, POR, PWM, WDT                                 |
| Number of I/O              | 54                                                                         |
| Program Memory Size        | 28KB (16K x 14)                                                            |
| Program Memory Type        | FLASH                                                                      |
| EEPROM Size                | 256 x 8                                                                    |
| RAM Size                   | 1K x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.5V                                                                |
| Data Converters            | A/D 17x10b                                                                 |
| Oscillator Type            | Internal                                                                   |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                          |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 64-TQFP                                                                    |
| Supplier Device Package    | 64-TQFP (10x10)                                                            |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16f1947t-i-pt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



## 6.12 Power Control (PCON) Register

The Power Control (PCON) register contains flag bits to differentiate between a:

- Power-on Reset (POR)
- Brown-out Reset (BOR)
- Reset Instruction Reset (RI)
- Stack Overflow Reset (STKOVF)
- Stack Underflow Reset (STKUNF)
- MCLR Reset (RMCLR)

The PCON register bits are shown in Register 6-2.

## 6.13 Register Definitions: Power Control

### REGISTER 6-2: PCON: POWER CONTROL REGISTER

| R/W/HS-0/q | R/W/HS-0/q | U-0 | U-0 | R/W/HC-1/q | R/W/HC-1/q | R/W/HC-q/u | R/W/HC-q/u |
|------------|------------|-----|-----|------------|------------|------------|------------|
| STKOVF     | STKUNF     | —   | —   | RMCLR      | RI         | POR        | BOR        |
| bit 7      |            |     |     |            |            |            | bit 0      |

| Legend:                       |                      |                                                       |
|-------------------------------|----------------------|-------------------------------------------------------|
| HC = Bit is cleared by hardwa | are                  | HS = Bit is set by hardware                           |
| R = Readable bit              | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged          | x = Bit is unknown   | -m/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set              | '0' = Bit is cleared | q = Value depends on condition                        |

| <pre>STKOVF: Stack Overflow Flag bit 1 = A Stack Overflow occurred 0 = A Stack Overflow has not occurred or set to '0' by firmware</pre>                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>STKUNF:</b> Stack Underflow Flag bit<br>1 = A Stack Underflow occurred<br>0 = A Stack Underflow has not occurred or set to '0' by firmware                                                                             |
| Unimplemented: Read as '0'                                                                                                                                                                                                |
| RMCLR: MCLR Reset Flag bit         1 = A MCLR Reset has not occurred or set to '1' by firmware         0 = A MCLR Reset has occurred (set to '0' in hardware when a MCLR Reset occurs)                                    |
| <b>RI:</b> RESET Instruction Flag bit<br>1 = A RESET instruction has not been executed or set to '1' by firmware<br>0 = A RESET instruction has been executed (set to '0' in hardware upon executing a RESET instruction) |
| <b>POR:</b> Power-on Reset Status bit<br>1 = No Power-on Reset occurred<br>0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)                                                          |
| <b>BOR:</b> Brown-out Reset Status bit<br>1 = No Brown-out Reset occurred<br>0 = A Brown-out Reset occurred (must be set in software after a Power-on Reset or Brown-out Reset<br>occurs)                                 |
|                                                                                                                                                                                                                           |

| EXAM                 | PLE 11-4:                                             | ERASING ONE                                                                    | E ROW OF PROGRAM MEMORY -                                                                                                                                                                                                                                                                                                                                           |
|----------------------|-------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ; This               | row erase                                             | routine assumes                                                                | the following:                                                                                                                                                                                                                                                                                                                                                      |
| ; 1. A               | valid addr                                            | ess within the                                                                 | erase block is loaded in ADDRH:ADDRL                                                                                                                                                                                                                                                                                                                                |
| ; 2. A               | DDRH and AD                                           | DRL are located                                                                | in shared data memory 0x70 - 0x7F (common RAM)                                                                                                                                                                                                                                                                                                                      |
|                      | BCF<br>BANKSEL<br>MOVF<br>MOVF<br>MOVF<br>BSF<br>BCF  | INTCON,GIE<br>EEADRL<br>ADDRL,W<br>EEADRL<br>ADDRH,W<br>EEADRH<br>EECON1,EEPGD | <pre>; Disable ints so required sequences will execute properly<br/>; Load lower 8 bits of erase address boundary<br/>; Load upper 6 bits of erase address boundary<br/>; Point to program memory<br/>; Not configuration space</pre>                                                                                                                               |
|                      | BCF                                                   | FECON1, CFGS                                                                   | ; Not configuration space                                                                                                                                                                                                                                                                                                                                           |
|                      | BSF                                                   | FECON1 WDEN                                                                    | : Enable writes                                                                                                                                                                                                                                                                                                                                                     |
| Required<br>Sequence | MOVLW<br>MOVWF<br>MOVLW<br>MOVWF<br>BSF<br>NOP<br>NOP | 55h<br>EECON2<br>0AAh<br>EECON2<br>EECON1,WR                                   | <pre>; Sharre writes<br/>; Start of required sequence to initiate erase<br/>; Write 55h<br/>;<br/>; Write AAh<br/>; Set WR bit to begin erase<br/>; Any instructions here are ignored as processor<br/>; halts to begin erase sequence<br/>; Processor will stop here and wait for erase complete.<br/>; after erase processor continues with 3rd instruction</pre> |
|                      | BCF<br>BSF                                            | EECON1,WREN<br>INTCON,GIE                                                      | ; Disable writes<br>; Enable interrupts                                                                                                                                                                                                                                                                                                                             |

## 12.5 PORTB Registers

PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 12-7). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 12-1 shows how to initialize an I/O port.

Reading the PORTB register (Register 12-6) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATB).

The TRISB register (Register 12-7) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

## 12.5.1 WEAK PULL-UPS

Each of the PORTB pins has an individually configurable internal weak pull-up. Control bits WPUB<7:0> enable or disable each pull-up (see Register 12-9). Each weak pull-up is automatically turned off when the port pin is configured as an output. All pull-ups are disabled on a Power-on Reset by the WPUEN bit of the OPTION\_REG register.

## 12.5.2 INTERRUPT-ON-CHANGE

All of the PORTB pins are individually configurable as an interrupt-on-change pin. Control bits IOCB<7:0> enable or disable the interrupt function for each pin. The interrupt-on-change feature is disabled on a Power-on Reset. Reference **Section 13.0 "Interrupt-On-Change"** for more information.

### 12.5.3 PORTB FUNCTIONS AND OUTPUT PRIORITIES

Each PORTB pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-5.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input and some digital input functions are not included in the list below. These input functions can remain active when the pin is configured as an output. Certain digital input functions, such as the EUSART RX signal, override other port functions and are included in the priority list.

| Pin<br>Name | Function Priority <sup>(1)</sup>                                                      |
|-------------|---------------------------------------------------------------------------------------|
| RB0         | SEG30 (LED)<br>SRI (SR Latch)<br>RB0                                                  |
| RB1         | SEG8 (LCD)<br>RB1                                                                     |
| RB2         | SEG9 (LCD)<br>RB2                                                                     |
| RB3         | SEG10 (LCD)<br>RB3                                                                    |
| RB4         | SEG11 (LCD)<br>RB4                                                                    |
| RB5         | SEG29 (LCD)<br>RB5                                                                    |
| RB6         | ICSPCLK (Programming)<br>ICDCLK (enabled by Configuration Word)<br>SEG38 (LCD)<br>RB6 |
| RB7         | ICSPDAT (Programming)<br>ICDDAT (enabled by Configuration Word)<br>SEG39 (LCD)<br>RB7 |

TABLE 12-5: PORTB OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

## 12.15 PORTG Registers

PORTG is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISG (Register 12-25). Setting a TRISG bit (= 1) will make the corresponding PORTG pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISG bit (= 0) will make the corresponding PORTG pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). The exception is RG5, which is input only and its TRIS bit will always read as '1'. Example 12-1 shows how to initialize an I/O port.

Reading the PORTG register (Register 12-24) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATG). RG5 reads '0' when MCLRE = 1.

The TRISG register (Register 12-25) controls the PORTG pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISG register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

#### 12.15.1 ANSELG REGISTER

The ANSELG register (Register 12-27) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELG bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELG bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

| Note: | The ANSELG register must be initialized     |
|-------|---------------------------------------------|
|       | to configure an analog channel as a digital |
|       | input. Pins configured as analog inputs     |
|       | will read '0'.                              |

#### PORTG FUNCTIONS AND OUTPUT 12.15.2 PRIORITIES

Each PORTG pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-16.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input and some digital input functions are not included in the list below. These input functions can remain active when the pin is configured as an output. Certain digital input functions override other port functions and are included in the priority list.

| Pin Name | Function Priority <sup>(1)</sup>                                         |
|----------|--------------------------------------------------------------------------|
| RG0      | CCP3 (CCP)<br>P3A (CCP)<br>SEG42 (LCD)<br>RG0                            |
| RG1      | TX2 (EUSART)<br>CK2 (EUSART)<br>C3OUT (Comparator)<br>SEG43 (LCD)<br>RG1 |
| RG2      | DT2<br>SEG44 (LCD)<br>RG2                                                |
| RG3      | CCP4 (CCP)<br>P3D (CCP)<br>SEG45 (LCD)<br>RG3                            |
| RG4      | CCP5 (CCP)<br>P1D (CCP)<br>SEG26 (LCD)<br>RG4                            |
| RG5      | Input-only pin                                                           |

## TABLE 12-16: PORTG OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

## 19.0 SR LATCH

The module consists of a single SR Latch with multiple Set and Reset inputs as well as separate latch outputs. The SR Latch module includes the following features:

- · Programmable input selection
- SR Latch output is available externally
- Separate Q and  $\overline{Q}$  outputs
- · Firmware Set and Reset

The SR Latch can be used in a variety of analog applications, including oscillator circuits, one-shot circuit, hysteretic controllers, and analog timing applications.

## 19.1 Latch Operation

The latch is a Set-Reset Latch that does not depend on a clock source. Each of the Set and Reset inputs are active-high. The latch can be set or reset by:

- Software control (SRPS and SRPR bits)
- Comparator C1 output (sync\_C1OUT)
- Comparator C2 output (sync\_C2OUT)
- SRI pin
- Programmable clock (SRCLK)

The SRPS and the SRPR bits of the SRCON0 register may be used to set or reset the SR Latch, respectively. The latch is Reset-dominant. Therefore, if both Set and Reset inputs are high, the latch will go to the Reset state. Both the SRPS and SRPR bits are self resetting which means that a single write to either of the bits is all that is necessary to complete a latch Set or Reset operation.

The output from Comparator C1 or C2 can be used as the Set or Reset inputs of the SR Latch. The output of either comparator can be synchronized to the Timer1 clock source. See Section 18.0 "Comparator Module" and Section 21.0 "Timer1 Module with Gate Control" for more information.

An external source on the SRI pin can be used as the Set or Reset inputs of the SR Latch.

An internal clock source is available that can periodically set or reset the SR Latch. The SRCLK<2:0> bits in the SRCON0 register are used to select the clock source period. The SRSCKE and SRRCKE bits of the SRCON1 register enable the clock source to set or reset the SR Latch, respectively.

## 19.2 Latch Output

The SRQEN and SRNQEN bits of the SRCON0 register control the Q and  $\overline{Q}$  latch outputs. Both of the SR Latch outputs may be directly output to an I/O pin at the same time.

The applicable TRIS bit of the corresponding port must be cleared to enable the port pin output driver.

## 19.3 Effects of a Reset

Upon any device Reset, the SR Latch output is not initialized to a known state. The user's firmware is responsible for initializing the latch output before enabling the output pins.

| R/W-0/0          | R/W-0/0                    | R/W-0/0          | R/W-0/0          | R/W-0/0                | R/W-0/0          | R/W-0/0        | R/W-0/0      |
|------------------|----------------------------|------------------|------------------|------------------------|------------------|----------------|--------------|
| SRSPE            | SRSCKE                     | SRSC2E           | SRSC1E           | SRRPE                  | SRRCKE           | SRRC2E         | SRRC1E       |
| bit 7            |                            |                  |                  |                        | ·                |                | bit 0        |
|                  |                            |                  |                  |                        |                  |                |              |
| Legend:          |                            |                  |                  |                        |                  |                |              |
| R = Readable     | bit                        | W = Writable     | bit              | U = Unimpler           | mented bit, read | d as '0'       |              |
| u = Bit is unch  | anged                      | x = Bit is unki  | nown             | -n/n = Value a         | at POR and BC    | R/Value at all | other Resets |
| '1' = Bit is set |                            | '0' = Bit is cle | ared             |                        |                  |                |              |
|                  |                            |                  |                  |                        |                  |                |              |
| bit 7            | SRSPE: SR I                | Latch Peripher   | al Set Enable b  | pit                    |                  |                |              |
|                  | 1 = SR Latch               | n is set when th | ne SRI pin is hi | gh                     |                  |                |              |
|                  | 0 = SRI pin h              | has no effect or | n the set input  | of the SR Latcl        | h                |                |              |
| bit 6            | SRSCKE: SF                 | R Latch Set Clo  | ock Enable bit   |                        |                  |                |              |
|                  | 1 = Set input              | t of SR Latch is | s pulsed with S  | RCLK<br>of the SR Late | h                |                |              |
| bit 5            | SPSC2E. SP                 | Latch C2 Set     | Enable bit       |                        |                  |                |              |
| bit 5            | 1 = SR Latch               | is set when th   | e C2 Compara     | ator output is hi      | iah              |                |              |
|                  | 0 = C2 Comp                | parator output   | has no effect o  | n the set input        | of the SR Latcl  | า              |              |
| bit 4            | SRSC1E: SR                 | Latch C1 Set     | Enable bit       |                        |                  |                |              |
|                  | 1 = SR Latch               | n is set when th | ne C1 Compara    | ator output is h       | igh              |                |              |
|                  | 0 = C1 Com                 | parator output   | has no effect o  | n the set input        | of the SR Latcl  | า              |              |
| bit 3            | SRRPE: SR I                | Latch Peripher   | al Reset Enabl   | e bit                  |                  |                |              |
|                  | 1 = SR Latch               | n is reset when  | the SRI pin is   | high                   | - 4 - 1-         |                |              |
| 1.1.0            |                            | has no effect of | n the Reset inp  |                        | atch             |                |              |
| DIT 2            | SRRCKE: SP                 | K Latch Reset    | Clock Enable b   |                        |                  |                |              |
|                  | 1 = Reset inp<br>0 = SRCLK | has no effect of | n the Reset inc  | out of the SR L        | atch             |                |              |
| bit 1            | SRRC2E: SR                 | R Latch C2 Res   | et Enable bit    |                        |                  |                |              |
|                  | 1 = SR Latch               | n is reset when  | the C2 Compa     | arator output is       | high             |                |              |
|                  | 0 = C2 Com                 | parator output   | has no effect o  | n the Reset inp        | out of the SR La | atch           |              |
| bit 0            | SRRC1E: SR                 | R Latch C1 Res   | et Enable bit    |                        |                  |                |              |
|                  | 1 = SR Latch               | n is reset when  | the C1 Compa     | arator output is       | high             |                |              |
|                  | 0 = C1 Com                 | parator output   | has no effect o  | n the Reset inp        | out of the SR La | atch           |              |

## REGISTER 19-3: SRCON1: SR LATCH CONTROL 1 REGISTER

## TABLE 19-2: SUMMARY OF REGISTERS ASSOCIATED WITH SR LATCH MODULE

| Name   | Bit 7   | Bit 6      | Bit 5   | Bit 4   | Bit 3   | Bit 2   | Bit 1   | Bit 0   | Register<br>on Page |
|--------|---------|------------|---------|---------|---------|---------|---------|---------|---------------------|
| ANSELF | ANSELF7 | ANSELF6    | ANSELF5 | ANSELF4 | ANSELF3 | ANSELF2 | ANSELF1 | ANSELF0 | 126                 |
| SRCON0 | SRLEN   | SRCLK<2:0> |         |         | SRQEN   | SRNQEN  | SRPS    | SRPR    | 184                 |
| SRCON1 | SRSPE   | SRSCKE     | SRSC2E  | SRSC1E  | SRRPE   | SRRCKE  | SRRC2E  | SRRC1E  | 185                 |
| TRISB  | TRISB7  | TRISB6     | TRISB5  | TRISB4  | TRISB3  | TRISB2  | TRISB1  | TRISB0  | 125                 |
| TRISF  | TRISF7  | TRISF6     | TRISF5  | TRISF4  | TRISF3  | TRISF2  | TRISF1  | TRISF0  | 125                 |

**Legend:** — = unimplemented location, read as '0'. Shaded cells are unused by the SR Latch module.

## 23.4.8 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register, APFCON. To determine which pins can be moved and what their default locations are upon a reset, see **Section 12.1 "Alternate Pin Function**" for more information.

| Name     | Bit 7                  | Bit 6           | Bit 5                           | Bit 4         | Bit 3     | Bit 2   | Bit 1  | Bit 0   | Register<br>on Page |
|----------|------------------------|-----------------|---------------------------------|---------------|-----------|---------|--------|---------|---------------------|
| APFCON   | P3CSEL                 | P3BSEL          | P2DSEL                          | P2CSEL        | P2BSEL    | CCP2SEL | P1CSEL | P1BSEL  | 123                 |
| CCPxCON  | PxM<                   | 1:0> <b>(1)</b> | DCxB                            | <1:0>         |           | CCPx    | Л<3:0> |         | 227                 |
| CCPxAS   | CCPxASE                | (               | CCPxAS<2:0                      | >             | PSSxA     | .C<1:0> | PSSxB  | D<1:0>  | 229                 |
| CCPTMRS0 | C4TSE                  | L<1:0>          | C3TSE                           | L<1:0>        | C2TSE     | L<1:0>  | C1TSE  | L<1:0>  | 228                 |
| CCPTMRS1 | —                      | —               | —                               | —             | —         | —       | C5TSE  | :L<1:0> | 228                 |
| INTCON   | GIE                    | PEIE            | TMR0IE                          | INTE          | IOCIE     | TMR0IF  | INTF   | IOCIF   | 90                  |
| PIE1     | TMR1GIE                | ADIE            | RCIE                            | TXIE          | SSPIE     | CCP1IE  | TMR2IE | TMR1IE  | 91                  |
| PIE2     | OSFIE                  | C2IE            | C1IE                            | EEIE          | BCLIE     | LCDIE   | C3IE   | CCP2IE  | 92                  |
| PIE3     | —                      | CCP5IE          | CCP4IE                          | CCP3IE        | TMR6IE    | —       | TMR4IE | —       | 93                  |
| PIR1     | TMR1GIF                | ADIF            | RCIF                            | TXIF          | SSPIF     | CCP1IF  | TMR2IF | TMR1IF  | 95                  |
| PIR2     | OSFIF                  | C2IF            | C1IF                            | EEIF          | BCLIF     | LCDIF   | C3IF   | CCP2IF  | 96                  |
| PIR3     | —                      | CCP5IF          | CCP4IF                          | CCP3IF        | TMR6IF    | —       | TMR4IF | —       | 97                  |
| PR2      | Timer2 Period Register |                 |                                 |               |           |         |        |         | 200*                |
| PR4      | Timer4 Perio           | od Register     |                                 |               |           |         |        |         | 200*                |
| PR6      | Timer6 Perio           | od Register     |                                 |               |           |         |        |         | 200*                |
| PSTRxCON | —                      | —               | —                               | STRx-<br>SYNC | STRxD     | STRxC   | STRxB  | STRxA   | 231                 |
| PWMxCON  | PxRSEN                 |                 |                                 |               | PxDC<6:0> |         |        |         | 230                 |
| T2CON    | —                      |                 | T2OUT                           | PS<3:0>       |           | TMR2ON  | T2CKP  | 'S<:0>1 | 202                 |
| T4CON    | —                      |                 | T4OUT                           | PS<3:0>       |           | TMR4ON  | T4CKP  | 'S<:0>1 | 202                 |
| T6CON    | —                      |                 | T6OUTPS<3:0> TMR6ON T6CKPS<:0>1 |               |           |         |        |         | 202                 |
| TMR2     | Timer2 Module Register |                 |                                 |               |           |         | 200*   |         |                     |
| TMR4     | Timer4 Module Register |                 |                                 |               |           |         |        | 200*    |                     |
| TMR6     | Timer6 Module Register |                 |                                 |               |           |         | 200*   |         |                     |
| TRISB    | TRISB7                 | TRISB6          | TRISB5                          | TRISB4        | TRISB3    | TRISB2  | TRISB1 | TRISB0  | 128                 |
| TRISC    | TRISC7                 | TRISC6          | TRISC5                          | TRISC4        | TRISC3    | TRISC2  | TRISC1 | TRISC0  | 131                 |
| TRISD    | TRISD7                 | TRISD6          | TRISD5                          | TRISD4        | TRISD3    | TRISD2  | TRISD1 | TRISD0  | 134                 |
| TRISE    | TRISE7                 | TRISE6          | TRISE5                          | TRISE4        | TRISE3    | TRISE2  | TRISE1 | TRISE0  | 137                 |
| TRISG    | TRISG7                 | TRISG6          | TRISG5                          | TRISG4        | TRISG3    | TRISG2  | TRISG1 | TRISG0  | 143                 |

| TABLE 23-10: \$ | SUMMARY OF REGISTERS ASSOCIATED WITH ENHANCED PWM |
|-----------------|---------------------------------------------------|
|-----------------|---------------------------------------------------|

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the PWM.

Note 1: Applies to ECCP modules only.

\* Page provides register information.

## 23.5 Register Definitions: ECCP Control

| R/W-00          | R/W-0/0                                                                                                                                                                                                                   | R/W-0/0                                                                                                                                  | R/W-0/0                                                                              | R/W-0/0                                                                                                     | R/W-0/0                                                                            | R/W-0/0                                              | R/W-0/0           |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------|-------------------|
| F               | PxM<1:0>(1)                                                                                                                                                                                                               | DCxB<                                                                                                                                    | 1:0>                                                                                 |                                                                                                             | CCPxI                                                                              | vl<3:0>                                              |                   |
| bit 7           |                                                                                                                                                                                                                           |                                                                                                                                          |                                                                                      | ·                                                                                                           |                                                                                    |                                                      | bit 0             |
|                 |                                                                                                                                                                                                                           |                                                                                                                                          |                                                                                      |                                                                                                             |                                                                                    |                                                      |                   |
| Legend:         |                                                                                                                                                                                                                           |                                                                                                                                          |                                                                                      |                                                                                                             |                                                                                    |                                                      |                   |
| R = Readab      | le bit                                                                                                                                                                                                                    | W = Writable bit                                                                                                                         |                                                                                      | U = Unimpleme                                                                                               | nted bit, read as '0                                                               | )'                                                   |                   |
| u = Bit is und  | changed                                                                                                                                                                                                                   | x = Bit is unknown                                                                                                                       | 1                                                                                    | -n/n = Value at F                                                                                           | POR and BOR/Val                                                                    | ue at all other Res                                  | set               |
| '1' = Bit is se | et                                                                                                                                                                                                                        | '0' = Bit is cleared                                                                                                                     |                                                                                      |                                                                                                             |                                                                                    |                                                      |                   |
| bit 7-6         | PxM<1:0>: Enh<br><u>Capture mode:</u><br>Unused<br><u>Compare mode</u><br>Unused<br><u>If CCPxM&lt;3:2&gt;</u><br><u>xx</u> = PxA ass<br><u>If CCPxM&lt;3:2&gt;</u><br>11 = Full-Bric<br>10 = Half-Bric<br>01 = Full-Bric | = 00, 01, 10:<br>igned as Capture/C<br>= 11:<br>ige output reverse; I<br>ige output; PxA, PxB<br>ige output; forward                     | t Configuration<br>ompare input;<br>PxB modulated<br>3 modulated wi<br>PxD modulated | bits <sup>(1)</sup><br>PxB, PxC, PxD as:<br>I; PxC active; PxA,<br>th dead-band contr<br>I: PxA active: PxB | signed as port pin:<br>PxD inactive<br>ol; PxC, PxD assig<br>PxC inactive          | s<br>gned as port pins                               |                   |
|                 | 01 = Full-Bild<br>00 = Single o                                                                                                                                                                                           | utput; PxA modulate                                                                                                                      | ed; PxB, PxC, I                                                                      | PxD assigned as p                                                                                           | ort pins                                                                           |                                                      |                   |
|                 | Capture mode:<br>Unused<br>Compare mode<br>Unused<br>PWM mode:<br>These bits are t                                                                                                                                        | <u>.</u><br>he two LSbs of the I                                                                                                         | ⊃WM dutv cvcl                                                                        | e. The eight MSbs                                                                                           | are found in CCP                                                                   | R×L.                                                 |                   |
| bit 3-0         | CCPxM<3:0>: F<br>1011 = Comp<br>ule is<br>1010 = Comp<br>1001 = Comp<br>1000 = Comp                                                                                                                                       | ECCPx Mode Selec<br>are mode: Special E<br>enabled) <sup>(2)</sup><br>are mode: generate<br>are mode: initialize<br>are mode: initialize | t bits<br>Event Trigger (E<br>software inter<br>ECCPx pin hig<br>ECCPx pin low       | ECCPx resets Time<br>rupt only; ECCPx p<br>h; clear output on<br>v; set output on cor                       | r, sets CCPxIF bit<br>bin reverts to I/O s<br>compare match (s<br>npare match (set | , starts A/D conver<br>tate<br>et CCPxIF)<br>CCPxIF) | rsion if A/D mod- |
|                 | 0111 = Captu<br>0110 = Captu<br>0101 = Captu<br>0100 = Captu                                                                                                                                                              | rre mode: every 16th<br>rre mode: every 4th<br>rre mode: every risir<br>rre mode: every fallin                                           | n rising edge<br>rising edge<br>ng edge<br>ng edge                                   |                                                                                                             |                                                                                    |                                                      |                   |
|                 | 0011 = Reser<br>0010 = Comp<br>0001 = Reser<br>0000 = Captu                                                                                                                                                               | ved<br>are mode: toggle ou<br>ved<br>ire/Compare/PWM c                                                                                   | utput on match<br>off (resets ECC                                                    | Px module)                                                                                                  |                                                                                    |                                                      |                   |
| Nata            | <u>CCP4/CCP5 on</u><br>11xx = PWM<br><u>ECCP1/ECCP2</u><br>1111 = PWM<br>1110 = PWM<br>1101 = PWM<br>1100 = PWM                                                                                                           | I <u>v:</u><br>/ mode<br>/ <u>ECCP3 only:</u><br>mode: PxA, PxC ac<br>mode: PxA, PxC ac<br>mode: PxA, PxC ac<br>mode: PxA, PxC ac        | tive-low; PxB,<br>tive-low; PxB,<br>tive-high; PxB,<br>tive-high; PxB,               | PxD active-low<br>PxD active-high<br>PxD active-low<br>PxD active-high                                      |                                                                                    |                                                      |                   |
| Note 1:<br>2:   | A/D conversion start a                                                                                                                                                                                                    | applies to CCP5 onl                                                                                                                      | ∙o.4 <i>&gt;</i> .<br>y.                                                             |                                                                                                             |                                                                                    |                                                      |                   |

## REGISTER 23-1: CCPxCON: CCPx CONTROL REGISTER





#### 24.6.13.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

- a) SDAx or SCLx are sampled low at the beginning of the Start condition (Figure 24-32).
- b) SCLx is sampled low before SDAx is asserted low (Figure 24-33).

During a Start condition, both the SDAx and the SCLx pins are monitored.

If the SDAx pin is already low, or the SCLx pin is already low, then all of the following occur:

- · the Start condition is aborted
- the BCLxIF flag is set and
- the MSSPx module is reset to its Idle state (Figure 24-32).

The Start condition begins with the SDAx and SCLx pins deasserted. When the SDAx pin is sampled high, the Baud Rate Generator is loaded and counts down. If the SCLx pin is sampled low while SDAx is high, a bus collision occurs because it is assumed that another master is attempting to drive a data '1' during the Start condition.

If the SDAx pin is sampled low during this count, the BRG is reset and the SDAx line is asserted early (Figure 24-34). If, however, a '1' is sampled on the SDAx pin, the SDAx pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to zero; if the SCLx pin is sampled as '0' during this time, a bus collision does not occur. At the end of the BRG count, the SCLx pin is asserted low.

Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDAx before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions.





## 24.6.13.2 Bus Collision During a Repeated Start Condition

During a Repeated Start condition, a bus collision occurs if:

- a) A low level is sampled on SDAx when SCLx goes from low level to high level.
- SCLx goes low before SDAx is asserted low, indicating that another master is attempting to transmit a data '1'.

When the user releases SDAx and the pin is allowed to float high, the BRG is loaded with SSPxADD and counts down to zero. The SCLx pin is then deasserted and when sampled high, the SDAx pin is sampled. If SDAx is low, a bus collision has occurred (i.e., another master is attempting to transmit a data '0', Figure 24-35). If SDAx is sampled high, the BRG is reloaded and begins counting. If SDAx goes from high-to-low before the BRG times out, no bus collision occurs because no two masters can assert SDAx at exactly the same time.

If SCLx goes from high-to-low before the BRG times out and SDAx has not already been asserted, a bus collision occurs. In this case, another master is attempting to transmit a data '1' during the Repeated Start condition, see Figure 24-36.

If, at the end of the BRG timeout, both SCLx and SDAx are still high, the SDAx pin is driven low and the BRG is reloaded and begins counting. At the end of the count, regardless of the status of the SCLx pin, the SCLx pin is driven low and the Repeated Start condition is complete.

FIGURE 24-36: BUS COLLISION DURING A REPEATED START CONDITION (CASE 1)







|        | SYNC = 0, BRGH = 0, BRG16 = 1 |            |                                  |                  |            |                                  |                   |            |                                  |                  |            |                                  |  |  |
|--------|-------------------------------|------------|----------------------------------|------------------|------------|----------------------------------|-------------------|------------|----------------------------------|------------------|------------|----------------------------------|--|--|
| BAUD   | Fosc = 8.000 MHz              |            |                                  | Fosc = 4.000 MHz |            |                                  | Fosc = 3.6864 MHz |            |                                  | Fosc = 1.000 MHz |            |                                  |  |  |
| RATE   | Actual<br>Rate                | %<br>Error | SPxBRGH:<br>SPxBRGL<br>(decimal) | Actual<br>Rate   | %<br>Error | SPxBRGH:<br>SPxBRGL<br>(decimal) | Actual<br>Rate    | %<br>Error | SPxBRGH:<br>SPxBRGL<br>(decimal) | Actual<br>Rate   | %<br>Error | SPxBRGH:<br>SPxBRGL<br>(decimal) |  |  |
| 300    | 299.9                         | -0.02      | 1666                             | 300.1            | 0.04       | 832                              | 300.0             | 0.00       | 767                              | 300.5            | 0.16       | 207                              |  |  |
| 1200   | 1199                          | -0.08      | 416                              | 1202             | 0.16       | 207                              | 1200              | 0.00       | 191                              | 1202             | 0.16       | 51                               |  |  |
| 2400   | 2404                          | 0.16       | 207                              | 2404             | 0.16       | 103                              | 2400              | 0.00       | 95                               | 2404             | 0.16       | 25                               |  |  |
| 9600   | 9615                          | 0.16       | 51                               | 9615             | 0.16       | 25                               | 9600              | 0.00       | 23                               | _                | _          | _                                |  |  |
| 10417  | 10417                         | 0.00       | 47                               | 10417            | 0.00       | 23                               | 10473             | 0.53       | 21                               | 10417            | 0.00       | 5                                |  |  |
| 19.2k  | 19.23k                        | 0.16       | 25                               | 19.23k           | 0.16       | 12                               | 19.20k            | 0.00       | 11                               | _                | _          | _                                |  |  |
| 57.6k  | 55556                         | -3.55      | 8                                | _                | _          | _                                | 57.60k            | 0.00       | 3                                | _                | _          | _                                |  |  |
| 115.2k | _                             | _          | _                                | _                | _          | _                                | 115.2k            | 0.00       | 1                                | —                | _          | _                                |  |  |

| BAUD<br>RATE | Fosc = 32.000 MHz |            |                                  | Fosc = 18.432 MHz |            |                                  | Fosc = 16.000 MHz |            |                                  | Fosc = 11.0592 MHz |            |                                  |
|--------------|-------------------|------------|----------------------------------|-------------------|------------|----------------------------------|-------------------|------------|----------------------------------|--------------------|------------|----------------------------------|
|              | Actual<br>Rate    | %<br>Error | SPxBRGH:<br>SPxBRGL<br>(decimal) | Actual<br>Rate    | %<br>Error | SPxBRGH:<br>SPxBRGL<br>(decimal) | Actual<br>Rate    | %<br>Error | SPxBRGH:<br>SPxBRGL<br>(decimal) | Actual<br>Rate     | %<br>Error | SPxBRGH:<br>SPxBRGL<br>(decimal) |
| 300          | 300               | 0.00       | 26666                            | 300.0             | 0.00       | 15359                            | 300.0             | 0.00       | 13332                            | 300.0              | 0.00       | 9215                             |
| 1200         | 1200              | 0.00       | 6666                             | 1200              | 0.00       | 3839                             | 1200.1            | 0.01       | 3332                             | 1200               | 0.00       | 2303                             |
| 2400         | 2400              | 0.01       | 3332                             | 2400              | 0.00       | 1919                             | 2399.5            | -0.02      | 1666                             | 2400               | 0.00       | 1151                             |
| 9600         | 9604              | 0.04       | 832                              | 9600              | 0.00       | 479                              | 9592              | -0.08      | 416                              | 9600               | 0.00       | 287                              |
| 10417        | 10417             | 0.00       | 767                              | 10425             | 0.08       | 441                              | 10417             | 0.00       | 383                              | 10433              | 0.16       | 264                              |
| 19.2k        | 19.18k            | -0.08      | 416                              | 19.20k            | 0.00       | 239                              | 19.23k            | 0.16       | 207                              | 19.20k             | 0.00       | 143                              |
| 57.6k        | 57.55k            | -0.08      | 138                              | 57.60k            | 0.00       | 79                               | 57.97k            | 0.64       | 68                               | 57.60k             | 0.00       | 47                               |
| 115.2k       | 115.9             | 0.64       | 68                               | 115.2k            | 0.00       | 39                               | 114.29k           | -0.79      | 34                               | 115.2k             | 0.00       | 23                               |

| BAUD   | Fosc = 8.000 MHz |            |                                  | Fosc = 4.000 MHz |            |                                  | Fosc = 3.6864 MHz |            |                                  | Fosc = 1.000 MHz |            |                                  |
|--------|------------------|------------|----------------------------------|------------------|------------|----------------------------------|-------------------|------------|----------------------------------|------------------|------------|----------------------------------|
| RATE   | Actual<br>Rate   | %<br>Error | SPxBRGH:<br>SPxBRGL<br>(decimal) | Actual<br>Rate   | %<br>Error | SPxBRGH:<br>SPxBRGL<br>(decimal) | Actual<br>Rate    | %<br>Error | SPxBRGH:<br>SPxBRGL<br>(decimal) | Actual<br>Rate   | %<br>Error | SPxBRGH:<br>SPxBRGL<br>(decimal) |
| 300    | 300.0            | 0.00       | 6666                             | 300.0            | 0.01       | 3332                             | 300.0             | 0.00       | 3071                             | 300.1            | 0.04       | 832                              |
| 1200   | 1200             | -0.02      | 1666                             | 1200             | 0.04       | 832                              | 1200              | 0.00       | 767                              | 1202             | 0.16       | 207                              |
| 2400   | 2401             | 0.04       | 832                              | 2398             | 0.08       | 416                              | 2400              | 0.00       | 383                              | 2404             | 0.16       | 103                              |
| 9600   | 9615             | 0.16       | 207                              | 9615             | 0.16       | 103                              | 9600              | 0.00       | 95                               | 9615             | 0.16       | 25                               |
| 10417  | 10417            | 0.00       | 191                              | 10417            | 0.00       | 95                               | 10473             | 0.53       | 87                               | 10417            | 0.00       | 23                               |
| 19.2k  | 19.23k           | 0.16       | 103                              | 19.23k           | 0.16       | 51                               | 19.20k            | 0.00       | 47                               | 19.23k           | 0.16       | 12                               |
| 57.6k  | 57.14k           | -0.79      | 34                               | 58.82k           | 2.12       | 16                               | 57.60k            | 0.00       | 15                               | —                | _          | _                                |
| 115.2k | 117.6k           | 2.12       | 16                               | 111.1k           | -3.55      | 8                                | 115.2k            | 0.00       | 7                                | —                | _          | _                                |

## 25.4.2 AUTO-BAUD OVERFLOW

During the course of automatic baud detection, the ABDOVF bit of the BAUDxCON register will be set if the baud rate counter overflows before the fifth rising edge is detected on the RX pin. The ABDOVF bit indicates that the counter has exceeded the maximum count that can fit in the 16 bits of the SPxBRGH:SPxBRGL register pair. After the ABDOVF bit has been set, the counter continues to count until the fifth rising edge is detected on the RXx/DTx pin. Upon detecting the fifth RXx/DTx edge, the hardware will set the RCxIF interrupt flag and clear the ABDEN bit of the BAUDxCON register. The RCxIF flag can be subsequently cleared by reading the RCxREG. The ABDOVF flag can be cleared by software directly.

To terminate the auto-baud process before the RCxIF flag is set, clear the ABDEN bit then clear the ABDOVF bit. The ABDOVF bit will remain set if the ABDEN bit is not cleared first.

## 25.4.3 AUTO-WAKE-UP ON BREAK

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper character reception cannot be performed. The Auto-Wake-up feature allows the controller to wake-up due to activity on the RXx/DTx line. This feature is available only in Asynchronous mode.

The Auto-Wake-up feature is enabled by setting the WUE bit of the BAUDxCON register. Once set, the normal receive sequence on RXx/DTx is disabled, and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RXx/DTx line. (This coincides with the start of a Sync Break or a wake-up signal character for the LIN protocol.)

The EUSART module generates an RCxIF interrupt coincident with the wake-up event. The interrupt is generated synchronously to the Q clocks in normal CPU operating modes (Figure 25-7), and asynchronously if the device is in Sleep mode (Figure 25-8). The interrupt condition is cleared by reading the RCxREG register.

The WUE bit is automatically cleared by the low-to-high transition on the RXx line at the end of the Break. This signals to the user that the Break event is over. At this point, the EUSART module is in Idle mode waiting to receive the next character.

### 25.4.3.1 Special Considerations

#### Break Character

To avoid character errors or character fragments during a wake-up event, the wake-up character must be all zeros.

When the wake-up is enabled the function works independent of the low time on the data stream. If the WUE bit is set and a valid non-zero character is received, the low time from the Start bit to the first rising edge will be interpreted as the wake-up event. The remaining bits in the character will be received as a fragmented character and subsequent characters can result in framing or overrun errors.

Therefore, the initial character in the transmission must be all '0's. This must be ten or more bit times, 13-bit times recommended for LIN bus, or any number of bit times for standard RS-232 devices.

#### Oscillator Startup Time

Oscillator start-up time must be considered, especially in applications using oscillators with longer start-up intervals (i.e., LP, XT or HS/PLL mode). The Sync Break (or wake-up signal) character must be of sufficient length, and be followed by a sufficient interval, to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

#### WUE Bit

The wake-up event causes a receive interrupt by setting the RCxIF bit. The WUE bit is cleared by hardware by a rising edge on RXx/DTx. The interrupt condition is then cleared by software by reading the RCxREG register and discarding its contents.

To ensure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process before setting the WUE bit. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

## 26.0 CAPACITIVE SENSING (CPS) MODULE

The Capacitive Sensing (CPS) module allows for an interaction with an end user without a mechanical interface. In a typical application, the CPS module is attached to a pad on a Printed Circuit Board (PCB), which is electrically isolated from the end user. When the end user places their finger over the PCB pad, a capacitive load is added, causing a frequency shift in the CPS module. The CPS module requires software and at least one timer resource to determine the change in frequency. Key features of this module include:

- · Analog MUX for monitoring multiple inputs
- · Capacitive sensing oscillator
- · Multiple power modes
- Multiple current ranges
- Multiple voltage reference modes
- · Software control
- Operation during Sleep

## FIGURE 26-1: CAPACITIVE SENSING BLOCK DIAGRAM



## 26.4 Register Definitions: Capacitive Sensing Control

| R/W-0/0          | R/W-0/0                                                                                                                                                                                                                                                                                                                                                                                                                     | U-0                                                      | U-0                                                | R/W-0/0                                        | R/W-0/0          | R-0/0             | R/W-0/0     |  |  |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|------------------------------------------------|------------------|-------------------|-------------|--|--|--|--|
| CPSON            | CPSRM                                                                                                                                                                                                                                                                                                                                                                                                                       | —                                                        | —                                                  | CPSRI                                          | NG<1:0>          | CPSOUT            | T0XCS       |  |  |  |  |
| bit 7            |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          |                                                    |                                                |                  |                   | bit 0       |  |  |  |  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          |                                                    |                                                |                  |                   |             |  |  |  |  |
| Legend:          |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                          |                                                    |                                                |                  |                   |             |  |  |  |  |
| R = Readable     | bit                                                                                                                                                                                                                                                                                                                                                                                                                         | W = Writable                                             | bit                                                | U = Unimpler                                   | mented bit, read | l as '0'          |             |  |  |  |  |
| u = Bit is unch  | anged                                                                                                                                                                                                                                                                                                                                                                                                                       | x = Bit is unkr                                          | nown                                               | -n/n = Value a                                 | at POR and BO    | R/Value at all of | ther Resets |  |  |  |  |
| '1' = Bit is set |                                                                                                                                                                                                                                                                                                                                                                                                                             | '0' = Bit is clea                                        | ared                                               |                                                |                  |                   |             |  |  |  |  |
| bit 7            | <b>CPSON:</b> CPS<br>1 = CPS mod<br>0 = CPS mod                                                                                                                                                                                                                                                                                                                                                                             | 6 Module Enabl<br>dule is enabled<br>dule is disabled    | e bit                                              |                                                |                  |                   |             |  |  |  |  |
| bit 6            | bit 6 <b>CPSRM:</b> Capacitive Sensing Reference Mode bit<br>1 = CPS module is in high range. DAC and FVR provide oscillator voltage references.<br>0 = CPS module is in the low range. Internal oscillator voltage references are used                                                                                                                                                                                     |                                                          |                                                    |                                                |                  |                   |             |  |  |  |  |
| bit 5-4          | Unimplemen                                                                                                                                                                                                                                                                                                                                                                                                                  | ted: Read as '                                           | כי                                                 |                                                |                  |                   |             |  |  |  |  |
| bit 3-2          | <ul> <li>3-2 CPSRNG&lt;1:0&gt;: Capacitive Sensing Current Range bits         If CPSRM = 0 (low range):         11 = Oscillator is in High Range. Charge/Discharge Current is nominally 18 μA         10 = Oscillator is in Medium Range. Charge/Discharge Current is nominally 1.2 μA         01 = Oscillator is in Low Range. Charge/Discharge Current is nominally 0.1 μA         00 = Oscillator is off     </li> </ul> |                                                          |                                                    |                                                |                  |                   |             |  |  |  |  |
|                  | If CPSRM = 1 (high range):<br>11 = Oscillator is in High Range. Charge/Discharge Current is nominally 100 μA<br>10 = Oscillator is in Medium Range. Charge/Discharge Current is nominally 30 μA<br>01 = Oscillator is in Low Range. Charge/Discharge Current is nominally 9 μA<br>00 = Oscillator is on. Noise Detection mode. No Charge/Discharge current is supplied.                                                     |                                                          |                                                    |                                                |                  |                   |             |  |  |  |  |
| bit 1            | <b>CPSOUT:</b> Cap<br>1 = Oscillator<br>0 = Oscillator                                                                                                                                                                                                                                                                                                                                                                      | pacitive Sensin<br>r is sourcing cu<br>r is sinking curr | g Oscillator S<br>rrent (Current<br>ent (Current f | tatus bit<br>flowing out of<br>lowing into the | the pin)<br>pin) |                   |             |  |  |  |  |
| bit 0            | TOXCS: Timer0 External Clock Source Select bit         If TMR0CS = 1:         The T0XCS bit controls which clock external to the core/Timer0 module supplies Timer0:         1 = Timer0 clock source is the capacitive sensing oscillator         0 = Timer0 clock source is the T0CKI pin         If TMR0CS = 0:         Timer0 clock source is controlled by the core/Timer0 module and is Fosc/4                         |                                                          |                                                    |                                                |                  |                   |             |  |  |  |  |

### REGISTER 26-2: CPSCON0: CAPACITIVE SENSING CONTROL REGISTER 0

| <u> </u>                                                                                                                                                 | <u>U-0</u>                  | R/W-0/0         | R/W-0/0        | R/W-0/0       | R/W-0/0          | R/W-0/0   |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------|----------------|---------------|------------------|-----------|--|--|--|
|                                                                                                                                                          | —                           |                 |                | CPSCH<4:0>    |                  |           |  |  |  |
| pit 7                                                                                                                                                    |                             |                 |                |               |                  | bit       |  |  |  |
|                                                                                                                                                          |                             |                 |                |               |                  |           |  |  |  |
| Legena:                                                                                                                                                  |                             | 1- 11           |                | (             | . (0)            |           |  |  |  |
| R = Readable bit $W = Writable bit U = Unimplemented bit, read as '0'  U = Bit is unchanged x = Bit is unknown p(x) = Value at POR and BOR/value at all$ |                             |                 |                |               |                  |           |  |  |  |
| u = Bit is unchanged                                                                                                                                     | x = Bit is unk              | nown            | -n/n = Value a | t POR and BOR | Value at all oth | er Resets |  |  |  |
| '1' = Bit is set '0' = Bit is cleared                                                                                                                    |                             |                 |                |               |                  |           |  |  |  |
|                                                                                                                                                          |                             |                 |                |               |                  |           |  |  |  |
| pit 7-5 Unimplement                                                                                                                                      | ted: Read as '              | )'              |                |               |                  |           |  |  |  |
| oit 4-0 CPSCH<4:0>                                                                                                                                       | : Capacitive Se             | ensing Channel  | Select bits    |               |                  |           |  |  |  |
| If CPSON = 0                                                                                                                                             | <u>.</u>                    |                 |                |               |                  |           |  |  |  |
| These bit                                                                                                                                                | s are ignored.              | No channel is s | elected.       |               |                  |           |  |  |  |
| If CPSON = 1                                                                                                                                             | <u>:</u>                    |                 |                |               |                  |           |  |  |  |
| 00000 =                                                                                                                                                  | channel 0, (Cl              | PS0)            |                |               |                  |           |  |  |  |
| 00001 =                                                                                                                                                  | channel 1, (Cl              | PS1)            |                |               |                  |           |  |  |  |
| 00010 =                                                                                                                                                  | channel 2, (Cl              | PS2)            |                |               |                  |           |  |  |  |
| 00011 =                                                                                                                                                  | channel 3, (Cl              | PS3)            |                |               |                  |           |  |  |  |
| 00100 =                                                                                                                                                  | channel 4, (Cl              | PS4)            |                |               |                  |           |  |  |  |
| 00101 =                                                                                                                                                  | channel 5, (Cl              | PS5)            |                |               |                  |           |  |  |  |
| 00110 =                                                                                                                                                  | channel 6, (Cl              | PS6)            |                |               |                  |           |  |  |  |
| 00111 =                                                                                                                                                  | channel 7, (Cl              | PS7)            |                |               |                  |           |  |  |  |
| 01000 =                                                                                                                                                  | channel 8, (Cl              | PS8)            |                |               |                  |           |  |  |  |
| 01001 =                                                                                                                                                  | channel 9, (Cl              | PS9)            |                |               |                  |           |  |  |  |
| 01010 =                                                                                                                                                  | channel 10, (C              | CPS10)          |                |               |                  |           |  |  |  |
| 01011 =                                                                                                                                                  | 01011 = channel 11, (CPS11) |                 |                |               |                  |           |  |  |  |
| 01100 =                                                                                                                                                  | channel 12, (C              | CPS12)          |                |               |                  |           |  |  |  |
| 01101 =                                                                                                                                                  | channel 13, (C              | CPS13)          |                |               |                  |           |  |  |  |
| 01110 =                                                                                                                                                  | channel 14, (C              | CPS14)          |                |               |                  |           |  |  |  |
| 01111 =                                                                                                                                                  | channel 15, (C              | CPS15)          |                |               |                  |           |  |  |  |
| 10000 =                                                                                                                                                  | channel 16. (C              | CPS16)          |                |               |                  |           |  |  |  |
| 10001 =                                                                                                                                                  | Reserved. Do                | not use.        |                |               |                  |           |  |  |  |
|                                                                                                                                                          |                             |                 |                |               |                  |           |  |  |  |
|                                                                                                                                                          |                             |                 |                |               |                  |           |  |  |  |
|                                                                                                                                                          |                             |                 |                |               |                  |           |  |  |  |

## TABLE 26-1: SUMMARY OF REGISTERS ASSOCIATED WITH CAPACITIVE SENSING

| Name           | Bit 7  | Bit 6  | Bit 5  | Bit 4                  | Bit 3   | Bit 2  | Bit 1  | Bit 0  | Register<br>on Page |
|----------------|--------|--------|--------|------------------------|---------|--------|--------|--------|---------------------|
| ANSELA         | —      | —      | ANSA5  | ANSA4                  | ANSA3   | ANSA2  | ANSA1  | ANSA0  | 126                 |
| CPSCON0        | CPSON  | CPSRM  | —      | — CPSRNG<1:0> CPSOUT T |         | TOXCS  | 322    |        |                     |
| CPSCON1        | —      | —      | —      |                        | 323     |        |        |        |                     |
| OPTION_RE<br>G | WPUEN  | INTEDG | TMR0CS | TMR0SE                 | PSA     | PS2    | PS1    | PS0    | 188                 |
| T1CON          | TMR1C  | S<1:0> | T1CKP  | S<1:0>                 | T1OSCEN | T1SYNC |        | TMR10N | 197                 |
| TRISA          | TRISA7 | TRISA6 | TRISA5 | TRISA4                 | TRISA3  | TRISA2 | TRISA1 | TRISA0 | 125                 |
| TRISB          | TRISB7 | TRISB6 | TRISB5 | TRISB4                 | TRISB3  | TRISB2 | TRISB1 | TRISB0 | 128                 |
| TRISD          |        |        |        | TRISE                  | )<7:0>  |        |        |        | 134                 |

**Legend:** — = Unimplemented location, read as '0'. Shaded cells are not used by the CPS module.













## FIGURE 31-34: IPD, WATCHDOG TIMER (WDT), PIC16F1946/47 ONLY

