

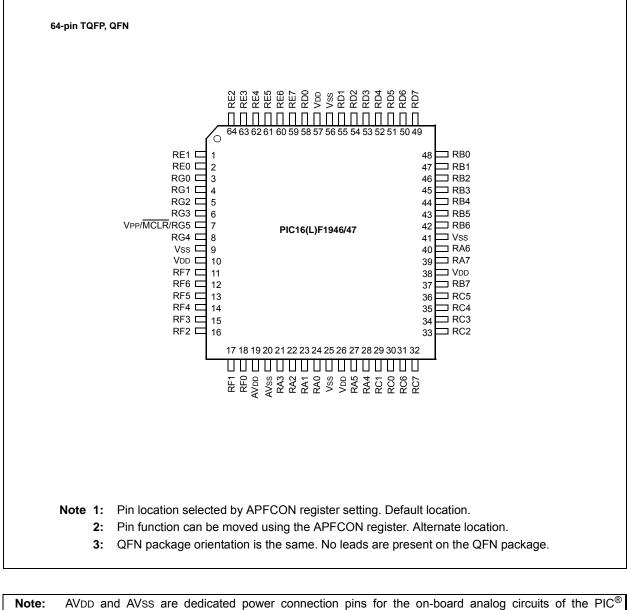
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1946-e-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagram – 64-Pin TQFP/QFN (PIC16(L)F1946/47)

Note: AVDD and AVSS are dedicated power connection pins for the on-board analog circuits of the PIC[®] microcontroller. The separate power pins help eliminate digital switching noise interference with the analog circuitry inside the device, especially on larger devices with more I/O pins and larger switching currents on the VDD/VSS pins. Customers typically connect these to the appropriate VDD or VSS connections on the PCB, unless there is a lot of noise on the external power rails. In those situations, they will add additional noise filtering components (like capacitors) on the AVDD/AVSS pins to help ensure good solid supply to the analog modules inside the device.

TABLE 1-2:	PIC16(L)F1946/47 PINOUT DESCRIPTION (CONTINUED)
------------	---

TABLE 1-2. FIC TO(L)F 1940/47 FINOU			-	· · · · ·			
Name	Function	Input Type	Output Type	Description			
RB2/SEG9	RB2	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.			
	SEG9		AN	LCD Analog output.			
RB3/SEG10	RB3	TTL	CMOS	6 General purpose I/O. Individually controlled interrupt-on-cha Individually enabled pull-up.			
	SEG10		AN	LCD Analog output.			
RB4/SEG11	RB4	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.			
	SEG11	_	AN	LCD Analog output.			
RB5/T1G/SEG29	RB5	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.			
	T1G	ST	—	Timer1 Gate input.			
	SEG29	—	AN	LCD Analog output.			
RB6/ICSPCLK/ICDCLK/SEG38	RB6	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.			
	ICSPCLK	ST	_	Serial Programming Clock.			
	ICDCLK	ST	—	In-Circuit Debug Clock.			
	SEG38	_	AN	LCD Analog output.			
RB7/ICSPDAT/ICDDAT/SEG39	RB7	TTL	CMOS	General purpose I/O. Individually controlled interrupt-on-change. Individually enabled pull-up.			
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.			
	ICDDAT	ST	CMOS	In-Circuit Data I/O.			
	SEG39		AN	LCD Analog output.			
RC0/T1OSO/T1CKI/SEG40	RC0	ST	CMOS	General purpose I/O.			
	T10S0	XTAL	XTAL	Timer1 oscillator connection.			
	T1CKI	ST	—	Timer1 clock input.			
	SEG40	—	AN	LCD Analog output.			
RC1/T1OSI/P2A ⁽¹⁾ /CCP2 ⁽¹⁾ /	RC1	ST	CMOS	General purpose I/O.			
SEG32	T10SI	XTAL	XTAL	Timer1 oscillator connection.			
	P2A	—	CMOS	PWM output.			
	CCP2	ST	CMOS	Capture/Compare/PWM.			
	SEG32	—	AN	LCD Analog output.			
RC2/CCP1/P1A/SEG13	RC2	ST	CMOS	General purpose I/O.			
	CCP1	ST	CMOS	Capture/Compare/PWM.			
	P1A	_	CMOS	PWM output.			
	SEG13	—	AN	LCD Analog output.			
RC3/SCK1/SCL1/SEG17	RC3	ST	CMOS	General purpose I/O.			
	SCK1	ST	CMOS	SPI clock.			
	SCL1	I ² C	OD	I ² C clock.			
	SEG17	—	AN	LCD Analog output.			
RC4/SDI1/SDA1/SEG16	RC4	ST	CMOS	General purpose I/O.			
	SDI1	ST		SPI data input.			
	SDA1	I ² C	OD	I ² C data input/output.			
legend: AN = Analog input or	SEG16	—	AN	LCD Analog output.			

Legend: AN = Analog input or output CMOS = CMOS compatible input or output

OD = Open-drain

= Schmitt Trigger input with I^2C

Note 1: Pin function is selectable via the APFCON register.

Name	Function	Input Type	Output Type	Description	
RE1/P2C ⁽¹⁾ /VLCD2	RE1	ST	CMOS	General purpose I/O.	
	P2C		CMOS	PWM output.	
	VLCD2	AN	—	LCD analog input.	
RE2/P2B ⁽¹⁾ /VLCD3	RE2	ST	CMOS	General purpose I/O.	
	P2B		CMOS	PWM output.	
	VLCD3	AN		LCD analog input.	
RE3/P3C ⁽¹⁾ /COM0	RE3	ST	CMOS	General purpose I/O.	
	P3C	_	CMOS	PWM output.	
	COM0	_	AN	LCD Analog output.	
RE4/P3B ⁽¹⁾ /COM1	RE4	ST	CMOS	General purpose I/O.	
	P3B	_	CMOS	PWM output.	
	COM1	_	AN	LCD Analog output.	
RE5/P1C ⁽¹⁾ /COM2	RE5	ST	CMOS	General purpose I/O.	
	P1C	_	CMOS	PWM output.	
	COM2	_	AN	LCD Analog output.	
RE6/P1B ⁽¹⁾ /COM3	RE6	ST	_	General purpose I/O.	
	P1B	_	CMOS	PWM output.	
	COM3	_	AN	LCD Analog output.	
RE7/CCP2 ⁽¹⁾ /P2A ⁽¹⁾ /SEG31	RE7	ST	CMOS	General purpose I/O.	
	CCP2	ST	CMOS	Capture/Compare/PWM.	
	P2A	_	CMOS	PWM output.	
	SEG31	_	AN	LCD analog output.	
RF0/AN16/CPS16/C1IN0-/C2IN0	RF0	ST	CMOS	General purpose I/O.	
/SEG41/VCAP	AN16	AN	_	A/D Channel input.	
	CPS16	AN	—	Capacitive sensing input.	
	C1IN0-	AN	—	Comparator negative input.	
	C2IN0-	AN	_	Comparator negative input.	
	SEG41	_	AN	LCD Analog output.	
	VCAP	Power	Power	Filter capacitor for Voltage Regulator.	
RF1/AN6/CPS6/C2OUT/SRNQ/	RF1	ST	CMOS	General purpose I/O.	
SEG19	AN6	AN	—	A/D Channel input.	
	CPS6	AN	_	Capacitive sensing input.	
	C2OUT	_	CMOS	Comparator output.	
	SRNQ	_	CMOS	SR Latch inverting output.	
	SEG19	_	AN	LCD Analog output.	
RF2/AN7/CPS7/C1OUT/SRQ/	RF2	ST	CMOS	General purpose I/O.	
SEG20	AN7	AN	—	A/D Channel input.	
	CPS7	AN	_	Capacitive sensing input.	
	C10UT		CMOS	Comparator output.	
	SRQ	_	CMOS	SR Latch non-inverting output.	
	SEG20		AN	LCD Analog output.	

TABLE 1-2:	PIC16(L)F1946/47 PINOUT DESCRIPTION (CONTINUED)
IADLL I-2.	

HV = High Voltage **Note 1:** Pin function is selectable via the APFCON register.

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C HV = High Voltage XTAL = Crystal levels

Name	Function	Input Type	Output Type	Description
RG2/AN14/CPS14/RX2/DT2/	RG2	ST	CMOS	General purpose I/O.
C3IN+/SEG44	AN14	AN	—	A/D Channel input.
	CPS14	AN	_	Capacitive sensing input.
	RX2	ST	_	USART2 asynchronous input.
	DT2	ST	CMOS	USART2 synchronous data.
	C3IN+	AN	—	Comparator positive input.
	SEG44		AN	LCD Analog output.
RG3/AN13/CPS13/C3IN0-/	RG3	ST	CMOS	General purpose I/O.
CCP4/P3D/SEG45	AN13	AN	_	A/D Channel input.
	CPS13	AN	—	Capacitive sensing input.
	C3IN0-	AN	—	Comparator negative input.
	CCP4	ST	CMOS	Capture/Compare/PWM.
	P3D		CMOS	PWM output.
	SEG45		AN	LCD Analog output.
RG4/AN12/CPS12/C3IN1-/	RG4	ST	CMOS	General purpose I/O.
CCP5/P1D/SEG26	AN12	AN	—	A/D Channel input.
	CPS12	AN	—	Capacitive sensing input.
	C3IN1-	AN	—	Comparator negative input.
	CCP5	ST	CMOS	Capture/Compare/PWM.
	P1D		CMOS	PWM output.
	SEG26		AN	LCD Analog output.
RG5/MCLR/VPP	RG5	ST	_	General purpose input.
	MCLR	ST	_	Master Clear with internal pull-up.
	Vpp	HV	_	Programming voltage.
Vdd	Vdd	Power	_	Positive supply.
Vss	Vss	Power	_	Ground reference.

	TABLE 1-2:	PIC16(L)F1946/47 PINOUT DESCRIPTION (CONTINUED)
--	------------	---

OD = Open-drain

 Legend:
 AN
 = Analog input or output
 CMOS =
 CMOS compatible input or output
 OD

 TTL =
 TTL compatible input
 ST
 =
 Schmitt Trigger input with CMOS levels
 I²C
= Schmitt Trigger input with I^2C HV = High Voltage XTAL = Crystal levels

Note 1: Pin function is selectable via the APFCON register.

PIC16(L)F1946/1947

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 2											
100h ⁽²⁾	Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register)										xxxx xxxx
101h ⁽²⁾	INDF1		this location ical register)	uses contents	s of FSR1H/F	SR1L to addr	ess data mer	mory		xxxx xxxx	xxxx xxxx
102h ⁽²⁾	PCL	Program Co	ounter (PC) L	east Significa	nt Byte					0000 0000	0000 0000
103h ⁽²⁾	STATUS	_	– – – TO PD Z DC C								q quuu
104h ⁽²⁾	FSR0L	Indirect Data Memory Address 0 Low Pointer								0000 0000	uuuu uuuu
105h ⁽²⁾	FSR0H	Indirect Dat	a Memory Ad	ldress 0 High	Pointer					0000 0000	0000 0000
106h ⁽²⁾	FSR1L	Indirect Dat	a Memory Ad	Idress 1 Low	Pointer					0000 0000	uuuu uuuu
107h ⁽²⁾	FSR1H	Indirect Dat	a Memory Ad	ldress 1 High	Pointer					0000 0000	0000 0000
108h ⁽²⁾	BSR		— — — BSR<4:0>						0 0000	0 0000	
109h ⁽²⁾	WREG	Working Re	Working Register						0000 0000	uuuu uuuu	
10Ah ^(1, 2)	PCLATH	Write Buffer for the upper 7 bits of the Program Counter							-000 0000	-000 0000	
10Bh ⁽²⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 000x	0000 000u
10Ch	LATA	PORTA Da	PORTA Data Latch								uuuu uuuu
10Dh	LATB	PORTB Da	PORTB Data Latch								uuuu uuuu
10Eh	LATC	PORTC Da	PORTC Data Latch							xxxx xxxx	uuuu uuuu
10Fh	LATD	PORTD Da	PORTD Data Latch							xxxx xxxx	uuuu uuuu
110h	LATE	PORTE Da	ta Latch							xxxx xxxx	uuuu uuuu
111h	CM1CON0	C10N	C10UT	C10E	C1POL	_	C1SP	C1HYS	C1SYNC	0000 -100	0000 -100
112h	CM1CON1	C1INTP	C1INTN	C1PCH1	C1PCH0	_	_	C1NC	H<1:0>	000000	000000
113h	CM2CON0	C2ON	C2OUT	C2OE	C2POL	_	C2SP	C2HYS	C2SYNC	0000 -100	0000 -100
114h	CM2CON1	C2INTP	C2INTN	C2PCH1	C2PCH0	_	_	C2NC	H<1:0>	000000	000000
115h	CMOUT			_	_	_	MC3OUT	MC2OUT	MC1OUT	000	000
116h	BORCON	SBOREN		_	_	_	_	_	BORRDY	1 q	uu
117h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR1	CDAFVR0	ADFV	R<1:0>	0q00 0000	0q00 0000
118h	DACCON0	DACEN	DACLPS	DACOE	_	DACPS	S<1:0>	_	DACNSS	000- 00-0	000- 00-0
119h	DACCON1	_	_	_		D	0 0000	0 0000			
11Ah	SRCON0	SRLEN	SRCLK2	SRCLK1	SRCLK0	SRQEN	SRNQEN	SRPS	SRPR	0000 0000	0000 0000
11Bh	SRCON1	SRSPE	SRSCKE	SRSC2E	SRSC1E	SRRPE	SRRCKE	SRRC2E	SRRC1E	0000 0000	0000 0000
11Ch	—	Unimpleme	nted							—	—
11Dh	APFCON	P3CSEL	P3BSEL	P2DSEL	P2CSEL	P2BSEL	CCP2SEL	P1CSEL	P1BSEL	0000 0000	0000 0000
11Eh	CM3CON0	C3ON	C3OUT	C3OE	C3POL	_	C3SP	C3HYS	C3SYNC	0000 -100	0000 -100
11Fh	CM3CON1	C3INTP	C3INTN	C3PCH1	C3PCH0	_	_	C3NC	H<1:0>	000000	000000

TABLE 3-10: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend:

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<14:8>, whose contents are transferred to the upper byte of the program counter.

2: These registers can be addressed from any bank.

3: Unimplemented, read as '1'.

5.2.2 INTERNAL CLOCK SOURCES

The device may be configured to use the internal oscillator block as the system clock by performing one of the following actions:

- Program the FOSC<2:0> bits in Configuration Words to select the INTOSC clock source, which will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to the internal oscillator during run-time. See **Section 5.3 "Clock Switching**"for more information.

In **INTOSC** mode, OSC1/CLKIN is available for general purpose I/O. OSC2/CLKOUT is available for general purpose I/O or CLKOUT.

The function of the OSC2/CLKOUT pin is determined by the CLKOUTEN bit in Configuration Words.

The internal oscillator block has two independent oscillators and a dedicated Phase-Lock Loop, HFPLL that can produce one of three internal system clock sources.

- 1. The **HFINTOSC** (High-Frequency Internal Oscillator) is factory calibrated and operates at 16 MHz. The HFINTOSC source is generated from the 500 kHz MFINTOSC source and the dedicated Phase-Lock Loop, HFPLL. The frequency of the HFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 5-3).
- The MFINTOSC (Medium-Frequency Internal Oscillator) is factory calibrated and operates at 500 kHz. The frequency of the MFINTOSC can be user-adjusted via software using the OSCTUNE register (Register 5-3).
- 3. The **LFINTOSC** (Low-Frequency Internal Oscillator) is uncalibrated and operates at 31 kHz.

5.2.2.1 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a factory-calibrated 16 MHz internal clock source. The frequency of the HFINTOSC can be altered via software using the OSCTUNE register (Register 5-3).

The output of the HFINTOSC connects to a postscaler and multiplexer (see Figure 5-1). One of multiple frequencies derived from the HFINTOSC can be selected via software using the IRCF<3:0> bits of the OSCCON register. See **Section 5.2.2.7** "Internal **Oscillator Clock Switch Timing**" for more information.

The HFINTOSC is enabled by:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired HF frequency, and
- FOSC<2:0> = 100, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'.

A fast start-up oscillator allows internal circuits to power-up and stabilize before switching to HFINTOSC.

The High-Frequency Internal Oscillator Ready bit (HFIOFR) of the OSCSTAT register indicates when the HFINTOSC is running.

The High-Frequency Internal Oscillator Status Locked bit (HFIOFL) of the OSCSTAT register indicates when the HFINTOSC is running within 2% of its final value.

The High-Frequency Internal Oscillator Stable bit (HFIOFS) of the OSCSTAT register indicates when the HFINTOSC is running within 0.5% of its final value.

5.2.2.2 MFINTOSC

The Medium-Frequency Internal Oscillator (MFINTOSC) is a factory calibrated 500 kHz internal clock source. The frequency of the MFINTOSC can be altered via software using the OSCTUNE register (Register 5-3).

The output of the MFINTOSC connects to a postscaler and multiplexer (see Figure 5-1). One of nine frequencies derived from the MFINTOSC can be selected via software using the IRCF<3:0> bits of the OSCCON register. See **Section 5.2.2.7** "Internal Oscillator Clock Switch Timing" for more information.

The MFINTOSC is enabled by:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired HF frequency, and
- FOSC<2:0> = 100, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'

The Medium-Frequency Internal Oscillator Ready bit (MFIOFR) of the OSCSTAT register indicates when the MFINTOSC is running.

5.2.2.6 32 MHz Internal Oscillator Frequency Selection

The Internal Oscillator Block can be used with the 4x PLL associated with the External Oscillator Block to produce a 32 MHz internal system clock source. The following settings are required to use the 32 MHz internal clock source:

- The FOSC bits in Configuration Words must be set to use the INTOSC source as the device system clock (FOSC<2:0> = 100).
- The SCS bits in the OSCCON register must be cleared to use the clock determined by FOSC<2:0> in Configuration Words (SCS<1:0> = 00).
- The IRCF bits in the OSCCON register must be set to the 8 MHz HFINTOSC set to use (IRCF<3:0> = 1110).
- The SPLLEN bit in the OSCCON register must be set to enable the 4xPLL, or the PLLEN bit of the Configuration Words must be programmed to a '1'.
- Note: When using the PLLEN bit of the Configuration Words, the 4xPLL cannot be disabled by software and the 8 MHz HFINTOSC option will no longer be available.

The 4xPLL is not available for use with the internal oscillator when the SCS bits of the OSCCON register are set to '1x'. The SCS bits must be set to '00' to use the 4xPLL with the internal oscillator.

5.2.2.7 Internal Oscillator Clock Switch Timing

When switching between the HFINTOSC, MFINTOSC and the LFINTOSC, the new oscillator may already be shut down to save power (see Figure 5-7). If this is the case, there is a delay after the IRCF<3:0> bits of the OSCCON register are modified before the frequency selection takes place. The OSCSTAT register will reflect the current active status of the HFINTOSC, MFINTOSC and LFINTOSC oscillators. The sequence of a frequency selection is as follows:

- 1. IRCF<3:0> bits of the OSCCON register are modified.
- 2. If the new clock is shut down, a clock start-up delay is started.
- 3. Clock switch circuitry waits for a falling edge of the current clock.
- 4. The current clock is held low and the clock switch circuitry waits for a rising edge in the new clock.
- 5. The new clock is now active.
- 6. The OSCSTAT register is updated as required.
- 7. Clock switch is complete.

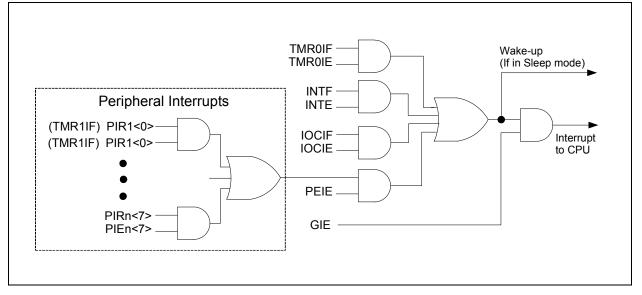
See Figure 5-7 for more details.

If the internal oscillator speed is switched between two clocks of the same source, there is no start-up delay before the new frequency is selected. Clock switching time delays are shown in Table .

Start-up delay specifications are located in the oscillator tables of **Section 30.0** "**Electrical Specifications**"

7.0 INTERRUPTS

The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the PIC microcontroller from Sleep mode.


This chapter contains the following information for Interrupts:

- Operation
- Interrupt Latency
- Interrupts During Sleep
- INT Pin
- · Automatic Context Saving

Many peripherals produce interrupts. Refer to the corresponding chapters for details.

A block diagram of the interrupt logic is shown in Figure 7-1.

R/W-0/	0 R/W-0/0	R-0/0	R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
TMR1G	IF ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF
bit 7							bit
Legend:							
R = Read	able bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
u = Bit is	unchanged	x = Bit is unk	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is	set	'0' = Bit is cle	eared				
bit 7	TMR1GIF:	Timer1 Gate Inte	errupt Flag bit				
		pt is pending					
		pt is not pending					
bit 6	ADIF: A/D	Converter Interru	upt Flag bit				
	1 = Interru	pt is pending					
		pt is not pending					
bit 5	RCIF: USA	ART1 Receive Int	errupt Flag bi	t			
		pt is pending pt is not pending					
bit 4	TXIF: USA	RT1 Transmit Inf	errupt Flag bi	t			
	1 = Interru	pt is pending					
	0 = Interru	pt is not pending					
bit 3	SSPIF: Sy	nchronous Serial	Port (MSSP1) Interrupt Flag	ı bit		
		pt is pending					
		pt is not pending					
bit 2		CP1 Interrupt Fla	ag bit				
		pt is pending pt is not pending					
bit 1			orrunt Eloa bit				
		imer2 to PR2 Int pt is pending	enupt riag bit				
		pt is not pending					
bit 0		imer1 Overflow I	nterrupt Flag	bit			
		pt is pending	interrupt i lug				
		pt is not pending					
Note:	Interrupt flag bit	s are set when ar	n interrupt				
		s, regardless of th					
		ig enable bit or t					
	Enable bit, GIE User software	, of the INTCON e should ens	•				
		rrupt flag bits are					
	to enabling an ir						

REGISTER 7-6: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

R/W-0/	0 R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0
OSFIF	C2IF	C1IF	EEIF	BCLIF	LCDIF	—	CCP2IF
bit 7							bit (
Legend:						(0)	
R = Reada		W = Writable		•	mented bit, read		
	unchanged	x = Bit is unki		-n/n = Value	at POR and BOF	Value at all	other Resets
'1' = Bit is	set	'0' = Bit is cle	ared				
bit 7	OSFIF: Osci	llator Fail Interr	upt Flag bit				
	1 = Interrupt	is pending					
	0 = Interrupt	is not pending					
bit 6	C2IF: Comp	arator C2 Interr	upt Flag bit				
	1 = Interrupt	1 0					
		is not pending					
bit 5	-	arator C1 Interr	upt Flag bit				
	1 = Interrupt						
b :+ 4		is not pending					
bit 4		OM Write Com		DI FIAG DI			
	1 = Interrupt 0 = Interrupt	is not pending					
bit 3	•	SP1 Bus Collisio	n Interrupt Fla	a bit			
	1 = Interrupt			9 - 1			
		is not pending					
bit 2	LCDIF: LCD	Module Interru	ot Flag bit				
	1 = Interrupt	is pending					
	0 = Interrupt	is not pending					
bit 1	Unimpleme	nted: Read as '	0'				
bit 0	CCP2IF: CC	P2 Interrupt Fla	g bit				
	1 = Interrupt						
	0 = Interrupt	is not pending					
Note:	Interrupt flag bits	are set when an	interrunt				
	condition occurs,						
	its corresponding	enable bit or th	e Global				
	Enable bit, GIE,		0				
	User software appropriate interru	should ensu					
	to enabling an inte						

REGISTER 7-7: PIR2: PERIPHERAL INTERRUPT REQUEST REGISTER 2

10.1 Independent Clock Source

The WDT derives its time base from the 31 kHz LFINTOSC internal oscillator. Time intervals in this chapter are based on a nominal interval of 1 ms. See **Section 30.0 "Electrical Specifications**" for the LFINTOSC tolerances.

10.2 WDT Operating Modes

The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in Configuration Words. See Table 10-1.

10.2.1 WDT IS ALWAYS ON

When the WDTE bits of Configuration Words are set to '11', the WDT is always on.

WDT protection is active during Sleep.

10.2.2 WDT IS OFF IN SLEEP

When the WDTE bits of Configuration Words are set to '10', the WDT is on, except in Sleep.

WDT protection is not active during Sleep.

10.2.3 WDT CONTROLLED BY SOFTWARE

When the WDTE bits of Configuration Words are set to '01', the WDT is controlled by the SWDTEN bit of the WDTCON register.

WDT protection is unchanged by Sleep. See Table 10-1 for more details.

TABLE 10-1: WDI OPERATING MODES	TABLE 10-1:	WDT OPERATING MODES
---------------------------------	-------------	---------------------

WDTE<1:0>	SWDTEN	Device Mode	WDT Mode
11	Х	Х	Active
1.0	37	Awake	Active
10	Х	Sleep	Disabled
0.1	1	х	Active
01	0	^	Disabled
00	Х	Х	Disabled

10.3 Time-Out Period

The WDTPS bits of the WDTCON register set the time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is two seconds.

10.4 Clearing the WDT

The WDT is cleared when any of the following conditions occur:

- Any Reset
- CLRWDT instruction is executed
- Device enters Sleep
- · Device wakes up from Sleep
- · Oscillator fail
- · WDT is disabled
- Oscillator Start-up Timer (OST) is running

See Table 10-2 for more information.

10.5 Operation During Sleep

When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting.

When the device exits Sleep, the WDT is cleared again. The WDT remains clear until the OST, if enabled, completes. See **Section 5.0** "Oscillator **Module (With Fail-Safe Clock Monitor)**" for more information on the OST.

When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The \overline{TO} and \overline{PD} bits in the STATUS register are changed to indicate the event. See **Section 3.0** "**Memory Organization**" and STATUS register (**Register 3-1**) for more information.

TABLE 10-2: WDT CLEARING CONDITIONS

Conditions	WDT
WDTE<1:0> = 00	
WDTE<1:0> = 01 and SWDTEN = 0	
WDTE<1:0> = 10 and enter Sleep	Cleared
CLRWDT Command	Cleared
Oscillator Fail Detected	
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK	
Exit Sleep + System Clock = XT, HS, LP	Cleared until the end of OST
Change INTOSC divider (IRCF bits)	Unaffected

12.10 Register Definitions: PORTD

REGISTER 12-13: PORTD: PORTD REGISTER

		-					
R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0
bit 7	·			•			bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimpler	nented bit, read	1 as '0'		
u = Bit is unchanged x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set '0' = Bit is cleared							

bit 7-0 **RD<7:0>**: PORTD General Purpose I/O Pin bits 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

REGISTER 12-14: TRISD: PORTD TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISD7 | TRISD6 | TRISD5 | TRISD4 | TRISD3 | TRISD2 | TRISD1 | TRISD0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 TRISD<7:0>: PORTD Tri-State Control bits

1 = PORTD pin configured as an input (tri-stated)

0 = PORTD pin configured as an output

REGISTER 12-15: LATD: PORTD DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATD7 | LATD6 | LATD5 | LATD4 | LATD3 | LATD2 | LATD1 | LATD0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATD<7:0>: PORTD Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTD are actually written to corresponding LATD register. Reads from PORTD register is return of actual I/O pin values.

18.7 Comparator Negative Input Selection

The CxNCH<1:0> bits of the CMxCON0 register direct one of four analog pins to the comparator inverting input.

Note:	To use CxIN+ and CxINx- pins as analog
	input, the appropriate bits must be set in
	the ANSEL register and the correspond-
	ing TRIS bits must also be set to disable
	the output drivers.

18.8 Comparator Response Time

The comparator output is indeterminate for a period of time after the change of an input source or the selection of a new reference voltage. This period is referred to as the response time. The response time of the comparator differs from the settling time of the voltage reference. Therefore, both of these times must be considered when determining the total response time to a comparator input change. See the Comparator and Voltage Reference Specifications in **Section 30.0 "Electrical Specifications"** for more details.

18.9 Interaction with ECCP Logic

The comparators can be used as general purpose comparators. Their outputs can be brought out to the CxOUT pins. When the ECCP Auto-Shutdown is active it can use one or both comparator signals. If auto-restart is also enabled, the comparators can be configured as a closed loop analog feedback to the ECCP, thereby, creating an analog controlled PWM.

Note: When the Comparator module is first initialized the output state is unknown. Upon initialization, the user should verify the output state of the comparator prior to relying on the result, primarily when using the result in connection with other peripheral features, such as the ECCP Auto-Shutdown mode.

18.10 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 18-3. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and VSS. The analog input, therefore, must be between VSS and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.

> Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

24.6.7 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the Receive Enable bit, RCEN bit of the SSPxCON2 register.

Note:	The MSSPx module must be in an Idle
	state before the RCEN bit is set or the
	RCEN bit will be disregarded.

The Baud Rate Generator begins counting and on each rollover, the state of the SCLx pin changes (high-to-low/low-to-high) and data is shifted into the SSPxSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPxSR are loaded into the SSPxBUF, the BF flag bit is set, the SSPxIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCLx low. The MSSPx is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable, ACKEN bit of the SSPxCON2 register.

24.6.7.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPxBUF from SSPxSR. It is cleared when the SSPxBUF register is read.

24.6.7.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when eight bits are received into the SSPxSR and the BF flag bit is already set from a previous reception.

24.6.7.3 WCOL Status Flag

If the user writes the SSPxBUF when a receive is already in progress (i.e., SSPxSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

24.6.7.4 Typical Receive Sequence

- 1. The user generates a Start condition by setting the SEN bit of the SSPxCON2 register.
- 2. SSPxIF is set by hardware on completion of the Start.
- 3. SSPxIF is cleared by software.
- 4. User writes SSPxBUF with the slave address to transmit and the R/W bit set.
- 5. Address is shifted out the SDAx pin until all eight bits are transmitted. Transmission begins as soon as SSPxBUF is written to.
- The MSSPx module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit of the SSPxCON2 register.
- The MSSPx module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- User sets the RCEN bit of the SSPxCON2 register and the Master clocks in a byte from the slave.
- 9. After the eighth falling edge of SCLx, SSPxIF and BF are set.
- 10. Master clears SSPxIF and reads the received byte from SSPxUF, clears BF.
- 11. Master sets ACK value sent to slave in ACKDT bit of the SSPxCON2 register and initiates the ACK by setting the ACKEN bit.
- 12. Masters ACK is clocked out to the Slave and SSPxIF is set.
- 13. User clears SSPxIF.
- 14. Steps 8-13 are repeated for each received byte from the slave.
- 15. Master sends a not ACK or Stop to end communication.

25.5 EUSART Synchronous Mode

Synchronous serial communications are typically used in systems with a single master and one or more slaves. The master device contains the necessary circuitry for baud rate generation and supplies the clock for all devices in the system. Slave devices can take advantage of the master clock by eliminating the internal clock generation circuitry.

There are two signal lines in Synchronous mode: a bidirectional data line and a clock line. Slaves use the external clock supplied by the master to shift the serial data into and out of their respective receive and transmit shift registers. Since the data line is bidirectional, synchronous operation is half-duplex only. Half-duplex refers to the fact that master and slave devices can receive and transmit data but not both simultaneously. The EUSART can operate as either a master or slave device.

Start and Stop bits are not used in synchronous transmissions.

25.5.1 SYNCHRONOUS MASTER MODE

The following bits are used to configure the EUSART for Synchronous Master operation:

- SYNC = 1
- CSRC = 1
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXxSTA register configures the device for synchronous operation. Setting the CSRC bit of the TXxSTA register configures the device as a master. Clearing the SREN and CREN bits of the RCxSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCxSTA register enables the EUSART. If the RXx/DTx or TXx/CKx pins are shared with an analog peripheral the analog I/O functions must be disabled by clearing the corresponding ANSEL bits.

The TRIS bits corresponding to the RXx/DTx and TXx/CKx pins should be set.

25.5.1.1 Master Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a master transmits the clock on the TXx/CKx line. The TXx/CKx pin output driver is automatically enabled when the EUSART is configured for synchronous transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One clock cycle is generated for each data bit. Only as many clock cycles are generated as there are data bits.

25.5.1.2 Clock Polarity

A clock polarity option is provided for Microwire compatibility. Clock polarity is selected with the SCKP bit of the BAUDxCON register. Setting the SCKP bit sets the clock Idle state as high. When the SCKP bit is set, the data changes on the falling edge of each clock and is sampled on the rising edge of each clock. Clearing the SCKP bit sets the Idle state as low. When the SCKP bit is cleared, the data changes on the rising edge of each clock and is sampled on the falling edge of each clock.

25.5.1.3 Synchronous Master Transmission

Data is transferred out of the device on the RXx/DTx pin. The RXx/DTx and TXx/CKx pin output drivers are automatically enabled when the EUSART is configured for synchronous master transmit operation.

A transmission is initiated by writing a character to the TXxREG register. If the TSR still contains all or part of a previous character the new character data is held in the TXxREG until the last bit of the previous character has been transmitted. If this is the first character, or the previous character has been completely flushed from the TSR, the data in the TXxREG is immediately transferred to the TSR. The transmission of the character commences immediately following the transfer of the data to the TSR from the TXxREG.

Each data bit changes on the leading edge of the master clock and remains valid until the subsequent leading clock edge.

Note: The TSR register is not mapped in data memory, so it is not available to the user.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
SEn	SEn	SEn	SEn	SEn	SEn	SEn	SEn
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 27-5: LCDSEn: LCD SEGMENT ENABLE REGISTERS

bit 7-0 SEn: Segment Enable bits

1 = Segment function of the pin is enabled

0 = I/O function of the pin is enabled

REGISTER 27-6: LCDDATAn: LCD DATA REGISTERS

| R/W-x/u |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| SEGx-COMy |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SEGx-COMy: Pixel On bits

1 = Pixel ON (dark) 0 = Pixel OFF (clear)

30.3 DC Characteristics: PIC16(L)F1946/47-I/E (Industrial, Extended) (Continued)

PIC16LF	1946/47								
PIC16F1	946/47								
Param	Device		-		11	Conditions			
No.	Characteristics	Min.	Тур†	Max.	Units	Vdd	Note		
	Supply Current (IDD) ^{(1,}	2)							
D013		—	15	40	μA	1.8	Fosc = 500 kHz		
		—	30	75	μA	3.0	EC Oscillator Low-Power mode		
D013		—	30	60	μA	1.8	Fosc = 500 kHz		
		_	45	85	μA	3.0	EC Oscillator Low-Power mode (Note 5)		
		_	50	90	μA	5.0			
D014		_	140	250	μA	1.8	Fosc = 4 MHz		
		—	270	400	μA	3.0	EC Oscillator mode Medium-Power mode		
D014		_	160	270	μΑ	1.8	Fosc = 4 MHz		
			270	430	μA	3.0	EC Oscillator mode (Note 5) Medium-Power mode		
		—	320	500	μA	5.0			
D015		_	2.0	3.2	mA	3.0	Fosc = 32 MHz		
		—	2.3	3.9	mA	3.6	EC Oscillator High-Power mode		
D015		_	2.0	3.2	mA	3.0	Fosc = 32 MHz		
		—	2.2	3.9	mA	5.0	EC Oscillator High-Power mode (Note 5)		
D016			3.0	11	μA	1.8	Fosc = 32 kHz, LFINTOSC mode (Note 4)		
			5.0	13	μA	3.0	$-40^{\circ}C \le TA \le +85^{\circ}C$		
D016		_	24	40	μΑ	1.8	Fosc = 32 kHz, LFINTOSC mode (Note 4, 5)		
		_	30	48	μΑ	3.0	$-40^{\circ}C \le TA \le +85^{\circ}C$		
		—	32	58	μΑ	5.0			

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2 REXT (mA) with REXT in $k\Omega$.

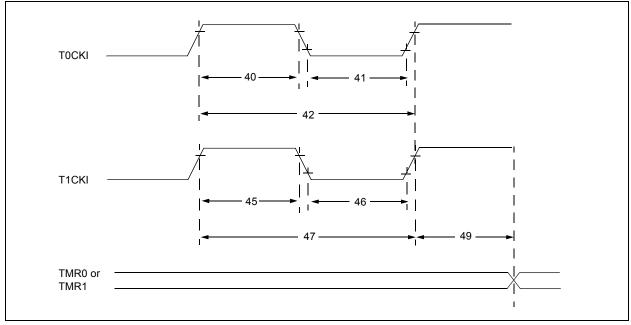
4: FVR and BOR are disabled.

5: 0.1 μF capacitor on VCAP (RF0).

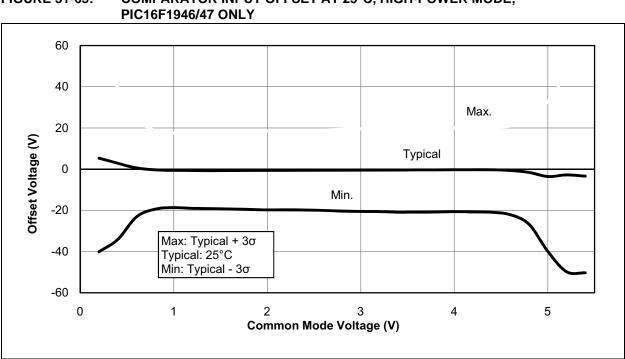
6: 8 MHz crystal oscillator with 4x PLL enabled.

TABLE 30-5:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET PARAMETERS

Para m No.	Sym. Characteristic		Min.	Тур†	Max.	Units	Conditions
30	TMCL	MCLR Pulse Width (low)	2	_		μS	
31	TWDTLP	Watchdog Timer Time-out Period	10	16	27	ms	VDD = 3.3V-5V, 1:512 Prescaler used
32	Тоѕт	Oscillator Start-up Timer Period ⁽¹⁾	_	1024	—	Tosc	
33*	TPWRT	Power-up Timer Period, PWRTE = 0	40	65	140	ms	
34*	Tioz	I/O high-impedance from MCLR Low or Watchdog Timer Reset	_	_	2.0	μS	
35	VBOR	Brown-out Reset Voltage ⁽²⁾	2.55 1.80	2.70 1.90	2.85 2.11	V V	BORV = 0 BORV = 1
36*	VHYST	Brown-out Reset Hysteresis	0	25	50	mV	-40°C to +85°C
37*	TBORDC	Brown-out Reset DC Response Time	1	3	35	μS	$V D D \leq V B O R$

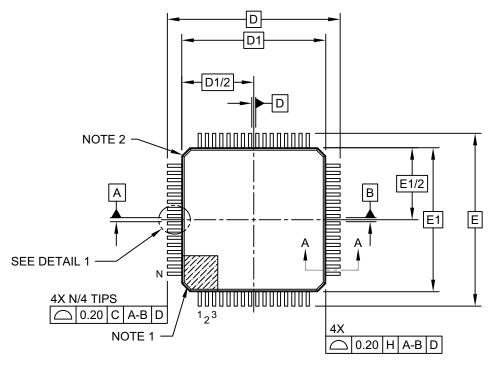

* These parameters are characterized but not tested.

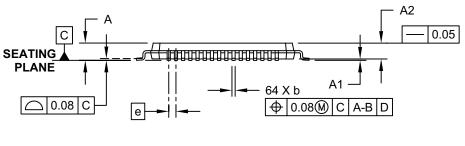
† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.

2: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

FIGURE 30-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS


PIC16(L)F1946/47


FIGURE 31-65: COMPARATOR INPUT OFFSET AT 25°C, HIGH-POWER MODE,

64-Lead Plastic Thin Quad Flatpack (PT)-10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

SIDE VIEW

Microchip Technology Drawing C04-085C Sheet 1 of 2