

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1946-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-7: PIC16(L)F1946/47 MEMORY MAP, BANKS 24-31

	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30		BANK 31
C00h	INDF0	C80h	INDF0	D00h	INDF0	D80h	INDF0	E00h	INDF0	E80h	INDF0	F00h	INDF0	F80h	INDF0
C01h	INDF1	C81h	INDF1	D01h	INDF1	D81h	INDF1	E01h	INDF1	E81h	INDF1	F01h	INDF1	F81h	INDF1
C02h	PCL	C82h	PCL	D02h	PCL	D82h	PCL	E02h	PCL	E82h	PCL	F02h	PCL	F82h	PCL
C03h	STATUS	C83h	STATUS	D03h	STATUS	D83h	STATUS	E03h	STATUS	E83h	STATUS	F03h	STATUS	F83h	STATUS
C04h	FSR0L	C84h	FSR0L	D04h	FSR0L	D84h	FSR0L	E04h	FSR0L	E84h	FSR0L	F04h	FSR0L	F84h	FSR0L
C05h	FSR0H	C85h	FSR0H	D05h	FSR0H	D85h	FSR0H	E05h	FSR0H	E85h	FSR0H	F05h	FSR0H	F85h	FSR0H
C06h	FSR1L	C86h	FSR1L	D06h	FSR1L	D86h	FSR1L	E06h	FSR1L	E86h	FSR1L	F06h	FSR1L	F86h	FSR1L
C07h	FSR1H	C87h	FSR1H	D07h	FSR1H	D87h	FSR1H	E07h	FSR1H	E87h	FSR1H	F07h	FSR1H	F87h	FSR1H
C08h	BSR	C88h	BSR	D08h	BSR	D88h	BSR	E08h	BSR	E88h	BSR	F08h	BSR	F88h	BSR
C09h	WREG	C89h	WREG	D09h	WREG	D89h	WREG	E09h	WREG	E89h	WREG	F09h	WREG	F89h	WREG
C0Ah	PCLATH	C8Ah	PCLATH	D0Ah	PCLATH	D8Ah	PCLATH	E0Ah	PCLATH	E8Ah	PCLATH	F0Ah	PCLATH	F8Ah	PCLATH
C0Bh	INTCON	C8Bh	INTCON	D0Bh	INTCON	D8Bh	INTCON	E0Bh	INTCON	E8Bh	INTCON	F0Bh	INTCON	F8Bh	INTCON
C0Ch	—	C8Ch	_	D0Ch	_	D8Ch	—	E0Ch	—	E8Ch	_	F0Ch	—	F8Ch	
C0Dh	_	C8Dh	_	D0Dh	—	D8Dh	_	E0Dh	_	E8Dh	_	F0Dh	—	F8Dh	
C0Eh	_	C8Eh	_	D0Eh	_	D8Eh	—	E0Eh	—	E8Eh	_	F0Eh	—	F8Eh	
C0Fh	_	C8Fh	_	D0Fh	_	D8Fh	—	E0Fh	—	E8Fh	_	F0Fh	—	F8Fh	
C10h	_	C90h	_	D10h	_	D90h	—	E10h	—	E90h	—	F10h	—	F90h	
C11h	_	C91h	_	D11h	_	D91h	—	E11h	—	E91h	_	F11h	—	F91h	
C12h	_	C92h	_	D12h	—	D92h	_	E12h	_	E92h	_	F12h	—	F92h	
C13h	_	C93h	_	D13h	—	D93h	_	E13h	_	E93h	_	F13h	—	F93h	
C14h	_	C94h	_	D14h	—	D94h	_	E14h	_	E94h	_	F14h	—	F94h	
C15h	_	C95h	_	D15h	_	D95h	—	E15h	—	E95h	_	F15h	—	F95h	
C16h	—	C96h	—	D16h	—	D96h	_	E16h	_	E96h	—	F16h	—	F96h	
C17h	—	C97h	—	D17h	—	D97h	_	E17h	_	E97h	—	F17h	—	F97h	
C18h	—	C98h	—	D18h	—	D98h	_	E18h	_	E98h	—	F18h	—	F98h	See Table 3-9
C19h	—	C99h	_	D19h		D99h		E19h		E99h	_	F19h	—	F99h	
C1Ah	—	C9Ah	_	D1Ah		D9Ah		E1Ah		E9Ah	_	F1Ah	—	F9Ah	
C1Bh	—	C9Bh	_	D1Bh		D9Bh	_	E1Bh	_	E9Bh		F1Bh	_	F9Bh	
C1Ch	—	C9Ch	—	D1Ch	—	D9Ch	_	E1Ch	_	E9Ch	—	F1Ch	—	F9Ch	
C1Dh	—	C9Dh	_	D1Dh		D9Dh	_	E1Dh	_	E9Dh	_	F1Dh	—	F9Dh	
C1Eh	—	C9Eh	—	D1Eh	—	D9Eh	_	E1Eh	_	E9Eh	—	F1Eh	—	F9Eh	
C1Fh	—	C9Fh	_	D1Fh		D9Fh	_	E1Fh	_	E9Fh	_	F1Fh	—	F9Fh	
C20h		CA0h		D20h		DA0h		E20h		EA0h		F20h		FA0h	
	Unimplemented														
	Read as 0														
C6Fh		CEFh		D6Fh		DEFh		E6Fh		EEFh		F6Fh		FEFh	
C70h		CF0h		D70h		DF0h		E70h		EF0h		F70h	A	FF0h	
	Accesses														
0.55	7011 - 7711		1011 - 1711		1011 - 1711	DEE	1011 - 1711		1011 - 1711		/011-/11		/011 - / FII		1011 - 1711
CFFh		CEEN		U/⊦h		DFFN		E/Fh		LFFU	1	F/FN		FFFN	

Legend: = Unimplemented data memory locations, read as '0'.

4.0 DEVICE CONFIGURATION

Device Configuration consists of Configuration Words, Code Protection and Device ID.

4.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as Configuration Word 1 at 8007h and Configuration Word 2 at 8008h.

Note: The DEBUG bit in Configuration Word 2 is managed automatically by device development tools including debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.

PIC16(L)F1946/1947

4.2 Register Definitions: Configuration Words

R/P-1 **R/P-1** R/P-1 R/P-1 R/P-1 R/P-1 CPD **FCMEN IESO** CLKOUTEN BOREN<1:0> bit 13 bit 8 R/P-1 R/P-1 R/P-1 **R/P-1** R/P-1 R/P-1 R/P-1 R/P-1 CP PWRTE **MCLRE** WDTE<1:0> FOSC<2:0> bit 7 bit 0 Legend: R = Readable bit P = Programmable bit U = Unimplemented bit, read as '1' '0' = Bit is cleared -n = Value when blank or after Bulk Erase '1' = Bit is set bit 13 FCMEN: Fail-Safe Clock Monitor Enable bit 1 = Fail-Safe Clock Monitor is enabled 0 = Fail-Safe Clock Monitor is disabled IESO: Internal External Switchover bit bit 12 1 = Internal/External Switchover mode is enabled 0 = Internal/External Switchover mode is disabled **CLKOUTEN:** Clock Out Enable bit bit 11 If FOSC configuration bits are set to LP, XT, HS modes: This bit is ignored, CLKOUT function is disabled. Oscillator function on the CLKOUT pin. All other FOSC modes: 1 = CLKOUT function is disabled. I/O function on the CLKOUT pin. 0 = CLKOUT function is enabled on the CLKOUT pin BOREN<1:0>: Brown-out Reset Enable bits⁽¹⁾ bit 10-9 11 = BOR enabled 10 = BOR enabled during operation and disabled in Sleep 01 = BOR controlled by SBOREN bit of the BORCON register 00 = BOR disabled CPD: Data Code Protection bit⁽²⁾ bit 8 1 = Data memory code protection is disabled 0 = Data memory code protection is enabled **CP:** Code Protection bit⁽³⁾ bit 7 1 = Program memory code protection is disabled 0 = Program memory code protection is enabled bit 6 MCLRE: MCLR/VPP Pin Function Select bit If LVP bit = 1: This bit is ignored. If LVP bit = 0: 1 = \overline{MCLR}/VPP pin function is \overline{MCLR} ; Weak pull-up enabled. 0 = MCLR/VPP pin function is digital input; MCLR internally disabled; Weak pull-up under control of WPUG5 bit.

REGISTER 4-1: CONFIG1: CONFIGURATION WORD 1

- **Note 1:** Enabling Brown-out Reset does not automatically enable Power-up Timer.
 - 2: The entire data EEPROM will be erased when the code protection is turned off during an erase.
 - 3: The entire program memory will be erased when the code protection is turned off.

REGISTER 4-1: CONFIG1: CONFIGURATION WORD 1 (CONTINUED)

- bit 5 **PWRTE**: Power-up Timer Enable bit⁽¹⁾
 - 1 = PWRT disabled
 - 0 = PWRT enabled
- bit 4-3 WDTE<1:0>: Watchdog Timer Enable bit
 - 11 = WDT enabled
 - 10 = WDT enabled while running and disabled in Sleep
 - 01 = WDT controlled by the SWDTEN bit in the WDTCON register
 - 00 = WDT disabled
- bit 2-0 FOSC<2:0>: Oscillator Selection bits
 - 111 = ECH: External Clock, High-Power mode (4-20 MHz): device clock supplied to CLKIN pin
 - 110 = ECM: External Clock, Medium-Power mode (0.5-4 MHz): device clock supplied to CLKIN pin
 - 101 = ECL: External Clock, Low-Power mode (0-0.5 MHz): device clock supplied to CLKIN pin
 - 100 = INTOSC oscillator: I/O function on CLKIN pin
 - 011 = EXTRC oscillator: External RC circuit connected to CLKIN pin
 - 010 = HS oscillator: High-speed crystal/resonator connected between OSC1 and OSC2 pins
 - 001 = XT oscillator: Crystal/resonator connected between OSC1 and OSC2 pins
 - 000 = LP oscillator: Low-power crystal connected between OSC1 and OSC2 pins
- Note 1: Enabling Brown-out Reset does not automatically enable Power-up Timer.
 - 2: The entire data EEPROM will be erased when the code protection is turned off during an erase.
 - 3: The entire program memory will be erased when the code protection is turned off.

5.2.2.3 Internal Oscillator Frequency Adjustment

The 500 kHz internal oscillator is factory calibrated. This internal oscillator can be adjusted in software by writing to the OSCTUNE register (Register 5-3). Since the HFINTOSC and MFINTOSC clock sources are derived from the 500 kHz internal oscillator a change in the OSCTUNE register value will apply to both.

The default value of the OSCTUNE register is '0'. The value is a 6-bit two's complement number. A value of 1Fh will provide an adjustment to the maximum frequency. A value of 20h will provide an adjustment to the minimum frequency.

When the OSCTUNE register is modified, the oscillator frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

OSCTUNE does not affect the LFINTOSC frequency. Operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer (PWRT), Watchdog Timer (WDT), Fail-Safe Clock Monitor (FSCM) and peripherals, are *not* affected by the change in frequency.

5.2.2.4 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is an uncalibrated 31 kHz internal clock source.

The output of the LFINTOSC connects to a multiplexer (see Figure 5-1). Select 31 kHz, via software, using the IRCF<3:0> bits of the OSCCON register. See Section 5.2.2.7 "Internal Oscillator Clock Switch Timing" for more information. The LFINTOSC is also the frequency for the Power-up Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The LFINTOSC is enabled by selecting 31 kHz (IRCF<3:0> bits of the OSCCON register = 000) as the system clock source (SCS bits of the OSCCON register = 1x), or when any of the following are enabled:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired LF frequency, and
- FOSC<2:0> = 100, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'

Peripherals that use the LFINTOSC are:

- Power-up Timer (PWRT)
- Watchdog Timer (WDT)
- Fail-Safe Clock Monitor (FSCM)

The Low Frequency Internal Oscillator Ready bit (LFIOFR) of the OSCSTAT register indicates when the LFINTOSC is running.

5.2.2.5 Internal Oscillator Frequency Selection

The system clock speed can be selected via software using the Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register.

The output of the 16 MHz HFINTOSC and 31 kHz LFINTOSC connects to a postscaler and multiplexer (see Figure 5-1). The Internal Oscillator Frequency Select bits IRCF<3:0> of the OSCCON register select the frequency output of the internal oscillators. One of the following frequencies can be selected via software:

- HFINTOSC
 - 32 MHz (requires 4x PLL)
 - 16 MHz
 - 8 MHz
 - 4 MHz
 - 2 MHz
 - 1 MHz
 - 500 kHz (default after Reset)
 - 250 kHz
 - 125 kHz
 - 62.5 kHz
 - 31.25 kHz
- LFINTOSC

- 31 kHz

Note: Following any Reset, the IRCF<3:0> bits of the OSCCON register are set to '0111' and the frequency selection is set to 500 kHz. The user can modify the IRCF bits to select a different frequency.

The IRCF<3:0> bits of the OSCCON register allow duplicate selections for some frequencies. These duplicate choices can offer system design trade-offs. Lower power consumption can be obtained when changing oscillator sources for a given frequency. Faster transition times can be obtained between frequency changes that use the same oscillator source.

5.4.2 TWO-SPEED START-UP SEQUENCE

- 1. Wake-up from Power-on Reset or Sleep.
- 2. Instructions begin execution by the internal oscillator at the frequency set in the IRCF<3:0> bits of the OSCCON register.
- 3. OST enabled to count 1024 clock cycles.
- 4. OST timed out, wait for falling edge of the internal oscillator.
- 5. OSTS is set.
- 6. System clock held low until the next falling edge of new clock (LP, XT or HS mode).
- 7. System clock is switched to external clock source.

FIGURE 5-8: TWO-SPEED START-UP

5.4.3 CHECKING TWO-SPEED CLOCK STATUS

Checking the state of the OSTS bit of the OSCSTAT register will confirm if the microcontroller is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Words, or the internal oscillator.

7.6 Register Definitions: Interrupt Control

		-					
R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0
GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is unch	nanged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	GIE: Global I	nterrupt Enable	e bit				
	1 = Enables	all active interre	upts				
	0 = Disables	all interrupts					
bit 6	PEIE: Periph	eral Interrupt E	nable bit	_			
	1 = Enables a 0 = Disables	all active peripr all peripheral i	ierai interrupts	5			
bit 5	TMROIE: Tim	er0 Overflow l	nterrupt Enabl	e bit			
Sit 0	1 = Enables	the Timer0 inte	rrupt	o bit			
	0 = Disables	the Timer0 inte	errupt				
bit 4	INTE: INT E>	ternal Interrup	t Enable bit				
	1 = Enables	the INT externation	al interrupt				
hit 2			Enchlo hit				
DIL 3	1 = Enables 1	the interrupt-or	-change				
	0 = Disables	the interrupt-or	n-change				
bit 2	TMR0IF: Tim	er0 Overflow I	nterrupt Flag b	oit			
	1 = TMR0 reg	gister has over	flowed				
	0 = TMR0 re	gister did not o	verflow				
bit 1	INTF: INT Ex	ternal Interrup	Flag bit				
	1 = The INT	external interru	pt occurred	ur			
bit 0	IOCIF: Intern	upt-on-Change	Interrupt Flag	, bit			
	1 = When at	least one of the	e interrupt-on-	change pins ch	anged state		
	0 = None of t	he interrupt-on	-change pins	have changed	state		
Note 1. Th		t is road only a	nd cloared wh	on all the inter	runt-on-change	flags in the IOC	PE register

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

Note 1: The IOCIF Flag bit is read-only and cleared when all the interrupt-on-change flags in the IOCBF register have been cleared by software.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

12.15 PORTG Registers

PORTG is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISG (Register 12-25). Setting a TRISG bit (= 1) will make the corresponding PORTG pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISG bit (= 0) will make the corresponding PORTG pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). The exception is RG5, which is input only and its TRIS bit will always read as '1'. Example 12-1 shows how to initialize an I/O port.

Reading the PORTG register (Register 12-24) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATG). RG5 reads '0' when MCLRE = 1.

The TRISG register (Register 12-25) controls the PORTG pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISG register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

12.15.1 ANSELG REGISTER

The ANSELG register (Register 12-27) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELG bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELG bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELG register must be initialized							
	to configure an analog channel as a digital							
	input. Pins configured as analog inputs							
	will read '0'.							

PORTG FUNCTIONS AND OUTPUT 12.15.2 PRIORITIES

Each PORTG pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 12-16.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input and some digital input functions are not included in the list below. These input functions can remain active when the pin is configured as an output. Certain digital input functions override other port functions and are included in the priority list.

Pin Name	Function Priority ⁽¹⁾
RG0	CCP3 (CCP) P3A (CCP) SEG42 (LCD) RG0
RG1	TX2 (EUSART) CK2 (EUSART) C3OUT (Comparator) SEG43 (LCD) RG1
RG2	DT2 SEG44 (LCD) RG2
RG3	CCP4 (CCP) P3D (CCP) SEG45 (LCD) RG3
RG4	CCP5 (CCP) P1D (CCP) SEG26 (LCD) RG4
RG5	Input-only pin

TABLE 12-16: PORTG OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

17.0 DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The input of the DAC can be connected to:

- External VREF pins
- VDD supply voltage
- FVR (Fixed Voltage Reference)

The output of the DAC can be configured to supply a reference voltage to the following:

- Comparator positive input
- · ADC input channel
- DACOUT pin
- Capacitive Sensing module (CPS)

The Digital-to-Analog Converter (DAC) can be enabled by setting the DACEN bit of the DACCON0 register.

EQUATION 17-1: DAC OUTPUT VOLTAGE

<u>IF DACEN = 1</u>

 $VOUT = \left((VSOURCE + -VSOURCE -) \times \frac{DACR[4:0]}{2^5} \right) + VSOURCE -$

<u>IF DACEN = 0 & DACLPS = 1 & DACR[4:0] = 11111</u>

VOUT = VSOURCE +

<u>IF DACEN = 0 & DACLPS = 0 & DACR[4:0] = 00000</u>

VOUT = VSOURCE -

VSOURCE+ = VDD, VREF, or FVR BUFFER 2

VSOURCE- = VSS

17.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in **Section 30.0** "**Electrical Specifications**".

17.1 Output Voltage Selection

The DAC has 32 voltage level ranges. The 32 levels are set with the DACR<4:0> bits of the DACCON1 register.

The DAC output voltage is determined by the following equations:

17.3 DAC Voltage Reference Output

The DAC can be output to the DACOUT pin by setting the DACOE bit of the DACCON0 register to '1'. Selecting the DAC reference voltage for output on the DACOUT pin automatically overrides the digital output buffer and digital input threshold detector functions of that pin. Reading the DACOUT pin when it has been configured for DAC reference voltage output will always return a '0'.

Due to the limited current drive capability, a buffer must be used on the DAC voltage reference output for external connections to DACOUT. Figure 17-2 shows an example buffering technique.

TABLE 25-1: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
BAUD1CON	ABDOVF	RCIDL		SCKP	BRG16	_	WUE	WUE ABDEN	
BAUD2CON	ABDOVF	RCIDL	—	SCKP	BRG16	—	WUE	ABDEN	299
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	90
PIE1	—	ADIE	RC1IE	TX1IE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	91
PIE4	—		RC2IE	TX2IE	—	_	BCL2IE	SSP2IE	94
PIR1	—	ADIF	RC1IF	TX1IF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	95
PIR4	—		RC2IF	TX2IF	—	_	BCL2IF	SSP2IF	98
RC1STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	298
RC2STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	298
SP1BRGL			EUSART	1 Baud Rate	Generator, I	_ow Byte			300*
SP1BRGH			EUSART1	Baud Rate	Generator, H	ligh Byte			300*
SP2BRGL			EUSART2	2 Baud Rate	Generator, I	_ow Byte			300*
SP2BRGH			EUSART2	2 Baud Rate	Generator, H	ligh Byte			300*
TX1REG			EL	JSART1 Trar	nsmit Regist	er			292*
TX1STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	297
TX2REG			EL	JSART2 Trai	nsmit Regist	er			292*
TX2STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	297

Legend: — = unimplemented locations, read as '0'. Shaded bits are not used for asynchronous transmission.

* Page provides register information.

R/W-0/	0 R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0				
LCDIR	E LCDIRS	LCDIRI	_	VLCD3PE	VLCD2PE	VLCD1PE	_				
bit 7							bit 0				
Legend:											
R = Reada	able bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
u = Bit is ι	unchanged	x = Bit is unkr	iown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets				
'1' = Bit is	set	'0' = Bit is clea	ared	C = Only clea	rable bit						
bit 7 LCDIRE: LCD Internal Reference Enable bit 1 = Internal LCD Reference is enabled and connected to the Internal Contrast Control circuit 0 = Internal LCD Reference is disabled bit 6 LCDIRS: LCD Internal Reference Source bit											
	If LCDIRE = 1: 0 = Internal LCD Contrast Control is powered by VDD 1 = Internal LCD Contrast Control is powered by a 3.072V output of the FVR. If LCDIRE = 0: Internal LCD Contrast Control is unconnected. LCD bandgap buffer is disabled.										
bit 5	LCDIRI: LCD	Internal Refere	ence Ladder I	Idle Enable bit							
	Allows the Int 1 = When th 0 = The LCI	ernal FVR buff ne LCD Referer D Internal FVR	er to shut dov nce Ladder is Buffer ignore:	vn when the LC in power mode s the LCD Refe	D Reference La 'B', the LCD Inf rence Ladder P	adder is in pow ternal FVR buff ower mode.	er mode 'B' fer is disabled.				
bit 4	Unimplemen	ted: Read as '	כ'								
bit 3	VLCD3PE: V	LCD3 Pin Enat	ole bit								
	1 = The VLC 0 = The VLC	D3 pin is conne D3 pin is not co	ected to the ir	nternal bias volt	age LCDBIAS3	(1)					
bit 2	VLCD2PE: V	LCD2 Pin Enat	ole bit								
	1 = The VLC 0 = The VLC	D2 pin is conne D2 pin is not co	ected to the ir	nternal bias volt	age LCDBIAS2	(1)					
bit 1	VLCD1PE: V	LCD1 Pin Enat	ole bit								
	1 = The VLC 0 = The VLC	D1 pin is conne D1 pin is not co	ected to the ir	nternal bias volt	age LCDBIAS1	(1)					
bit 0	Unimplemen	ted: Read as '	כי								
Note 1:	Normal pin control	s of TRISx and	ANSELx are	unaffected.							

REGISTER 27-3: LCDREF: LCD REFERENCE VOLTAGE CONTROL REGISTER

FIGURE 27-6: LCD INTERNAL REFERENCE LADDER POWER MODE SWITCHING DIAGRAM – TYPE B WAVEFORM (1/2 MUX, 1/2 BIAS DRIVE)

PIC16(L)F1946/47

-V₂

30.5 DC Characteristics: PIC16(L)F1946/47-I/E

	DC C	HARACTERISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
	VIL	Input Low Voltage								
		I/O PORT:								
D032		with TTL buffer	_	I	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$			
D032A					0.15 Vdd	V	$1.8V \leq V\text{DD} \leq 4.5V$			
D033		with Schmitt Trigger buffer			0.2 VDD	V	$2.0V \leq V\text{DD} \leq 5.5V$			
		with I ² C levels			0.3 VDD	V				
		with SMBus levels			0.8	V	$2.7V \leq V\text{DD} \leq 5.5V$			
D034		MCLR, OSC1 (RC mode) ⁽¹⁾	_		0.2 Vdd	V				
D034A		OSC1 (HS mode)	_		0.3 Vdd	V				
	VIH	Input High Voltage								
		I/O ports:				_				
D040		with TTL buffer	2.0	_	—	V	$4.5V \leq V\text{DD} \leq 5.5V$			
D040A			0.25 VDD + 0.8	_	—	V	$1.8V \le VDD \le 4.5V$			
D041		with Schmitt Trigger buffer	0.8 VDD		—	V	$2.0V \leq V\text{DD} \leq 5.5V$			
		with I ² C levels	0.7 Vdd		—	V				
		with SMBus levels	2.1		—	V	$2.7V \leq V\text{DD} \leq 5.5V$			
D042		MCLR	0.8 VDD		—	V				
D043A		OSC1 (HS mode)	0.7 Vdd		—	V				
D043B		OSC1 (RC mode)	0.9 Vdd	_	—	V	(Note 1) VDD > 2.0V			
	lı∟	Input Leakage Current ⁽²⁾				_				
D060		I/O ports	_	± 5	± 125	nA	Vss \leq VPIN \leq VDD, Pin at high-imped- ance @ 85°C			
D061				± 5	± 1000	nA mA				
D001	IDUD	Mook Bull up Current		± 30	± 200	ΠA				
D070*	IPUR	weak Full-up Cultent	25	100	200					
0070			25	140	300	μА	$V_{DD} = 5.0V, V_{PIN} = V_{SS}$			
	Vol	Output Low Voltage ⁽⁴⁾				P** 1				
D080		I/O ports	_	_	0.6	V	IOL = 8mA, VDD = 5V IOL = 6mA, VDD = 3.3V IOL = 1.8mA, VDD = 1.8V			
	Voн	Output High Voltage ⁽⁴⁾								
D090		I/O ports	Vdd - 0.7	_	_	V	IOH = 3.5mA, VDD = 5V IOH = 3mA, VDD = 3.3V IOH = 1mA, VDD = 1.8V			
		Capacitive Loading Specs on C	Output Pins							
D101*	COSC2	OSC2 pin	—	—	15	pF	In XT, HS and LP modes when exter- nal clock is used to drive OSC1			
D101A*	Cio	All I/O pins	—	_	50	pF				
		VCAP Capacitor Charging								
D102		Charging current		200		μA				
D102A		Source/sink capability when charging complete	_	0.0	-	mA				

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

TABLE 30-1: CLOCK OSCILLATOR TIMING REQUIREMENTS (CONTINUED)

Standard Operating Conditions (unless otherwise stated)

Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS05*	TosR,	External CLKIN Rise,	0	_	×	ns	LP oscillator
	TosF	External CLKIN Fall	0	—	8	ns	XT oscillator
			0	_	×	ns	HS oscillator

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

TABLE 30-2: OSCILLATOR PARAMETERS

Standard Operating Conditions (unless otherwise stated)Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param No.	Sym.	Characteristic	Freq. Tolerance	Min.	Тур†	Max.	Units	Conditions	
OS08	OS08 HFosc	Internal-Calibrated HFINTOSC Frequency ⁽¹⁾	±2%	_	16.0	_	MHz	$0^{\circ}C \leq T\!A \leq \textbf{+60^{\circ}C}, V\text{DD} \geq 2.5V$	
			±3%		16.0		MHz	$60^{\circ}C \leq TA \leq \text{+}85^{\circ}C, \ V\text{DD} \geq 2.5V$	
			±5%	_	16.0	_	MHz	$-40^\circ C \leq T A \leq +125^\circ C$	
OS08A	MFosc	Internal-Calibrated MFINTOSC Frequency ⁽¹⁾	±2%	-	500	-	kHz	$0^{\circ}C \leq T\!A \leq \text{+}60^{\circ}C, V\text{DD} \geq 2.5V$	
			±3%		500		kHz	$60^{\circ}C \leq TA \leq \text{+}85^{\circ}C, \ V\text{DD} \geq 2.5V$	
			±5%	-	500	-	kHz	$-40^\circ C \le T_A \le +125^\circ C$	
OS09	LFosc	Internal LFINTOSC Frequency	_	-	31	-	kHz	$-40^\circ C \le T_A \le +125^\circ C$	
OS10*	TIOSC ST	HFINTOSC	_		3.2	8	μS		
		Wake-up from Sleep Start-up Time MFINTOSC Wake-up from Sleep Start-up Time	—	_	24	35	μS		

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

TARI E 30-3.	PLL CLOCK TIMING SPECIFICATIONS	$(V_{DD} - 2.7V TO 5.5V)$
TADLE 30-3.	FLE CLOCK TIMING SFLCII ICATIONS	(VDD = 2.7 V TO 3.3 V)

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
F10	Fosc	Oscillator Frequency Range	4	_	8	MHz	
F11	Fsys	On-Chip VCO System Frequency	16	—	32	MHz	
F12	TRC	PLL Start-up Time (Lock Time)	—	—	2	ms	
F13*	ΔCLK	CLKOUT Stability (Jitter)	-0.25%	_	+0.25%	%	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 30-5:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER
AND BROWN-OUT RESET PARAMETERS

Standard Operating Conditions (unless otherwise stated) Operating Temperature -40°C \leq TA \leq +125°C										
Para m No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions			
30	TMCL	MCLR Pulse Width (low)	2	_	_	μS				
31	TWDTLP	Watchdog Timer Time-out Period	10	16	27	ms	V _{DD} = 3.3V-5V, 1:512 Prescaler used			
32	Tost	Oscillator Start-up Timer Period ⁽¹⁾		1024		Tosc				
33*	TPWRT	Power-up Timer Period, PWRTE = 0	40	65	140	ms				
34*	Tioz	I/O high-impedance from MCLR Low or Watchdog Timer Reset	_		2.0	μS				
35	VBOR	Brown-out Reset Voltage ⁽²⁾	2.55 1.80	2.70 1.90	2.85 2.11	V V	BORV = 0 BORV = 1			
36*	VHYST	Brown-out Reset Hysteresis	0	25	50	mV	-40°C to +85°C			
37*	TBORDC	Brown-out Reset DC Response Time	1	3	35	μS	$VDD \leq VBOR$			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: By design, the Oscillator Start-up Timer (OST) counts the first 1024 cycles, independent of frequency.

2: To ensure these voltage tolerances, VDD and VSS must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

FIGURE 30-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 30-9: PIC16(L)F1946/47 A/D CONVERSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$											
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions				
AD130*	TAD	A/D Clock Period A/D Internal RC Oscillator Period	1.0 1.0	 2.5	9.0 6.0	μs μs	Tosc-based ADCS<1:0> = 11 (ADRC mode)				
AD131	TCNV	Conversion Time (not including Acquisition Time) ⁽¹⁾		11	-	TAD	Set GO/DONE bit to conversion complete				
AD132*	TACQ	Acquisition Time	—	5.0	—	μS					

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The ADRES register may be read on the following TCY cycle.

FIGURE 30-12: PIC16(L)F1946/47 A/D CONVERSION TIMING (NORMAL MODE)

FIGURE 31-43: IPD, CAPACITIVE SENSING (CPS) MODULE, MEDIUM-CURRENT RANGE, CPSRM = 0, PIC16LF1946/47 ONLY

FIGURE 31-44: IPD, CAPACITIVE SENSING (CPS) MODULE, MEDIUM-CURRENT RANGE, CPSRM = 0, PIC16F1946/47 ONLY

